
HAL Id: hal-00910730
https://hal.science/hal-00910730

Submitted on 6 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3A-EMD: A Generalized Approach for Monovariate and
Multivariate EMD.

Julien Fleureau, Amar Kachenoura, Jean-Claude Nunes, Laurent Albera, Lotfi
Senhadji

To cite this version:
Julien Fleureau, Amar Kachenoura, Jean-Claude Nunes, Laurent Albera, Lotfi Senhadji. 3A-
EMD: A Generalized Approach for Monovariate and Multivariate EMD.. Information Sciences,
Signal Processing and their Applications, May 2010, Kuala Lumpur, Malaysia. pp.300 - 303,
�10.1109/ISSPA.2010.5605465�. �hal-00910730�

https://hal.science/hal-00910730
https://hal.archives-ouvertes.fr


10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010) 

3A-EMD: A GENERALIZED APPROACH FOR MONOVARIATE AND MULTIVARIATE 
EMD 

Julien F leureau1,2, Amar Kachenoura1,2, Jean-Claude Nunes1,2, Laurent Albera1,2, Lotfi Senhadji1,2 

lInserm, UMR 642, Rennes, F-35000, France 
2Universite de Rennes 1, LTSI, Rennes, F-35000, France 

For correspondence: Amar Kachenoura 
Tel: (33) - 2 23 23 45 52, E-Mail: amar.kachenoura@univ-rennesl.fr 

ABSTRACT 

EMD is an emerging topic in signal processing research 
and is applied in various practical fields. Its recent ex­
tension to multivariate signals, motivated by the need to 
jointly analyze multi-channel signals, is an active topic of 
research. However, all the existing extensions specifically 
hold either mono-, bi- or tri-variate signals or require mul­
tiple projections that complexify the original process. In 
this communication, a novel EMD approach called 3A­
EMD is proposed. It is essentially based on the redefini­
tion of the mean envelope operator and allows, under cer­
tain conditions, a straightforward decomposition of mono­
variate and multivariate signals without any change in the 

core of the algorithm. A comparative study with classical 
monovariate and bivariate methods is presented and shows 
the competitiveness of 3A-EMD. A trivariate decomposi­
tion is also given to illustrate the extension of the proposed 
algorithm to any signal dimension, D > 2. 

1. INTRODUCTION 

Empirical Mode Decomposition (EMD) was originally in­
troduced in the late 1990s to study water surface wave 

evolution [1]. EMD can be considered as an emerging 
technique in signal processing with a very important re­
search topics and development in various fields such as 
biomedical signal analysis [2], Hurst exponent estimation 
[3], etc. EMD can be viewed as a method which splits a 
given signal into a set of AM-FM components. The latter 
components, referred to as the Intrinsic Mode Functions 

(lMFs), are estimated using an iterative procedure called 

sifting process. Let {set)} = {ao(t)} be a signal to de­
compose. Then the sifting process to estimate the nth IMF 
(1 � n � N) can be summarized as follows: 

1. Initialization taking dn,o(t) = an-l (t) for every t. 
2. Computation of the mean envelope M( {dn,k(t)}). 
3. Extraction of the details {dn,k+l (t)} = {dn,k (t)}­

M( {dn,k(t)}). 
4. Incrementation of k and go to step 2, repeat until 

{dn,k+l (t)} is designed as an IMF. 

In Huang [1], the mean envelope M( {dn,k (t)}) is cal­
culated as the half sum of the upper and the lower en-
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velopes, which are obtained by interpolation between the 
local maxima points and the local minima points 
of {dn,k(t)}, respectively. 

Several studies dealing with EMD have been reported 
in the last decade: those addressed to improve the Huang's 
algorithm [4, 5], and those proposing an extension of EMD 
to bi- or trivariate signals [6, 7, 8] and even recently to 
multivariate signals [9]. All these latter methods, moti­
vated by the need to jointly analyze multi-channel real sig­
nals, are either restricted to a specifical signal dimension 
or are based on multiple projections of the original signal 
that complexify the original EMD process. The aim of this 
communication is to propose a new efficient EMD algo­
rithm, named 3A-EMD (Active Angle Averaging EMD), 

that preserves the original geometrical simplicity of the 
classical EMD algorithm and extends its performance to 
multivariate signals defined from lR to lR D with D > 2. 
The classical EMD algorithm is extended to multivariate 
signals by redefining the mean envelope operator M us­
ing new characteristic points. A generalized version of 
the EMD is thus obtained working straightforwardly on 
monovariate and multivariate signal without any change. 

2. A NEW EMD APPROACH: 3A-EMD 

The proposed 3A-EMD method aims at providing a sim­
ple algorithm working for multivariate signals without any 
modification. To do so, the signal mean trend (computed 
by the M operator) is redefined as the signal going through 
the barycenter of its different elementary oscillations. This 

is performed through three main steps: i) identification 
of all the elementary oscillations, ii) computation of the 
barycenters of the identified elementary oscillations, and 

iii) interpolation between all barycenters to obtain the sig­
nal mean trend. 

Elementary oscillation An elementary oscillation of a 
given signal with values in lRD (D ;:::: 1) can be viewed 
as a subpart of the signal defined between two extrema of 
oscillation. However, computing the extrema if the output 
space lRD is multidimensional (D > 1) is not obvious. In 
this section we propose a new and general way to compute 
such extrema. Let the signal {s(t)} with values in lRD be 



in class e1 (or a "regular enough" signal in practical situa­
tions). The tangent vector to {s(t)} at t', Ts(t'), is defined 
by: 

Ts(t') = [1, �: (t')W E ]RD+l (1) 

and let's define the quantity, as (t'), as follows: 

as(t') = lim (Ts(t' - h), Ts(t' + h)) (2) 
h--+O 

which is the inner product of ]R D+ 1 (denoted by (.,.)) 
between the tangents to {s (t)} just before and after t'. In 
fact, as(t) is maximum when both vectors, Ts(t - h) and 
Ts (t + h), are linearly dependent, due to Cauchy-Schwarz 
inequality, and null when they are orthogonal. This quan­
tity is an indicator of the local angle and thus, of the local 
oscillation of {s(t)} at t'. Due to the continuity of the 
inner product, we have: 

and as {s(t)} is in e1, we get: 

where II . II abusively represents the norm of both ]RD+1 
and ]RD. Finally, an oscillation extremum of the signal 
{ s (t) } is defined as a local minimum of the function { as (t') } 
and the following property holds: 

Property: the signal {s(t)} has an oscillation extremum in 
to if and only if the function {I I  �� (t') 112} is locally mini­
mum in to. 

This definition of the extremum does not depend on the 
output space dimension D, which makes it suitable in mul­
tivariate EMD contexts. For D = 1, the reader could check 
that the computed extrema using the previous property in­
clude the signal scalar extrema (of Huang [1]) but also the 
saddle points. 

Oscillation barycenter Let PI = [h, s(hW and P2 = 

[t2' S(t2W be two consecutive oscillation extrema. A com­
plete oscillation is defined between P1 and P2 and the as­
sociated oscillation barycenter, Mp1--+P2, is obtained by: 

(5) 

The mean trend M( {s(t)}) is then computed by interpo­
lating between the barycenters. The M operator appears 
with this definition as a non-stationary signal-based aver­
aging operator with a field of application not exclusively 
restricted to monovariate signals. Nevertheless, interpo­
lating directly through all the oscillation barycenters to 
obtain M ( { s (t) } ), appears in practice to be very sensi tive 
to artefacts introduced by the spline interpolation process 
and the border effects. Such effects appear very lesser in 
the classical Huang's approach as if they were "balanced" 
by the averaging of the min and max envelopes. Similarly, 
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a robust implementation of the mean envelope computa­
tion is obtained for 3A-EMD by averaging two envelopes: 
a first envelope interpolating the even indexed barycenters 
(including signal borders) and a second envelope interpo­
lating the odd indexed barycenters (also including signal 
borders). 

Sifting process stop criterion The sifting process termi­
nation is handled by means of a classical modified Cauchy­
like criterion [4]. The sifting process is thus stopped when­
ever Ildn,k+1(ti) - dn,k(ti)ll/lldn,k(ti)11 becomes lesser 
than a certain threshold E (le-2 in practice) for a ratio of 
the whole samples of signal equal, at least, to a (90% in 
practice). 

Scope of application Based on the detection of local min­
ima of {I I  �� (t) 112}, 3A-EMD raises some assumptions on 
the candidate signals: 
(AI) The signal {s(t)} must be regular or sampled enough 
so that its numerical derivative has a relevant meaning. 
(A2) Any signal including one IMF with a piecewise con­
stant derivative norm (and especially purely circular ro­
tating bivariate signals) would not be successfully decom­
posed by 3A-EMD. 
(A3) The energy of the different IMF derivatives of the 
signal should ideally decrease or, at least, the energy of the 
nth IMF dn should not be "too much" bigger than the en­
ergy of the following IMFs dn+1. In practice, noisy parts 
of a signal are often associated to highest frequencies and 
such condition must not be too restrictive. 

Note on computational complexity The computational 
complexity of 3A-EMD algorithm can be precisely evalu­
ated and compared with some of the reference algorithms 
of the literature. For any given EMD algorithm, let's call 
N the number of extracted IMF, Kn the number of sifting 
iterations performed to extract the nth IMF, and dn,k the 
signal considered at the kth iterations of the sifting pro­
cess. Let's also call MHkua

ng the number of extrema de-n, 
tected in dn,k by the monovariate Huang's procedure [1], 
MR'k'lling the number of extrema detected in the pth pro-n, ,p 

jection of dn,k by the second geometrical bivariate Rilling's 
procedure [7] with P projection planes, and M�1 the num­
ber of barycenters detected in dn,k by 3A-EMD method. 
The computational complexity of the sifting step neces­
sary to obtain dn,k+1 for each of these three methods can 
be therefore computed for a signal from ]R to ]RD with S 
samples, by the formula given in the table 1. The global 
complexity for each of those methods is then directly ob­
tained by cmethod 

= 
""N_ "" K:: cmethod. L..n-1 L..k-1 n,k-1 

3. RESULTS 

The objective of this section is twofold: to compare the 
performance of3A-EMD algorithm with classical approa­
ches and to illustrate its extensibility to multivariate sig­
nals (D > 2). 

Signals selection The signals used to evaluate the behav­
ior of 3A-EMD algorithm are two monovariate (S11, S12), 



Method D 

Huang 

Rilling 2 

3A-EMD any 

Sifting Complexity 

cH uang = 185 + 15MH uang n,k n,k 
cRilling = S(llP + 2)+ n,k 

P/2 
15 L MRilling n,k,p 

p=l 
C3A = D(19S + 16M3A) + M3A n,k n,k n,k 

Table 1. Computational complexity of some reference algorithms and 

of 3A-EMO method. 

two bivariate (S21, S22) and one trivariate (S31) signals, 
defined on the time interval T = [-1; 2] and sampled at 

is = 10kHz: 

Sl1(t) = eO.23(1+t) (0.5sin(1007l't) + sin(507l't)) 
S12 (t) = 2sin(2507l't) + eO.23(1+t) cos( 7l'(2.58t 

+21.95)2) + 3cos(7l'(1.7t + 7.3)2) + 3t 
S21 (t) = eO.23t-0.46 [0.3cos( 7l'(2.58t + 14.2)2) 

+0.9isin( 7l'(2.58t + 14.2)2)] 
+[0.4sin(207l't) + 0.7icos(247l't)] 

S22(t) = [0.3cos(4007l't) + 0.8isin(5007l't)] 
+[4cos(1007l't) + 7isin(1007l't)] 
+eO.23t-O.46 [5cos( 7l'(2.24t + 4.47)2) 
+2isin(7l'(2.24t + 4.47)2)] 

The trivariate signal S31 is given by: 

x(t) = 3.5sin(5007l't) 
IMF 1 y(t) = 2cos(5007l't) 

z(t) = eO.23t-O.46sin(5007l't) 
x(t) = 5eo.23(1+t)cos(7l'(3.16t + 25.3)2) 

IMF2 y(t) = 2eo.23(1+t)sin(7l'(3.16t + 25.3)2) 
z(t) = 0.5sin(1307l't + 1.2) 
x(t) = 4sin(607l't) 

IMF3 y(t) = 2cos(607l't) 
z(t) = 6sin(647l't + 1.5) 

Note that all these signals are compatible with the assump­
tions (AI), (A2) and (A3). 

Performance criteria Three kinds of performance crite­
rion are used during the simulations. 

Criterion I A first criterion only takes into account the 
behavior of the algorithm on a temporal window [0; 1] of 

T = [-1; 2] where border effects become negligible. Let 

Ie be the set of associated time indices and di an estimate 
of the true ith IMF di, then the first criterion is defined by 
the error e�(d) = LkEI, Ilddk] - ddk]112. For a complete 

set d = {dd1 <i<N of estimates of the N IMFs composing 

the signal to ;n�yse, this error is generalized into ee (d) = 
N i A Li=l ee(di). 

Criterion 2 A second criterion evaluates the ability of the 
algorithm to minimize border effects. It is represented by 
e'b and eb and is computed as for criterion 1 but on the 
set h of time indices included in the subinterval [-1; 0] U 
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Fig. 1. Comparative study of 3A-EMO versus Huang's (10) and 

Rilling's (20) reference (Ref) methods. 

[1; 2] ofT= [-1; 2]. Indeed, border effects are often crit­
ical in practice and their minimization facilitates the ex­
ploitation of the IMFs. 

Criterion 3 A last criterion evaluates the computational 
complexity with respect to the formula listed in Table 1. 

Comparative study This section compares 3A-EMD per­
formances with those obtained by Huang's algorithm [1] 
in monovariate case and Rilling's method [7] in bivariate 
context. More precisely, the second geometric approach 
proposed in [7] is used as reference for bivariate decompo­
sitions with 8 projection planes. In both cases, the sifting 
process stopping criterion and the border effect manage­
ment are identical for all the compared methods. The fig­
ure I presents criteria I and 2 on the left, and criterion 3 on 

the right for both monovariate and bivariate signals. Core 

performances of 3A-EMD are globally satisfactory and 
competitive compared with those of the reference meth­
ods. Regarding border performances (eb), 3A-EMD gen­
erally offers more efficient results and seems to have a nice 
behaviour on the signal border. Finally, the computational 
complexity analysis suggests that, even if no significant 
differences are visible on monovariate signals, 3A-EMD 

generally requires less sifting iterations and less computa­
tional operations than the Rilling's method. 

Trivariate decomposition The figure 2 presents the ex­
act (dashed dark line) and estimated (red line) IMFs of 
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Fig. 2. 3A-EMD trivariate decomposition of the signal 831. Dashed dark line: real IMF / Continuous red line: estimated IMF. 

the trivariate (D > 2) signal 831 projected on the three 
main axis (from left to right). The three IMFs and the 
residue are displayed from the top to the bottom of the 
figure. Note that only a central zoom of the IMFs on the 
temporal axis has been represented for the sake of clar­
ity. A good behaviour of the algorithm can be observed. 
Indeed, the three IMFs seem well extracted and the low 
residue highlights the efficiency of the decomposition on 
the border. More than quantitative results, this example 
illustrates the extensibility of 3A-EMD to higher dimen­

sion signals without any change in the core of our algo­
rithm. This also shows the relevancy of the use of oscilla­
tion barycenters in a general multivariate context. 

4. CONCLUSION AND PERSPECTIVES 

A new algorithm, called 3A-EMD, based on a novel ge­
ometric definition of the mean envelope operator is pro­
posed. The obtained results show that, under certain as­
sumptions on the signals, this alternative definition en­
ables to decompose both monovariate and multivariate sig­
nals without any modification in the core of the algorithm. 
This last point is the one main difference with regard to 
the existing approaches of the literature. The comparative 
study also suggests that 3A-EMD seems to offer compet­
itive core and border performances as well as some in­
teresting performances in terms of computational com­

plexity. A restricted scope of application mainly due to 
the use of the first derivative in the algorithm remains the 
most important limitation of our approach. However, as 
pointed before, those restrictions should not be too much 
restrictive in practical fields. More simulated and real data 
decompositions should be performed in future works to 
verify the 3A-EMD interest in practical context. 

5. REFERENCES 

[1] N. Huang, Z. Shen, S. Long, M. Wu, H. Shih, 
Q. Zheng, N.-C. Yen, C. Tung, and H. Liu, "The em-

303 

pirical mode decomposition and the hilbert spectrum 
for nonlinear and non-stationary time series analysis, " 
Proc. of the Royal Society A: Mathematical, Physical 
and Engineering Sciences, London, March 1998, pp. 
903-995. 

[2] L. Hualou, L. Qiu-Hua, and J. Chen, "Application of 
the empirical mode decomposition to the analysis of 
esophageal manometric data in gastroesophageal re­
flux disease, " IEEE Transactions on Biomedical En­

gineering, vol. 52, no. 10, pp. 1692-1701, 2005. 

[3] G. Rilling, P. Flandrin, and P. Goncalves, "Empir­
ical mode decomposition, fractional gaussian noise 
and hurst exponent estimation, " Proc. of IEEE Inter­

national Conference on Acoustics, Speech and Sig­
nal Processing, Philadelphia, March 2005, vol. 4, pp. 
489-492. 

[4] G. Rilling, P. Flandrin, and P. Goncalves, "On empiri­
cal mode decomposition and its algorithms, " Proc. of 
IEEEIEURASIP Workshop on Nonlinear Signal and 
Image Processing, Grado, June 2003. 

[5] E. Delechelle, J. Lemoine, and O. Niang, "Empirical 
mode decomposition: an analytical approach for sift­
ing process, " IEEE Signal Processing Letters, vol. 12, 
no. II, pp. 764-767, 2005. 

[6] T. Tanaka and D. Mandic, "Complex empirical 

mode decomposition, " IEEE Signal Processing Let­
ters, vol. 14, no. 2, pp. 101 - 104, 2007. 

[7] G. Rilling, P. Flandrin, P. Goncalves, and J. Lilly, "Bi­
variate empirical mode decomposition, " IEEE Signal 
Processing Letters, vol. 14, no. 12, pp. 936-939, 2007. 

[8] N. Regman and D. Mandic, "Empirical Mode Decom­
position for Trivariate Signals, " IEEE Transaction on 
Signal Processing, vol. 58, no. 3, pp.l 059-1 068, 2010. 

[9] N. Regman and D. Mandic, "Multivariate empirical 
mode decomposition, " Proc. R. Soc. A, 2009. 


