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Abstract

Copulas are a useful tool to model multivariate distributions. While

there exist various families of bivariate copulas, much fewer has been

done when the dimension is higher. To this aim an interesting class of

copulas based on products of transformed copulas has been proposed.

However the use of this class for practical high dimensional problems

remains challenging. Constraints on the parameters and the product form

render inference, and in particular the likelihood computation, difficult.

In this paper we propose a new class of high dimensional copulas based

on a product of transformed bivariate copulas. No constraints on the

parameters refrain the applicability of the proposed class which is well

suited for applications in high dimension. Furthermore the analytic forms

of the copulas within this class allow to associate a natural graphical

structure which helps to visualize the dependencies and to compute the

likelihood efficiently even in high dimension.

1 Introduction

The modelling of random multivariate events is a central problem in various
scientific domains and the construction of multivariate distributions able to
properly model the variables at play is challenging. A useful tool to deal with
this problem is the concept of copulas. Let (X1, . . . , Xd) be a random vector
with distribution function F . Let Fi be the (continuous) marginal distribution
function of Xi, i = 1, . . . , d. By Sklar’s Theorem [16], there exists a unique
function C such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (1)

This function C is called the copula of F and is the d-dimensional distribution
function of the random vector (F1(X1), . . . , Fd(Xd)). For a general account on
copulas, see, e.g. [15]. Copulas are interesting since they permit to impose a
dependence structure on pre-determined marginal distributions.

While there exist many copulas in the bivariate case, it is less clear how
to construct copulas in higher dimension. In the presence of non-Gaussianity
and/or tail dependence, various constructions have been adopted, such as, for
instance, Archimedean copulas [9], Vines [1] or elliptical copulas [6]. Because
Archimedean copulas possess only a few parameters, they lack flexibility in high-
dimension. Vines, on the opposite, achieve greater flexibility but at the price of
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an increase in complexity in the modeling process. The use of elliptical copulas
goes together with assuming a similar dependence pattern among all pairs of
variables. This may be undesirable in applications. Moreover, they have in
general as many as O(d2) parameters and it is difficult to carry out maximum
likelihood inference [4].

Another approach [14] aims at constructing a multivariate copula as a prod-
uct of transformed bivariate copulas. This approach possesses several advan-
tages. A probabilistic interpretation is available and thus the generation of
random vectors is straightforward. The resulting copula is explicit, leading to
explicit bounds on dependence coefficients of the bivariate marginals. The class
of copulas which can be constructed from this approach is large and can cover
a wide range of dependencies. Finally the analysis of extreme values can be
performed by constructing extreme-value copulas.

However, although many copulas with different features can be built, the
use of this approach for practical applications remains challenging. Indeed,
two pitfalls render inference difficult: first constraints on the parameters and
second the product form which makes the computation of the density, hence
the potential likelihood, complicated to compute even numerically. These issues
may explain why, as far as we know, only very simple forms of this approach
have been proposed with at most three variables under consideration.

The main contribution of this paper is to revisit the product of transformed
copulas in order to propose a new class of high-dimensional copulas well suited
for high-dimensional applications. First, there are no constraints on the param-
eters anymore. Moreover, a graphical structure associated to the copulas within
this class permits to visualize the dependencies and to efficiently compute the
likelihood, thus opening the door to realistic high dimensional applications.

The rest of this paper is organized as follows. Section 2 reviews the product
of transformed copulas and important properties such as random generation
and the ability to construct extreme-value models. Section 3 presents the new
class and enlightens the link with the product of transformed copulas. A graph-
ical structure is introduced. Section 4 discusses the dependence properties of
bivariate marginals of the proposed class by giving bounds on some of the most
popular dependence coefficients such as the Spearman’s rho, Kendall’s tau, and
tail dependence coefficients. Proofs are postponed to the Appendix.

2 Product of transformed copulas

It is easily seen that a product of copulas is not a copula in general. Nonetheless
the next theorem due to Liebscher [14] shows that up to marginal transforma-
tions, a product of copulas can lead to a well defined copula.

Theorem 1. Assume C1, . . . , CK : [0, 1]d → [0, 1] are copulas. Let gsi :
[0, 1] → [0, 1] for s = 1, . . . ,K, i = 1, . . . , d be functions with the property
that each of them is strictly increasing or is identically equal to 1. Suppose
that

∏K
s=1 gsi(v) = v for v ∈ [0, 1], i = 1, . . . , d, and limv→0 gsi(v) = 0 for

s = 1, . . . ,K, i = 1, . . . , d. Then

C(u1, . . . , ud) =

K
∏

s=1

Cs (gs1(u1), . . . , gsd(ud)) (2)
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is also a copula.

The probabilistic interpretation of (2) is as follows. Let

(U
(1)
1 , . . . , U

(1)
d ), . . . , (U

(K)
1 , . . . , U

(K)
d )

be K independent random vectors having distribution function C1, . . . , CK re-
spectively. Let gsi, s = 1, . . . ,K, i = 1, . . . , d be as in Theorem 1 and define
g−1
si (v) := 0 for v ≤ gsi(0) and Ji = {s ∈ {1, . . . ,K} : gsi 6= 1}. Then C is the
joint distribution function of the random vector

(max
s∈J1

{g−1
s1 (U

(s)
1 )}, . . . ,max

s∈Jd

{g−1
sd (U

(s)
d )}). (3)

If there exists a random generation procedure for Cs, s = 1, . . . ,K then thanks
to (3) a random generation procedure for C can be derived as well.

The statistical analysis of extreme values should theoretically be carried out
with the help of extreme-value copulas [8]. A copula C# is an extreme-value
copula if there exists a copula C such that

C#(u1, . . . , ud) = lim
n↑∞

Cn(u
1/n
1 , . . . , u

1/n
1 ), (4)

for every (u1, . . . , ud) ∈ [0, 1]d. A copula C# is said to be max-stable if for every
integer n ≥ 1 and every (u1, . . . , ud) ∈ [0, 1]d

C#(u
1/n
1 , . . . , u

1/n
d )n = C#(u1, . . . , ud).

Extreme-value copulas correspond exactly to max-stable copulas [8]. Extreme-
value copulas are the only theoretical well-grounded copulas to model extremal
dependence. A typical example in hydrology is the analysis of rainfall annual
maxima at different locations [3]. Theorem 1 can be used to construct extreme-
value copulas as shown in the next proposition due to [5].

Proposition 1. In (2) let gsi(v) = vθsi , v ∈ [0, 1] with θi ∈ [0, 1] and
∑K

s=1 θsi =
1 for i = 1, . . . , d. If Cs, s = 1, . . . ,K is max-stable then so is C.

Out of the context of extreme values, applications of Theorem 1 can be
found, for instance, in the analysis of directional dependence [13] (K = d = 2),
finance [2] (K = d = 2) and hydrology [5] (K = 2, d = 3).

We are not aware of applications of Theorem 1 in practice when K > 2 or
d > 3. As pointed out in the introduction, the product form (2) renders the

density ∂dC(u1,...,ud)
∂u1...∂ud

, hence the likelihood, complicated to compute even numer-

ically. Furthermore, the constraints
∏K

s=1 gsi(v) = v, v ∈ [0, 1], i = 1, . . . , d in
Theorem 1 are not easy to deal with in practice.

The next section aims at extending the applicability of (2) to high-dimensional
problems.

3 The proposed copula class

The product over s ∈ {1, . . . ,K} in (2) can be taken over s ∈ S, where S is an
arbitrary finite set, yielding

C(u1, . . . , ud) =
∏

s∈S

Cs (gs1(u1), . . . , gsd(ud)) . (5)
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Figure 1: Graphical representation of the set S = {{12}, {24}, {23}, {35}}.
N(1) = {{12}}, N(2) = {{12}, {23}, {24}}, N(3) = {{23}, {35}}, N(4) =
{{24}} and N(5) = {{35}}.

In particular, an element s ∈ S can represent a pair of the variables at play.
More precisely, let U1, . . . , Ud be d random variables such that Ui, i = 1, . . . , d
has a standard uniform distribution. Denote by {ij} the index of the pair
(Ui, Uj) and let S ⊂ {{ij} : i, j = 1, . . . , d, j > i} be a subset of the set of the
pair indices. The cardinal of S, |S|, is less or equal to d(d − 1)/2. The pair
index s ∈ S is said to contain the variable index i if s = {ik} for k 6= i. Let us
introduce N(i) = {s ∈ S : s contains i}. N(i) is called the set of neighbors of i
and has cardinal |N(i)| = ni. It is natural to associate a graph to the set S as
follows: an element s = {ij} ∈ S is an edge linking Ui and Uj in the graph whose
nodes are the variables U1, . . . , Ud. The example S = {{12}, {24}, {23}, {35}}
is illustrated in Figure 1. The proposed class of copulas is written below. For
u = (u1, . . . , ud) ∈ [0, 1]d, let the functional

C(u) =
∏

{ij}∈S

Cij(u
1/ni

i , u
1/nj

j ), (6)

where the Cij ’s are bivariate copulas. Keeping in mind the graphical rep-
resentation, C in (6) is a product over the edges. For instance, when S =
{{12}, {24}, {23}, {35}} as in Figure 1, (6) writes

C(u1, u2, u3, u4, u5) =C12(u1, u
1/3
2 )C24(u

1/3
2 , u4)C23(u

1/3
2 , u

1/2
3 )C35(u

1/2
3 , u5).

In the following, (6) is referred to as the Product of Bivariate Copulas (PBC)
copula, or PBC model. The next theorem establishes that (6) is a copula and
makes the link with Theorem 1.

Theorem 2. If in (5):

(i) for s = {ij} ∈ S, Cs = C{ij} takes as argument exactly two functions non
identically equal to one, namely, gsi and gsj, and

(ii) for i = 1, . . . , d and s ∈ N(i), gsi do not depend on s;
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then the only copula which can be constructed from (5) is the PBC model (6),
where Cij is defined by

Cij(u, v) = C{ij}(1, . . . , 1, u, 1, . . . , 1, v, 1, . . . , 1), (u, v) ∈ [0, 1]2,

where in (1, . . . , 1, u, 1, . . . , 1, v, 1, . . . , 1), u and v are at the i-th and j-th posi-
tions respectively.

Condition (i) in Theorem 2 simply means that only bivariate copulas are
allowed in the construction. The simplification (ii) achieves two goals: first
to reduce the number of parameters (an important feature in high-dimension),
and second to intrinsically satisfy the constraints

∏

s∈S gsi(v) = v, v ∈ [0, 1], i =
1, . . . , d in the assumptions of Theorem 1. If assumption (ii) in Theorem 2 was
not made, one could take gsi(v) = vθsi , s ∈ S, i = 1, . . . , d, θsi ∈ [0, 1] with the
constraints

∑

s∈N(i)

θsi =
∑

k:{ki}∈S

θki,i = 1, i = 1, . . . , d. (7)

Furthermore if in the PBC copula (6) Cij is governed by a parameter θij , that
is, Cij(·, ·) = C(·, ·; θij), the copula C would write

C(u) =
∏

{ij}∈S

C(u
θij,i
i , u

θij,j
j ; θij). (8)

The constraints (7) would be difficult to handle in practice, and, moreover, the
number of parameters of (8) would increase quadratically with the dimension.
Indeed, one would have |S|d − d parameters θki,i, k : {ki} ∈ S, i = 1, . . . , d
and |S| parameters θij , {ij} ∈ S. In the case where the graph associated to S
is a tree, as it would be the case in practice then |S| = d − 1, yielding O(d2)
parameters. As a comparison, in the PBC model (6), there are no constraints
and only O(d) parameters in total.

By (1), the PBC copula (6) is associated to a distribution function F with
continuous marginals Fi, i = 1, . . . , d, such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (x1, . . . , xd) ∈ Rd. (9)

By substituting (6) into (9), it is easy to see that F writes

F (x1, . . . , xd) =
∏

{ij}∈S

Fij(xi, xj), (x1, . . . , xd) ∈ Rd, (10)

where Fij , {ij} ∈ S, is a bivariate distribution function such that the first
(respectively the second) marginal Fij,1 (respectively Fij,2) only depends on i
(respectively j). It is interesting to note that the converse is also true as stated
in the following proposition.

Proposition 2. The copula corresponding to the distribution function F in (10)
writes as the PBC copula (6). Conversely, the distribution function correspond-
ing to the PBC copula (6) writes as F in (10).
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4 Dependence properties and max-stability

Let C be the PBC copula (6). First the dependence properties of a pair (Uk, Ul)
whose copula is the bivariate copula Ckl(uk, ul) = C(1, . . . , 1, uk, 1, . . . , 1, ul, 1, . . . , 1)
are studied. The conditions under which the PBC model (6) is an extreme-value
copula are given afterwards.

Proposition 3. The bivariate marginal Ckl is given by

Ckl(uk, ul) =

{

u
(nk−1)/nk

k u
(nl−1)/nl

l Ckl(u
1/nk

k , u
1/nl

l ) if {kl} ∈ S,
ukul otherwise.

(11)

Example 1. If in (11) one puts κ = 1/nk and λ = 1/nl, then Ckl(uk, ul) =
u1−κ
k u1−λ

l Ckl(u
κ
k , u

λ
l ) corresponds to the mechanism proposed in [7], Proposition

2.

Example 2. If in (11) Ckl is a Marshall-Olkin copula (see for instance [15],
p.53) with parameters 0 ≤ α, β ≤ 1 (denoted by MO(α, β)), that is,

Ckl(uk, ul) = min(u1−α
k ul, u

1−β
l uk),

then Ckl is MO(α/nk, β/nl). If α = β then Ckl is a Cuadras-Augé copula
and Ckl is MO(α/nk, α/nl). If α = β = 0 then both Ckl and Ckl are the
independence copula. If α = β = 1 then Ckl is the Fréchet upper bound copula
and Ckl is MO(1/nk, 1/nl).

Let (U, V ) be a random vector with copula C. The dependence between
U and V is positive if, roughly speaking, U and V tend to be large or small
together. Below are recalled a few definitions of statistical concepts about pos-
itive dependence. It is said that the copula C has the TP2 (totally positive of
order 2) property if and only if

C(u1, u2)C(v1, v2) ≥ C(u1, v2)C(v1, u2), for all u1 < v1 and u2 < v2. (12)

Also, C is said to be PQD (positive quadrant dependent) if C(u, v) ≥ uv for all
(u, v) ∈ [0, 1]2. The random variable V is said to be LTD (left tail decreasing)
in U if for all v ∈ [0, 1], the function u 7→ P (V ≤ v|U ≤ u) is decreasing in
u. The dependence between U and V can be quantified through dependence
measures such as the Kendall’s tau or the Spearman’s rho respectively given by

τ =4

∫

[0,1]2
C(u, v) dC(u, v)− 1, (13)

ρ =12

∫

[0,1]2
C(u, v) du dv − 3. (14)

The dependence in the upper and lower tails can be respectively measured with

λ(U) = lim
u↑1

1− 2u+ C(u, u)

1− u
∈ [0, 1], λ(L) = lim

u↓0

C(u, u)

u
∈ [0, 1].

See [15] and [12] for further details about these concepts. Let us denote by τkl,

ρkl, λ
(U)

kl and λ
(L)

kl the Kendall’s tau, Spearman’s rho, upper tail dependence
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coefficient and lower tail dependence coefficient of the copula Ckl in (11) re-
spectively. Similarly denote respectively these dependence measures for Ckl in

(11) by τkl, ρkl, λ
(U)
kl and λ

(L)
kl . As shown in Proposition 3, Ckl is a bivariate

marginal of the PBC copula (6) and one may apply the results of [14] to obtain
the following.

Proposition 4. (i) If in (11) Ckl is TP2, LTD or PQD then Ckl is also
TP2, LTD or PQD respectively;

(ii) The following inequalities hold

τkl ≤ τkl, ρkl ≤ ρkl, λ
(U)

kl ≤ λ
(U)
kl , λ

(L)

kl ≤ λ
(L)
kl .

The results of Proposition 4 (ii) are precised in the next proposition where
explicit bounds in terms of the number of neighbors are given. The behavior of
(11) when the number of neighbors tends to infinity is also studied.

Proposition 5. We have λ
(L)

kl = 0 and λ
(U)

kl ≤ min(1/nk, 1/nl). The lower and
upper bounds for ρkl and τkl are respectively given by

aρ(nk, nl) ≤ ρkl ≤ bρ(nk, nl),

aτ (nk, nl) ≤ τkl ≤ bτ (nk, nl),

with

aρ(nk, nl) =
6β(2nk − 1, 2nl − 1)nknl

(2nk + 2nl − 1)(nk + nl − 1)
−

3

(2nk − 1)(2nl − 1)
,

bρ(nk, nl) =
3

2nk + 2nl − 1
,

aτ (nk, nl) =
β(2nl − 1, 2nk − 1)

nk + nl − 1
−

2

(2nk − 1)(2nl − 1)
,

bτ (nk, nl) =
1

nk + nl − 1
,

where β denotes the β-function, β(x, y) =
∫ 1

0
tx−1(1− t)b−1dt. Furthermore, as

max(nk, nl) → ∞, we have Ckl(u, v) → uv for all (u, v) ∈ [0, 1]2.

The above results show that we are facing a tradeoff: on the one hand, the
larger the cardinal of S (or the more connected the graph associated to S), the
less the pairs in S are able to model strong dependencies. On the other hand,
the smaller the cardinal of S, the more there are independent pairs (since there
are less pairs in S). To illustrate Proposition 5, numerical values of the bounds
are computed in Table 1 for different numbers of neighbors (nk, nl).

It is easy to construct extreme-value copulas belonging to the PBC class (6).

Proposition 6. If in the PBC copula (6), Cij is an extreme-value copula for
{ij} ∈ S, then C is also an extreme-value copula.

Eventually, below are given examples where the PBCmodel (6) is an extreme-
value copula.

Example 3. All copulas Ckl in Example 2 are max-stable since Marshall-Olkin
copulas are max-stable. Thus C is an extreme-value copula.
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Table 1: Lower and upper bounds [lower, upper] for the Spearman’rho ρkl,
Kendall’s tau τkl and upper tail dependence coefficient λkl depending on the
number of neighbors (nk, nl).

coefficient ρkl τkl λkl

(nk, nl)
(1, 2) [−0.6, 0.6] [−0.13, 0.25] [0, 0.5]
(2, 2) [−0.3, 0.43] [−0.21, 0.33] [0, 0.5]
(1, 3) [−0.43, 0.43] [−0.33, 0.33] [0, 0.33]
(2, 3) [−0.19, 0.33] [−0.13, 0.25] [0, 0.33]
(3, 3) [−0.12, 0.27] [−0.08, 0.2] [0, 0.33]

Example 4. Let Ckl in (11) be a (max-stable) Gumbel copula, that is,

Ckl(uk, ul) = exp−
[

(− log uk)
θ + (− log ul)

θ
]1/θ

, θ ≥ 1.

Then Ckl is also max-stable, hence, C is an extreme-value copula.

5 Simulation and inference

5.1 Simulation

Thanks to the probabilistic interpretation given in (3), data simulation from the
PBC copula (6) is easy. The generation procedure is given below.

• For all {ij} ∈ S, generate (U
(ij)
i , U

(ij)
j ) ∼ Cij .

• For all i = 1, . . . , d, compute U i = max
k∈{1,...,d}:{ki}∈S

{(

U
(ki)
i

)ni
}

.

The resulting vector (U1, . . . , Ud) has distribution (6).

5.2 Inference

In this section it is assumed that the copulas Cij of the PBC model (6) depend
on parameters θij ’s. The parameter vector is denoted by θ = (θij){ij}∈S . It
is also assumed that we are given a sample of i.i.d data vectors with marginals
transformed to standard uniform random variables and joint distribution given
by (6). In Section 3 a graph has been associated to the model. Here the graph is
assumed to be a tree, that is, there is no cycles in the graph (then |S| = d− 1).
Let V = {1, . . . , d} and u = (u1, . . . , ud) a vector in [0, 1]d. For a subset A ⊂ V ,
the notation ∂uA

C(u;θ) stands for the derivative of C with respect to all the
variables in A. For instance the density (hence the likelihood) writes

∂dC(u;θ)

∂u1
. . . ∂ud

= ∂uV
C(u;θ) = c(u;θ). (15)

It has been shown in [11] how to use a message-passing algorithm on the graph-
ical structure to compute the likelihood (15) and the gradient with respect to
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the parameter vector,
(

∂c(u;θ)

θij

)

{ij∈S}

.

The purpose here is not to give the algorithm, but rather to provide an intuitive
idea of it. The reader is referred to [11] for the complete algorithm and [10] for
a more detailed explanation. To keep the notation simple, the dependence on
the parameter vector θ is dropped in the remaining of the section.

Let us write

C(u) =
∏

{ij}∈S

Cij(u
1/ni

i , u
1/nj

j ) =:
∏

{ij}∈S

Φij(ui, uj).

and let an arbitrary variable index i (the root) be given. Let τ is denote the
subtree rooted at the variable indexed by i and containing the function indexed
by s (see Figure 2). The idea is to note that, since the graph is a tree, the
copula C can be decomposed over the subtrees rooted at i. We can write

C(u) =
∏

s∈S

Φs(u) =:
∏

s∈N(i)

Tτ i
s
(u)

where Tτ i
s
(u) corresponds to the product of all functions located in the subtree

τ is. Since the Tτ i
s
(u)’s do not share any variables (except the root) we have

∂uV
C(u) = ∂ui,uV \i





∏

s∈N(i)

Tτ i
s
(u)





= ∂ui





∏

s∈N(i)

∂u
τi
s\i

[

Tτ i
s
(u)

]





= ∂ui





∏

s∈N(i)

µs→i(u)



 . (16)

The quantity µs→i(u) := ∂u
τi
s\i

[

Tτ i
s
(u)

]

is called a message from the function

indexed by s to the variable indexed by i. Now consider Tτ i
s
(u) and let j the

neighbor variable index of the function index s which is not i. One can go deeper
in the tree, that is, we have

Tτ i
s
(u) = Φs(ui, uj)Tτs

j
(u)

where τ sj is the subtree rooted at the function indexed by s and containing the
variable indexed by j (see Figure 2). Hence,

∂u
τi
s\i

Tτ i
s
(u) = ∂uj

[

φs(ui, uj)∂uτs
j
\j

[

Tτs
j
(u)

]]

= ∂uj
[φs(ui, uj)µj→s(u)] .

A second type of message has been defined: µj→s(u) := ∂uτs
j
\j

[

Tτs
j
(u)

]

is called

a message from the variable index j to the function index s. Again,

Tτs
j
(u) =

∏

s′∈N(j)\s

Tτj

s′
(u),
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hence

∂uτs
j
\j
Tτs

j
(u) =

∏

s′∈N(j)\s

∂u
τ
j

s′
\j
Tτj

s′
(u) =

∏

s′∈N(j)\s

µs′→j(u).

The message µs′→j(u) has been already defined in (16). This recursive formu-
lation allows to compute recursively all the messages from the leaves to the
root. Once all the messages have been computed, the density is given by the
derivative with respect to the root of the product of all the messages (16). The
likelihood, in turn, can be computed.

Figure 2: Examples of subtrees. This figure is partly drawn from [10].

A Appendix

Proof of Theorem 2

From Theorem 1, it is straightforward to see that (6) is a copula. Let us now
prove that (6) is the only copula arising from (5). Because of condition (i), for
i = 1, . . . , d, we have gsi = 1 if s /∈ N(i) and the constraint over the functions
reduces to

∏

s∈N(i) gsi(v) = v, v ∈ [0, 1]. In view of condition (ii), one has

gsi = gi for s ∈ N(i), hence (gi(v))
ni = v. Therefore

gsi(v) =

{

v1/ni if s ∈ N(i),
1 otherwise.

To conclude it suffices to rewrite the product in (5) as
∏

s∈S

Cs(1, . . . , 1, u
1/ni

i , 1, . . . , 1, u
1/nj

j , 1, . . . , 1) =
∏

{ij}∈S

Cij(u
1/ni

i , u
1/nj

j )

which corresponds to (6).
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Proof of Proposition 2

Let us first prove that (10) is the distribution function of (6). By (1) we have

F (x1, . . . , xd) =C(F1(x1), . . . , Fd(xd))

=
∏

{ij}∈S

Cij(Fi(xi)
1/ni , Fj(xj)

1/nj )

=:
∏

{ij}∈S

Φij(xi, xj).

The first margin of Φij is given by Φij,1(x) = Φij(x,∞) = Fi(xi)
1/ni which

depends only on i. The same holds for the second margin Φij,2.
Let us prove that (6) is the copula associated to (10). Let Φij,k, k = 1, 2 the

k-th univariate marginal of Φij , {ij} ∈ S. The copula associated to F is given
by

CF (u1, . . . , ud) =F
(

F−1
1 (u1), . . . , F

−1
d (ud)

)

=
∏

{ij}∈S

Φij

(

F−1
i (ui), F

−1
j (uj)

)

.

Let Cij be the copula associated to Φij . We have

Φij(xi, xj) = Cij (Φij,1(xi),Φij,2(xj))

so that Φij

(

F−1
i (ui), F

−1
j (uj)

)

= Cij

(

Φij,1 ◦ F
−1
i (ui),Φij,2 ◦ F

−1
j (uj)

)

. Thus

CF (u1, . . . , ud) =
∏

{ij}∈S

Cij

(

Φij,1 ◦ F
−1
i (ui),Φij,2 ◦ F

−1
j (uj)

)

. (17)

Moreover, since CF is a copula we have that

uk =CF (1, . . . , 1, uk, 1, . . . , 1)

=
∏

j>k:{kj}∈S

Ckj

(

Φkj,1 ◦ F
−1
k (uk), 1

)

∏

j<k:{jk}∈S

Cjk

(

1,Φjk,2 ◦ F
−1
k (uk)

)

=
∏

j:{kj}∈S

Φkj,1 ◦ F
−1
k (uk).

Now by assumption Φkj,1 = Φjk,2 = Φk only depends on k and therefore u
1/nk

k =
Φk ◦F

−1
k (uk) which implies Φk(z) = Fk(z)

1/nk , z ∈ R. By pluging Φk into (17)
the result follows.

Proof of Proposition 3

If {kl} ∈ S, then

Ckl(uk, ul) =C(1, . . . , 1, uk, 1, . . . , 1, ul, 1, . . . , 1)

=





∏

s∈N(k)\{kl}

Cs(u
1/nk

k , 1)









∏

s∈N(l)\{kl}

Cs(u
1/nl

l , 1)



×

Ckl(u
1/nk

k , u
1/nl

l )

=u
(nk−1)/nk

k u
(nl−1)/nl

l Ckl(u
1/nk

k , u
1/nl

l ).
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Otherwise,

Ckl(uk, ul) =





∏

s∈N(k)

Cs(u
1/nk

k , 1)









∏

s∈N(l)

Cs(u
1/nl

l , 1)





= u
nk/nk

k u
nl/nl

l

= ukul.

Proof of Proposition 5

By applying the Fréchet-Hoeffding bounds for copulas (see e.g. [15], p. 11) we
obtain:

Wkl(uk, ul) ≤ Ckl(uk, ul) ≤ Mkl(uk, ul), (18)

where

Wkl(uk, ul) = u
1−1/nk

k u
1−1/nl

l max(u
1/nk

k + u
1/nl

l − 1, 0),

Mkl(uk, ul) = u
1−1/nk

k u
1−1/nl

l min(u
1/nk

k , u
1/nl

l ).

We have Mkl(u, u)/u → 0 as u ↓ 0. It is easily seen that Wkl(u, u)/u → 0
as u ↓ 0 which implies Ckl(u, u)/u → 0. It is straightforward to see that
(1− 2u +Mkl(u, u))/(1− u) → 1/max(nk, nl) as u ↑ 1. To compute the lower
and upper bounds for ρkl and τkl, it suffices to substitute Wkl and Mkl into (14)
and (13). Lengthy but elementary computations lead to the results. Finally,
letting nk or nl going to infinity in (18) yields that Ckl tends to independence.
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