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A class of multivariate copulas based on products

of bivariate copulas

Gildas Mazo, Stéphane Girard and Florence Forbes

Inria and Laboratoire Jean Kuntzmann, Grenoble, France

Abstract

Copulas are a useful tool to model multivariate distributions. While
there exist various families of bivariate copulas, much fewer has been
done when the dimension is higher. In this paper we propose a class of
multivariate copulas based on products of transformed bivariate copulas.
No constraints on the parameters refrain the applicability of the proposed
class. Furthermore the analytical forms of the copulas within this class
allow to naturally associate a graphical structure which helps to visualize
the dependencies and to compute the likelihood efficiently even in high
dimension.

Keywords: maximum-likelihood inference, graphical models, message-passing
algorithm, multivariate, copula.

1 Introduction

The modelling of random multivariate events is a central problem in various
scientific domains and the construction of multivariate distributions able to
properly model the variables at play is challenging. A useful tool to deal with
this problem is the concept of copulas. Let (X1, . . . , Xd) be a random vector
with distribution function F . Let Fi be the (continuous) marginal distribution
function of Xi, i = 1, . . . , d. By Sklar’s Theorem [16], there exists a unique
function C such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (1)

This function C is called the copula of F and is the d-dimensional distribution
function of the random vector (F1(X1), . . . , Fd(Xd)). For a general account on
copulas, see, e.g. [15]. Copulas are interesting since they permit to impose a
dependence structure on pre-determined marginal distributions.

While there exist many copulas in the bivariate case, it is less clear how
to construct copulas in higher dimension. In the presence of non-Gaussianity
and/or tail dependence, various constructions have been adopted, such as, for
instance, Archimedean copulas [8], Vines [1] or elliptical copulas [5]. Because
Archimedean copulas possess only a few parameters, they lack flexibility in high-
dimension. Vines, on the opposite, achieve greater flexibility but at the price
of increased complexity in the modeling process. The use of elliptical copulas
goes together with assuming a similar dependence pattern among all pairs of
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variables. This may be undesirable in applications. Moreover, they have in
general as many as O(d2) parameters and it is difficult to carry out maximum
likelihood inference [3].

Another approach [13] aims at constructing a multivariate copula as a prod-
uct of transformed bivariate copulas. This approach possesses several advan-
tages. A probabilistic interpretation is available and thus the generation of
random vectors is straightforward. The resulting copula is explicit, leading to
explicit bounds on dependence coefficients of the bivariate marginals. The class
of copulas which can be constructed from this approach is large and can cover
a wide range of dependencies. Finally the analysis of extreme values can be
performed by constructing extreme-value copulas.

However, although many copulas with different features can be built, the
use of this approach for practical applications remains challenging. Indeed, two
pitfalls render inference difficult: first, they are constraints on the parameters,
and second, the product form complicates the computation of the density –
hence, of the potential likelihood – even numerically.

The main contribution of this paper is to revisit the product of transformed
copulas in order to propose a new multivariate copula model of practical inter-
est. First, there are no constraints on the parameters anymore. Moreover, a
graphical structure associated to the copulas within this class permits to visu-
alize the dependencies and to efficiently compute the likelihood, even in high
dimension.

The rest of this paper is organized as follows. Section 2 reviews the product
of transformed copulas and important properties such as random generation and
the ability to construct extreme-value models. Section 3 presents the new copula
model and enlightens the link with the product of transformed copulas. Section 4
discusses the dependence properties of bivariate marginals of the proposed class
by providing bounds on some of the most popular dependence coefficients such as
the Spearman’s rho, Kendall’s tau, and tail dependence coefficients. In Section
5, we apply the proposed copula model to a simulated and a real dataset. The
appendix gathers the proofs of this paper.

2 Product of transformed copulas

It is easily seen that a product of copulas is not a copula in general. Nonetheless
the next theorem due to Liebscher [13] shows that, up to marginal transforma-
tions, a product of copulas can lead to a well defined copula.

Theorem 1. Assume C̃1, . . . , C̃K : [0, 1]d → [0, 1] are copulas. Let gei :
[0, 1] → [0, 1] for e = 1, . . . ,K, i = 1, . . . , d be functions with the property
that each of them is strictly increasing or is identically equal to 1. Suppose
that

∏K
e=1 gei(v) = v for v ∈ [0, 1], i = 1, . . . , d, and limv→0 gei(v) = 0 for

e = 1, . . . ,K, i = 1, . . . , d. Then

C(u1, . . . , ud) =

K∏
e=1

C̃e (ge1(u1), . . . , ged(ud)) (2)

is also a copula.
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The probabilistic interpretation of (2) is as follows. Let

(U
(1)
1 , . . . , U

(1)
d ), . . . , (U

(K)
1 , . . . , U

(K)
d )

be K independent random vectors having distribution function C̃1, . . . , C̃K re-
spectively. Let gei, e = 1, . . . ,K, i = 1, . . . , d be as in Theorem 1 and define
g−1ei (v) := 0 for v ≤ gei(0) and Ji = {e ∈ {1, . . . ,K} : gei 6= 1}. Then C is the
joint distribution function of the random vector(

max
e∈J1

g−1e1 (U
(e)
1 ), . . . ,max

e∈Jd
g−1ed (U

(e)
d )

)
. (3)

If there exists a random generation procedure for C̃e, e = 1, . . . ,K then thanks
to (3) a random generation procedure for C can be derived as well.

The statistical analysis of extreme values should theoretically be carried
out with the help of extreme-value copulas [7]. Recall that a copula C# is an
extreme-value copula if there exists a copula C such that

C#(u1, . . . , ud) = lim
n↑∞

Cn(u
1/n
1 , . . . , u

1/n
d ), (4)

for every (u1, . . . , ud) ∈ [0, 1]d. A copula C# is said to be max-stable if for every
integer n ≥ 1 and every (u1, . . . , ud) ∈ [0, 1]d

Cn#(u
1/n
1 , . . . , u

1/n
d ) = C#(u1, . . . , ud).

Extreme-value copulas correspond exactly to max-stable copulas [7]. Theorem 1
can be used to construct extreme-value copulas as shown in the next proposition
due to [4].

Proposition 1. In (2), let gei(v) = vθei , v ∈ [0, 1] with θei ∈ [0, 1] and∑K
e=1 θei = 1 for i = 1, . . . , d. If C̃e, e = 1, . . . ,K is max-stable then so is

C.

Out of the context of extreme values, applications of Theorem 1 can be
found, for instance, in the analysis of directional dependence [12] (K = d = 2),
finance [2] (K = d = 2) and hydrology [4] (K = 2, d = 3).

We are not aware of applications of Theorem 1 in practice when K > 2 or
d > 3. As pointed out in the introduction, the product form (2) renders the

density ∂dC(u1,...,ud)
∂u1...∂ud

, hence the likelihood, complicated to compute even numer-

ically. Furthermore, the constraints
∏K
e=1 gei(v) = v, v ∈ [0, 1], i = 1, . . . , d in

Theorem 1 are not easy to deal with in practice.
The next section aims at overcoming these drawbacks.

3 Product of transformed copulas revisited

The product over e ∈ {1, . . . ,K} in (2) can be taken over e ∈ E, where E is an
arbitrary finite set, yielding

C(u1, . . . , ud) =
∏
e∈E

C̃e (ge1(u1), . . . , ged(ud)) . (5)
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Figure 1: Graphical representation of the set E = {{12}, {24}, {23}, {35}}.
N(1) = {{12}}, N(2) = {{12}, {23}, {24}}, N(3) = {{23}, {35}}, N(4) =
{{24}} and N(5) = {{35}}.

In particular, an element e ∈ E can represent a pair of the variables at play.
More precisely, let U1, . . . , Ud be d standard uniform random variables. Denote
by {ij} the index of the pair (Ui, Uj) and let E ⊂ {{ij} : i, j = 1, . . . , d, j > i}
be a subset of the set of the pair indices. The cardinal of E, denoted by |E|, is
less or equal to d(d− 1)/2. The pair index e ∈ E is said to contain the variable
index i if e = {ik} for k 6= i. Let us introduce N(i) = {e ∈ E : e contains i}.
N(i) is called the set of neighbors of i and has cardinal |N(i)| = ni. It is natural
to associate a graph to the set E as follows: an element e = {ij} ∈ E is an
edge linking Ui and Uj in the graph whose nodes are the variables U1, . . . , Ud.
The example E = {{12}, {24}, {23}, {35}} is illustrated in Figure 1. For u =
(u1, . . . , ud) ∈ [0, 1]d, consider the functional

C(u1, . . . , ud) =
∏
{ij}∈E

C̃ij(u
1/ni
i , u

1/nj
j ), (6)

where the C̃ij ’s are bivariate copulas. Keeping in mind the graphical repre-
sentation, C in (6) is a product over the edges. For instance, when E =
{{12}, {24}, {23}, {35}} as in Figure 1, (6) writes

C(u1, u2, u3, u4, u5) =C̃12(u1, u
1/3
2 )C̃24(u

1/3
2 , u4)C̃23(u

1/3
2 , u

1/2
3 )C̃35(u

1/2
3 , u5).

In the following, (6) is referred to as the Product of Bivariate Copulas (PBC)
copula, or PBC model. The next theorem establishes that (6) is a copula and
makes the link with Theorem 1.

Theorem 2. If in (5):

(i) for e = {ij} ∈ E, C̃e takes exactly two arguments non identically equal to
one, namely, gei and gej, and

(ii) for i = 1, . . . , d and e ∈ N(i), gei does not depend on e;
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then the only copula which can be constructed from (5) is the PBC model (6),
where C̃ij is defined by

C̃ij(u, v) = C̃{ij}(1, . . . , 1, u, 1, . . . , 1, v, 1, . . . , 1), (u, v) ∈ [0, 1]2,

and where in (1, . . . , 1, u, 1, . . . , 1, v, 1, . . . , 1), u and v are at the i-th and j-th
positions respectively.

Condition (i) in Theorem 2 simply means that only bivariate copulas are
allowed in the construction. The simplification (ii) achieves two goals: first
to reduce the number of parameters (an important feature in high-dimension),
and second to intrinsically satisfy the constraints

∏
e∈E gei(v) = v, v ∈ [0, 1], i =

1, . . . , d in the assumptions of Theorem 1. If assumption (ii) in Theorem 2 was
not made, one could take gei(v) = vθei , e ∈ E, i = 1, . . . , d, θei ∈ [0, 1] with the
constraints ∑

e∈N(i)

θei =
∑

k:{ki}∈E

θki,i = 1, i = 1, . . . , d. (7)

These constraints would be difficult to handle in practice, and, furthermore,
the number of parameters would increase quadratically with the dimension.
Indeed, one would have (|E| − 1)d parameters θei plus an additional number
|E| of parameters for each copula C̃e. If the graph associated to E is a tree, for
instance, then |E| = d− 1, yielding O(d2) parameters. As a comparison, in the
PBC model (6), there are no constraints and only O(d) parameters in total.

From (1), the PBC copula (6) is associated to a distribution function F with
continuous marginals Fi, i = 1, . . . , d, such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (x1, . . . , xd) ∈ Rd. (8)

By substituting (6) into (8), it is easy to see that F writes

F (x1, . . . , xd) =
∏
{ij}∈E

Fij(xi, xj), (x1, . . . , xd) ∈ Rd, (9)

where Fij , {ij} ∈ E, is a bivariate distribution function such that the first
(respectively the second) marginal Fij,1 (respectively Fij,2) only depends on i
(respectively j). It is interesting to note that the converse is also true as stated
in the following proposition.

Proposition 2. The distribution function corresponding to the PBC copula (6)
writes as F in (9). Conversely, the copula corresponding to the distribution
function F in (9) writes as the PBC copula (6).

4 Dependence properties and max-stability

Let C be the PBC copula (6). First the dependence properties of a pair (Uk, Ul)
whose copula is the bivariate copula Ckl(uk, ul) = C(1, . . . , 1, uk, 1, . . . , 1, ul, 1, . . . , 1)
are studied. The conditions under which the PBC model (6) is an extreme-value
copula are given afterwards.

Proposition 3. The bivariate marginal Ckl is given by

Ckl(uk, ul) =

{
u
(nk−1)/nk
k u

(nl−1)/nl
l C̃kl(u

1/nk
k , u

1/nl
l ) if {kl} ∈ E,
ukul otherwise.

(10)
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Example 1. If in (10) C̃kl is a Marshall-Olkin copula (see for instance [15],
p.53) with parameters 0 ≤ α, β ≤ 1 (denoted by MO(α, β)), that is,

C̃kl(uk, ul) = min(u1−αk ul, u
1−β
l uk),

then Ckl is MO(α/nk, β/nl). If α = β then C̃kl is a Cuadras-Augé copula
and Ckl is MO(α/nk, α/nl). If α = β = 0 then both C̃kl and Ckl are the
independence copula. If α = β = 1 then C̃kl is the Fréchet upper bound copula
and Ckl is MO(1/nk, 1/nl).

Remark 1. If in (10) one puts κ = 1/nk and λ = 1/nl, then the copulas take
the form Ckl(uk, ul) = u1−κk u1−λl C̃kl(u

κ
k , u

λ
l ). This class of copulas, sometimes

referred to as Khoudraji copulas, was proposed in [6] Proposition 2.

Let (U, V ) be a random vector with copula C. The dependence between U
and V is positive if, roughly speaking, U and V tend to be large or small to-
gether. Below are recalled a few definitions of statistical concepts about positive
dependence. The copula C has the TP2 (totally positive of order 2) property if
and only if

C(u1, u2)C(v1, v2) ≥ C(u1, v2)C(v1, u2), for all u1 < v1 and u2 < v2. (11)

Also, C is said to be PQD (positive quadrant dependent) if C(u, v) ≥ uv for all
(u, v) ∈ [0, 1]2. The random variable V is said to be LTD (left tail decreasing)
in U if for all v ∈ [0, 1], the function u 7→ P (V ≤ v|U ≤ u) is decreasing in
u. The dependence between U and V can be quantified through dependence
measures such as the Kendall’s tau or the Spearman’s rho respectively given by

τ =4

∫
[0,1]2

C(u, v) dC(u, v)− 1, (12)

ρ =12

∫
[0,1]2

C(u, v) du dv − 3. (13)

The dependence in the upper and lower tails can be respectively measured with

λ(U) = lim
u↑1

1− 2u+ C(u, u)

1− u
∈ [0, 1], λ(L) = lim

u↓0

C(u, u)

u
∈ [0, 1].

See [15] and [11] for further details about these concepts. Let us denote by τkl,

ρkl, λ
(U)
kl and λ

(L)
kl the Kendall’s tau, Spearman’s rho, upper tail dependence

coefficient and lower tail dependence coefficient of the copula Ckl in (10) re-
spectively. As shown in Proposition 3, Ckl is a bivariate marginal of the PBC
copula (6) and one may apply the results of [13] to obtain the following.

Proposition 4. If in (10) C̃kl is TP2, LTD or PQD then Ckl is also TP2,
LTD or PQD respectively.

Explicit bounds in terms of the number of neighbors for the dependence
coefficients of PBC bivariate marginals are given in the next proposition. The
behavior of (10) when the number of neighbors tends to infinity is also studied.
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Proposition 5. We have λ
(L)
kl = 0 and λ

(U)
kl ≤ min(1/nk, 1/nl). The lower and

upper bounds for ρkl and τkl are respectively given by

aρ(nk, nl) ≤ ρkl ≤ bρ(nk, nl),
aτ (nk, nl) ≤ τkl ≤ bτ (nk, nl),

with

aρ(nk, nl) =
6β(2nk − 1, 2nl − 1)nknl

(2nk + 2nl − 1)(nk + nl − 1)
− 3

(2nk − 1)(2nl − 1)
,

bρ(nk, nl) =
3

2nk + 2nl − 1
,

aτ (nk, nl) =
β(2nl − 1, 2nk − 1)

nk + nl − 1
− 2

(2nk − 1)(2nl − 1)
,

bτ (nk, nl) =
1

nk + nl − 1
,

where β denotes the β-function, β(x, y) =
∫ 1

0
tx−1(1− t)y−1dt. Furthermore, as

max(nk, nl)→∞, we have Ckl(u, v)→ uv for all (u, v) ∈ [0, 1]2.

The above results show that we are facing a tradeoff: on the one hand, the
larger the cardinal of E (or the more connected the graph associated to E), the
less the pairs in E are able to model strong dependencies. On the other hand,
the smaller the cardinal of E, the more there are independent pairs (since there
are less pairs in E). To illustrate Proposition 5, numerical values of the bounds
are computed in Table 1 for different numbers of neighbors (nk, nl).

coefficient ρkl τkl λkl
(nk, nl)
(1, 2) [−0.60, 0.60] [−0.50, 0.50] [0.00, 0.50]
(2, 2) [−0.30, 0.43] [−0.21, 0.33] [0.00, 0.50]
(1, 3) [−0.43, 0.43] [−0.33, 0.33] [0.00, 0.33]
(2, 3) [−0.19, 0.33] [−0.13, 0.25] [0.00, 0.33]
(3, 3) [−0.12, 0.27] [−0.08, 0.20] [0.00, 0.33]

Table 1: Lower and upper bounds [lower, upper] for the Spearman’rho ρkl,
Kendall’s tau τkl and upper tail dependence coefficient λkl depending on the
number of neighbors (nk, nl).

Finally, it is easy to construct extreme-value copulas belonging to the PBC
class (6). Indeed, the following result follows from Proposition 1.

Proposition 6. If in the PBC copula (6), C̃ij is an extreme-value copula for
{ij} ∈ E, then C is also an extreme-value copula.

All copulas Ckl in Example 1 are max-stable since Marshall-Olkin copulas
are max-stable. Thus the associated PBC is an extreme-value copula. If C̃kl
in (10) is a (max-stable) Gumbel copula, that is,

C̃kl(uk, ul) = exp−
[
(− log uk)θ + (− log ul)

θ
]1/θ

, θ ≥ 1, (14)

then Ckl is also max-stable, hence, the PBC is an extreme-value copula.
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5 Numerical applications to simulated and real
datasets

In this section, PBC copulas models are applied to simulated and real datasets.
The methods used to simulate and infer the copulas are presented in Section 5.1.
The considered families for the bivariate copulas C̃ij are the following: the Ali-
Mikhail-Haq (AMH), Farlie-Gumbel-Morgenstern (FGM), Frank, Gumbel, and
Joe families. See [15] or [11] for details about these families. In Section 5.2,
the two inference procedures presented in Section 5.1 are compared. Section 5.3
applies PBC models to an hydrological dataset.

5.1 Computational aspects

In this section, we assume that the copulas C̃ij of the PBC model (6) depend on
parameters θij ’s and that we are given a sample of i.i.d data vectors from (6).

Data simulation from a PBC copula is straightforward thanks to the prob-
abilistic interpretation given in (3). The generation procedure is given below.

• For all {ij} ∈ E, generate (U
(ij)
i , U

(ij)
j ) ∼ C̃ij .

• For all i = 1, . . . , d, compute Ui = max
k∈{1,...,d}:{ki}∈E

{(
U

(ki)
i

)ni}
.

The resulting vector (U1, . . . , Ud) has distribution (6).
The inference of PBC copulas can be performed by maximum-likelihood

based methods. As it is well known, the estimators resulting from these meth-
ods have the advantage to be consistent and asymptotically unbiased under
mild conditions. Properly scaled, their asymptotic distribution is Gaussian and
confidence intervals or tests can be derived.

The first considered approach is the pairwise maximum-likelihood method
[14]. This approach consists in maximizing the sum of the likelihoods corre-
sponding to all the pairs of variables. In our case, it simplifies to maximizing
|E| univariate functions independently. However, unlike the full joint maximum
likelihood estimator, the pairwise maximum-likelihood estimator is not guaran-
teed to be efficient.

The second possible approach is the full joint maximum-likelihood method.
Indeed, it is possible to compute the full joint likelihood of a PBC copula when
the graph associated to it is a tree thanks to a message-passing algorithm [10].
A brief explanation of how this algorithm works is given in Appendix B. The
reader is referred to [10] for the complete algorithm and [9] for a detailed expla-
nation. We implemented this algorithm in the R package PBC [17].

5.2 A simulation experiment to compare pairwise likeli-
hood and full joint likelihood approaches

We generated 100 datasets of dimension d = 9 and size n = 500 according to a
PBC copula whose tree graph is given in Figure 2. The amount of time required
to maximize the full joint likelihood for one dataset replication was 36, 21, 18,
21, and 21 seconds for PBC AMH, PBC FGM, PBC Frank, PBC Gumbel, and
PBC Joe respectively with a 8 GiB memory and 3.20 GHz processor computer.

8



The d− 1 = 8 coordinates θi of the parameter vectors were chosen to be regu-
larly spaced within the intervals [−0.9, 0.9], [−0.9, 0.9], [−9, 11], [2, 20] and [1, 20]
respectively.

Figure 2: Tree graph associated to the simulated PBC copulas.

The following criteria were calculated in order to assess the results of the
experiment. The variance ratio (VR) is defined as

V R =

∑d−1
e=1 V̂ar

(
θ̂FULLe

)
∑d−1
e=1 V̂ar

(
θ̂PWe

) ,

where θ̂FULLe , θ̂PWe is the coordinate estimated by maximization of the full

joint likelihood, pairwise likelihood, respectively, and where V̂ar is the empirical
variance on the replications. For each dataset replication, the mean absolute
error on the Spearman’s rho ρ (MAEρ) and the Kendall’s tau τ (MAEτ ) is
defined as

MAE =
1

d− 1

d−1∑
e=1

|ρ(θe)− ρ(θ̂FULLe )|, MAE =
1

d− 1

d−1∑
e=1

|τ(θe)− τ(θ̂FULLe )|.

The MAEs were averaged over the 100 replications to get a single value per
model.
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Copula VR MAEρ MAEτ
PBC AMH 0.96 0.03 0.02
PBC FGM 0.98 0.03 0.02
PBC Frank 0.79 0.02 0.01

PBC Gumbel 0.68 0.00 0.00
PBC Joe 0.71 0.00 0.00

Table 2: Variance ratio (VR) and mean absolute errors (MAEs) for each of the
tested PBC models. The MAEs were averaged over the dataset replications.

The results are reported in Table 2. It appears that for PBC AMH and PBC
FGM the precision was not improved by maximizing the full joint likelihood
relative to the pairwise approach: the VR for those models are close to 1. For
the Frank, Gumbel and Joe families, however, the variance decreases by at least
20% in average. These families, in contrast to the AMH and FGM families,
are comprehensive, meaning that they include the lower and upper bounds for
copulas. The MAEs are quite low for all the models. This indicates that the
maximization of the full joint likelihood with the message-passing algorithm of
Appendix B performs well.

5.3 Application to an hydrological dataset

In this section, PBC copula models are applied to an hydrological dataset con-
sisting of d = 3 stations and n = 36 observations of flow rate annual maxima.
The sites are located on three french rivers at the following places: La Celle-
en-Morvan on the river la Selle (S), Rigny-sur-Arroux on l’Arroux (A), and
Isclades-et-Rieutord on la Loire (L). These rivers are embedded in the sense
that Selle flows into Arroux which flows into Loire. Thus, the graph is naturally
set up as

S − A − L.

The same models as in Section 5.2 were tested for the bivariate copulas corre-
sponding to the graph edges, that is, PBC AMH, PBC FGM, PBC Frank, PBC
Gumbel, and PBC Joe. The standard Gumbel copula (14) was also considered
here as a benchmark for fitting a trivariate distribution encountered in hydrol-
ogy [18]. The estimation of the parameters was performed by maximization of
the full joint likelihood, as explained in Section 5.1. In order to assess the fit
of the models, the empirical Spearman’s rho and Kendall’s tau coefficient esti-
mates were compared to their counterpart under the models. Since the number
of parameters is the same for all models, the likelihood values for the different
models were also compared. The results are reported Table 3.

One can observe that PBC AMH and PBC FGM perform very poorly com-
pared to the other models. This was expected since the AMH and FGM families
are not comprehensive, roughly meaning that they do not allow much depen-
dence (see, e.g., [15]). The standard Gumbel copula performs poorly too, with
one of the smallest log-likelihood values. One can also see that, since it has a sin-
gle parameter, the dependence coefficients between the different pairs are equal
to each other. The PBC copulas with comprehensive families present a much
better fit. The dependence coefficient with the smallest value, that of the pair
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ρS,A ρA,L ρS,L τS,A τA,L τS,L log-likelihood
empirical data 0.70 0.30 0.13 0.5 0.21 0.08

PBC AMH 0.25 0.25 0 0.17 0.17 0 7.05
PBC FGM 0.20 0.20 0 0.13 0.13 0 5.46
PBC Frank 0.44 0.30 0 0.30 0.21 0 9.09

PBC Gumbel 0.43 0.31 0 0.30 0.21 0 9.20
PBC Joe 0.41 0.27 0 0.29 0.18 0 8.05
Gumbel 0.39 0.39 0.39 0.27 0.27 0.27 6.16

Table 3: Log-likelihood and dependence coefficients of three variable pairs (S,A),
(A,L) and (S,L) for the empirical data and the tested bivariate copulas. The
symbol ρ and τ stand for the Spearman’s rho and Kendall’s tau respectively.
For instance, ρS,A is the Spearman’s rho coefficient between the variables S and
A.

(A,L), is very well approximated by the PBC Frank, PBC Gumbel, and PBC
Joe. In particular, PBC Frank and PBC Gumbel both provide, for instance,
a Kendall’s tau of 0.21, which is the same as the empirical value. Also, these
copulas possess the highest log-likelihood values, 9.20 and 9.09, a step above the
third highest, 8.05. The dependence coefficient of the pair (S,A), which presents
more dependence (0.7 for the Spearman’s rho and 0.5 for the Kendall’s tau) is
underestimated. Although the theoretical upper bound for the Kendall’s tau is
0.5 (see Table 1), the closest copulas are PBC Frank and PBC Gumbel with a
Kendall’s tau of 0.3 for both. Given the low values of the Spearman’s rho (0.13)
and the Kendall’s tau (0.08) dependence coefficients of the third pair (S,L), its
distribution might by approximated by the independence copula, as PBC mod-
els do. Instead, the Gumbel copula seems to overestimate the dependence in
the third pair (S,L).

6 Discussion

In this paper, we have constructed a class of multivariate copulas, called PBC
copulas, based on bivariate copulas. Therefore, this novel class benefits from the
many bivariate families existing in the literature. No constraints on the param-
eters refrain the applicability of the PBC class and a natural graph structure
helps to visualize the dependencies between the variables. Full joint multivari-
ate inference can be performed, and shown to perform well, with the message-
passing algorithm presented in the appendix. However, PBC copula models
still suffer from weaknesses. First, the more there are edges in the graph, the
more the bounds on the dependence coefficients are restrictive. Second, it was
shown numerically that dependence coefficients of high magnitude were prone
to be underestimated. In view of these remarks, it may be advisable to keep the
number of neighbors in the graph associated to PBC models as low as possible,
and to be careful with highly dependent data.
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Appendix

A Proofs

Proof of Theorem 2

From Theorem 1, it is straightforward to see that (6) is a copula. Let us now
prove that (6) is the only copula arising from (5). Condition (i) implies that if
e /∈ N(i) then gei = 1, i = 1, . . . , d. Hence, the constraint over the functions
reduces to

∏
e∈N(i) gei(v) = v, v ∈ [0, 1]. In view of condition (ii), one has

gei = gi for e ∈ N(i), hence (gi(v))ni = v. Therefore

gei(v) =

{
v1/ni if e ∈ N(i),

1 otherwise.

To conclude it suffices to rewrite the product in (5) as∏
e∈E

C̃e(1, . . . , 1, u
1/ni
i , 1, . . . , 1, u

1/nj
j , 1, . . . , 1) =

∏
{ij}∈E

C̃ij(u
1/ni
i , u

1/nj
j )

which corresponds to (6).

Proof of Proposition 2

Let us first prove that (9) is the distribution function of (6). By (1) we have

F (x1, . . . , xd) =C(F1(x1), . . . , Fd(xd))

=
∏
{ij}∈E

C̃ij(Fi(xi)
1/ni , Fj(xj)

1/nj )

=:
∏
{ij}∈E

Φij(xi, xj).

The first margin of Φij is given by Φij,1(x) = Φij(x,∞) = Fi(xi)
1/ni which

depends only on i. The same holds for the second margin Φij,2.
Let us prove that (6) is the copula associated to (9). Let Φij,k, k = 1, 2 be

the k-th univariate marginal of Φij , {ij} ∈ E. The copula associated to F is
given by

CF (u1, . . . , ud) = F
(
F−11 (u1), . . . , F−1d (ud)

)
=

∏
{ij}∈E

Φij
(
F−1i (ui), F

−1
j (uj)

)
.

Let C̃ij be the copula associated to Φij . We have

Φij(xi, xj) = C̃ij (Φij,1(xi),Φij,2(xj))

so that Φij
(
F−1i (ui), F

−1
j (uj)

)
= C̃ij

(
Φij,1 ◦ F−1i (ui),Φij,2 ◦ F−1j (uj)

)
, and

CF (u1, . . . , ud) =
∏
{ij}∈E

C̃ij
(
Φij,1 ◦ F−1i (ui),Φij,2 ◦ F−1j (uj)

)
. (15)
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Moreover, since C̃F is a copula, it follows

uk =CF (1, . . . , 1, uk, 1, . . . , 1)

=
∏

j>k:{kj}∈E

C̃kj
(
Φkj,1 ◦ F−1k (uk), 1

) ∏
j<k:{jk}∈E

C̃jk
(
1,Φjk,2 ◦ F−1k (uk)

)
=

∏
j:{kj}∈E

Φkj,1 ◦ F−1k (uk).

Now by assumption Φkj,1 = Φjk,2 = Φk only depends on k and therefore u
1/nk
k =

Φk ◦F−1k (uk) which implies Φk(z) = Fk(z)1/nk , z ∈ R. By pluging Φk into (15)
the result follows.

Proof of Proposition 3

If {kl} ∈ E, then

Ckl(uk, ul) =C(1, . . . , 1, uk, 1, . . . , 1, ul, 1, . . . , 1)

=

 ∏
e∈N(k)\{kl}

C̃e(u
1/nk
k , 1)

 ∏
e∈N(l)\{kl}

C̃e(u
1/nl
l , 1)

×
C̃kl(u

1/nk
k , u

1/nl
l )

=u
(nk−1)/nk
k u

(nl−1)/nl
l C̃kl(u

1/nk
k , u

1/nl
l ).

Otherwise,

Ckl(uk, ul) =

 ∏
e∈N(k)

C̃e(u
1/nk
k , 1)

 ∏
e∈N(l)

C̃e(u
1/nl
l , 1)


= u

nk/nk
k u

nl/nl
l

= ukul.

Proof of Proposition 5

The Fréchet-Hoeffding bounds for copulas (see e.g. [15], p. 11) applied to C̃kl
in (10) yield

Wkl(uk, ul) ≤ Ckl(uk, ul) ≤Mkl(uk, ul), (16)

where

Wkl(uk, ul) = u
1−1/nk
k u

1−1/nl
l max(u

1/nk
k + u

1/nl
l − 1, 0),

Mkl(uk, ul) = u
1−1/nk
k u

1−1/nl
l min(u

1/nk
k , u

1/nl
l ).

We have Mkl(u, u)/u → 0 as u ↓ 0. It is easily seen that Wkl(u, u)/u → 0
as u ↓ 0 which implies Ckl(u, u)/u → 0. It is straightforward to see that
(1− 2u + Mkl(u, u))/(1− u) → 1/max(nk, nl) as u ↑ 1. To compute the lower
and upper bounds for ρkl and τkl, it suffices to substitute Wkl and Mkl into (13)
and (12). Lengthy but elementary computations lead to the results. Finally,
letting nk or nl going to infinity in (16) yields that Ckl tends to independence.
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B Algorithm to compute the full joint likelihood
of PBC copulas

Denote the parameter vector by θ = (θij){ij}∈E . Recall that the graph is
assumed to be a tree, that is, there is no cycles in the graph (then |E| = d− 1).
Let V = {1, . . . , d} and u = (u1, . . . , ud) a vector in [0, 1]d. For a subset A ⊂ V ,
the notation ∂uAC(u;θ) stands for the derivative of C with respect to all the
variables in A. For instance the density (hence the likelihood) writes

∂dC(u;θ)

∂u1 . . . ∂ud
= ∂uV C(u;θ) = c(u;θ), (17)

and the gradient with respect to the parameter vector,(
∂c(u;θ)

θij

)
{ij∈E}

.

To keep the notation simple, the dependence on the parameter vector θ is
dropped in the remaining of the section. The purpose here is not to give the
algorithm, but rather to provide an intuitive idea of it.

Let us write

C(u1, . . . , ud) =
∏
{ij}∈E

C̃ij(u
1/ni
i , u

1/nj
j ) =:

∏
{ij}∈E

Φij(ui, uj).

and let an arbitrary variable index i (the root) be given. Let τ is denote the
subtree rooted at the variable indexed by i and containing the edge indexed by
e (see Figure 3). The idea is to note that, since the graph is a tree, the copula
C can be decomposed over the subtrees rooted at i:

C(u) =
∏
e∈E

Φe(u) =:
∏

e∈N(i)

Tτ ie(u), u = (u1, . . . , ud),

where Tτ ie(u) corresponds to the product of all edges located in the subtree τ ie.
Since the Tτ ie(u)’s do not share any variables (except the root), the derivative
and the product operations commute, more precisely,

∂uV C(u) = ∂ui,uV \i

 ∏
e∈N(i)

Tτ ie(u)


= ∂ui

 ∏
e∈N(i)

∂uτie\i
Tτ ie(u)


= ∂ui

 ∏
e∈N(i)

µe→i(u)

 . (18)

The quantity µe→i(u) := ∂uτie\i
Tτ ie(u) is called a message from the edge indexed

by e to the variable indexed by i. Now consider Tτ ie(u) and let j be the neighbor
variable index of e. One can go deeper in the tree, that is, we have

Tτ ie(u) = Φe(ui, uj)Tτej (u)
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where τej is the subtree rooted at the edge indexed by e and containing the
variable indexed by j (see Figure 3). Hence,

∂uτie\i
Tτ ie(u) = ∂uj

[
φe(ui, uj)∂uτe

j
\jTτej (u)

]
= ∂uj [φe(ui, uj)µj→e(u)] .

A second type of message has been defined: µj→e(u) := ∂uτe
j
\jTτej (u) is called a

message from the variable index j to the edge index e. Again,

Tτej (u) =
∏

e′∈N(j)\e

Tτj
e′

(u),

hence,

∂uτe
j
\jTτej (u) =

∏
e′∈N(j)\e

∂u
τ
j
e′

\j
Tτj

e′
(u) =

∏
e′∈N(j)\e

µe′→j(u),

where the message µe′→j(u) has been already defined in (18). To summarize,
the calculation of µe→i(u) requires the calculation of µj→e(u), which, in turn,
requires the calculation of µe′→j(u), where e = {ij} and e′ is an edge index
attached to j. The algorithm presented above allows to compute recursively
all the messages from the leaves to the root. Once all the messages have been
computed, the density is given by the derivative with respect to the root of the
product of all the messages (18).

Figure 3: Examples of subtrees. This figure is partly drawn from [9].
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