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3A-EMD: A GENERALIZED APPROACH FOR MON OVARIATE AND MULTIVARIATE EMD

EMD is an emerging topic in signal processing research and is applied in various practical fields. Its recent ex tension to multivariate signals, motivated by the need to jointly analyze multi-channel signals, is an active topic of research. However, all the existing extensions specifically hold either mono-, bi-or tri-variate signals or require mul tiple projections that complexify the original process. In this communication, a novel EMD approach called 3A EMD is proposed. It is essentially based on the redefini tion of the mean envelope operator and allows, under cer tain conditions, a straightforward decomposition of mono variate and multivariate signals without any change in the core of the algorithm. A comparative study with classical monovariate and bivariate methods is presented and shows the competitiveness of 3A-EMD. A trivariate decomposi tion is also given to illustrate the extension of the proposed algorithm to any signal dimension, D > 2.

INTRODUCTION

Empirical Mode Decomposition (EMD) was originally in troduced in the late 1990s to study water surface wave evolution [START_REF] Huang | The em-pirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. EMD can be considered as an emerging technique in signal processing with a very important re search topics and development in various fields such as biomedical signal analysis [START_REF] Hualou | Application of the empirical mode decomposition to the analysis of esophageal manometric data in gastroesophageal re flux disease[END_REF], Hurst exponent estimation [START_REF] Rilling | Empir ical mode decomposition, fractional gaussian noise and hurst exponent estimation[END_REF], etc. EMD can be viewed as a method which splits a given signal into a set of AM-FM components. The latter components, referred to as the Intrinsic Mode Functions (lMFs), are estimated using an iterative procedure called sifting process. Let {set)} = {a o (t)} be a signal to de compose. Then the sifting process to estimate the n th IMF (1 � n � N) can be summarized as follows:

1. Initialization taking dn, o (t) = anl (t) for every t.

2. Computation of the mean envelope M( {dn,k(t)}).

3. Extraction of the details {dn,k + l (t)} = {dn,k (t)} M( {dn,k(t)}). [START_REF] Rilling | On empiri cal mode decomposition and its algorithms[END_REF]. Incrementation of k and go to step 2, repeat until {dn,k + l (t)} is designed as an IMF.

In Huang [START_REF] Huang | The em-pirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], the mean envelope M( {dn,k (t)}) is cal culated as the half sum of the upper and the lower en-velopes, which are obtained by interpolation between the local maxima points and the local minima points of {dn,k(t)}, respectively.

Several studies dealing with EMD have been reported in the last decade: those addressed to improve the Huang's algorithm [START_REF] Rilling | On empiri cal mode decomposition and its algorithms[END_REF][START_REF] Delechelle | Empirical mode decomposition: an analytical approach for sift ing process[END_REF], and those proposing an extension of EMD to bi-or trivariate signals [START_REF] Tanaka | Complex empirical mode decomposition[END_REF][START_REF] Rilling | Bi variate empirical mode decomposition[END_REF][START_REF] Regman | Empirical Mode Decom position for Trivariate Signals[END_REF] and even recently to multivariate signals [START_REF] Regman | Multivariate empirical mode decomposition[END_REF]. All these latter methods, moti vated by the need to jointly analyze multi-channel real sig nals, are either restricted to a specifical signal dimension or are based on multiple projections of the original signal that complexify the original EMD process. The aim of this communication is to propose a new efficient EMD algo rithm, named 3A-EMD (Active Angle Averaging EMD), that preserves the original geometrical simplicity of the classical EMD algorithm and extends its performance to multivariate signals defined from lR to lR D with D > 2.

The classical EMD algorithm is extended to multivariate signals by redefining the mean envelope operator M us ing new characteristic points. A generalized version of the EMD is thus obtained working straightforwardly on monovariate and multivariate signal without any change.

A NEW EMD APPROACH: 3A-EMD

The proposed 3A-EMD method aims at providing a sim ple algorithm working for multivariate signals without any modification. To do so, the signal mean trend (computed by the M operator) is redefined as the signal going through the barycenter of its different elementary oscillations. This is performed through three main steps: i) identification of all the elementary oscillations, ii) computation of the barycenters of the identified elementary oscillations, and iii) interpolation between all barycenters to obtain the sig nal mean trend.

Elementary oscillation An elementary oscillation of a given signal with values in lR D (D ;::: : 1) can be viewed as a subpart of the signal defined between two extrema of oscillation. However, computing the extrema if the output space lR D is multidimensional (D > 1) is not obvious. In this section we propose a new and general way to compute such extrema. Let the signal {s(t)} with values in lR D be in class e 1 (or a "regular enough" signal in practical situa tions). The tangent vector to {s(t)} at t', Ts(t'), is defined by:

Ts(t') = [1, �: (t')W E ]R D + l (1)
and let's define the quantity, as (t'), as follows: as(t') = lim ( Ts(t' -h), Ts(t' + h))

(2 ) h--+O which is the inner product of ]R D + 1 (denoted by ( . , . )) between the tangents to {s (t)} just before and after t'. In fact, as(t) is maximum when both vectors, Ts(t -h) and Ts (t + h), are linearly dependent, due to Cauchy-Schwarz inequality, and null when they are orthogonal. This quan tity is an indicator of the local angle and thus, of the local oscillation of {s(t)} at t'. Due to the continuity of the inner product, we have: and as {s(t)} is in e 1 , we get:

where II . II abusively represents the norm of both ]R D + 1 and ]R D . Finally, an oscillation extremum of the signal { s (t) } is defined as a local minimum of the function { as (t') } and the following property holds:

Property: the signal {s(t)} has an oscillation extremum in to if and only if the function {II �� (t') 11 2 } is locally mini mum in to.

This definition of the extremum does not depend on the output space dimension D, which makes it suitable in mul tivariate EMD contexts. For D = 1, the reader could check that the computed extrema using the previous property in clude the signal scalar extrema (of Huang [START_REF] Huang | The em-pirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]) but also the saddle points.

Oscillation barycenter Let PI = [h, s(hW and P 2 = [t 2 ' S(t 2 W be two consecutive oscillation extrema. A com plete oscillation is defined between P1 and P 2 and the as sociated oscillation barycenter, Mp1 --+ P2, is obtained by:

(5)

The mean trend M( {s(t)}) is then computed by interpo lating between the barycenters. The M operator appears with this definition as a non-stationary signal-based aver aging operator with a field of application not exclusively restricted to monovariate signals. Nevertheless, interpo lating directly through all the oscillation barycenters to obtain M ( { s (t) } ), appears in practice to be very sensi tive to artefacts introduced by the spline interpolation process and the border effects. Such effects appear very lesser in the classical Huang's approach as if they were "balanced" by the averaging of the min and max envelopes. Similarly, a robust implementation of the mean envelope computa tion is obtained for 3A-EMD by averaging two envelopes: a first envelope interpolating the even indexed barycenters (including signal borders) and a second envelope interpo lating the odd indexed barycenters (also including signal borders).

Sifting process stop criterion The sifting process termi nation is handled by means of a classical modified Cauchy like criterion [START_REF] Rilling | On empiri cal mode decomposition and its algorithms[END_REF]. The sifting process is thus stopped when ever Ildn,k + 1(ti) -dn,k(ti)ll/lldn,k(t i )11 becomes lesser than a certain threshold E (le -2 in practice) for a ratio of the whole samples of signal equal, at least, to a (90% in practice). (AI) The signal {s(t)} must be regular or sampled enough so that its numerical derivative has a relevant meaning. (A2) Any signal including one IMF with a piecewise con stant derivative norm (and especially purely circular ro tating bivariate signals) would not be successfully decom posed by 3A-EMD. (A3) The energy of the different IMF derivatives of the signal should ideally decrease or, at least, the energy of the n th IMF dn should not be "too much" bigger than the en ergy of the following IMFs dn + 1. In practice, noisy parts of a signal are often associated to highest frequencies and such condition must not be too restrictive.

Scope of application

Note on computational complexity The computational complexity of 3A-EMD algorithm can be precisely evalu ated and compared with some of the reference algorithms of the literature. For any given EMD algorithm, let's call N the number of extracted IMF, Kn the number of sifting iterations performed to extract the n th IMF, and dn,k the signal considered at the k th iterations of the sifting pro cess. Let's also call M H k ua n g the number of extrema de- n, tected in dn,k by the monovariate Huang's procedure [START_REF] Huang | The em-pirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], M R ' k ' lli n g the number of extrema detected in the p th pro- n, , p jection of dn,k by the second geometrical bivariate Rilling's procedure [START_REF] Rilling | Bi variate empirical mode decomposition[END_REF] with P projection planes, and M�1 the num ber of barycenters detected in dn,k by 3A-EMD method.

The computational complexity of the sifting step neces sary to obtain dn,k + 1 for each of these three methods can be therefore computed for a signal from ]R to ]R D with S samples, by the formula given in the table 1. The global complexity for each of those methods is then directly ob tained by cmethod = ""N_ "" K :: cmethod.

L.. n-1 L.. k-1 n,k -1

RESULTS

The objective of this section is twofold: to compare the performance of3A-EMD algorithm with classical approa ches and to illustrate its extensibility to multivariate sig nals (D > 2). The trivariate signal S 3 1 is given by: Criterion 3 A last criterion evaluates the computational complexity with respect to the formula listed in Table 1.

x(t) = 3.5sin(5007l't) IMF 1 y(t) = 2cos(5007l't) z(t) = e O.
Comparative study This section compares 3A-EMD per formances with those obtained by Huang's algorithm [START_REF] Huang | The em-pirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF] in monovariate case and Rilling's method [START_REF] Rilling | Bi variate empirical mode decomposition[END_REF] in bivariate context. More precisely, the second geometric approach proposed in [START_REF] Rilling | Bi variate empirical mode decomposition[END_REF] is used as reference for bivariate decompo sitions with 8 projection planes. In both cases, the sifting process stopping criterion and the border effect manage ment are identical for all the compared methods. 

(f � _ :1 �J � -1 0 1 2 -1 0 2 -1 0 2
Fig. 

CONCLUSION AND PERSPECTIVES

A new algorithm, called 3A-EMD, based on a novel ge ometric definition of the mean envelope operator is pro posed. The obtained results show that, under certain as sumptions on the signals, this alternative definition en ables to decompose both monovariate and multivariate sig nals without any modification in the core of the algorithm. This last point is the one main difference with regard to the existing approaches of the literature. The comparative study also suggests that 3A-EMD seems to offer compet itive core and border performances as well as some in teresting performances in terms of computational com plexity. A restricted scope of application mainly due to the use of the first derivative in the algorithm remains the most important limitation of our approach. However, as pointed before, those restrictions should not be too much restrictive in practical fields. More simulated and real data decompositions should be performed in future works to verify the 3A-EMD interest in practical context.

  Based on the detection of local min ima of {II �� (t) 11 2 }, 3A-EMD raises some assumptions on the candidate signals:

  Signals selectionThe signals used to evaluate the behav ior of 3A-EMD algorithm are two monovariate (S11, S1 2
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 1 Fig. 1. Comparative study of 3A-EMO versus Huang's (10) and Rilling's (20) reference (Ref) methods.
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 12 ofT= [-1; 2]. Indeed, border effects are often crit ical in practice and their minimization facilitates the ex ploitation of the IMFs.
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 2 Fig. 2. 3A-EMD trivariate decomposition of the signal 831. Dashed dark line: real IMF / Continuous red line: estimated IMF.

Table 1 .

 1 Computational complexity of some reference algorithms and of 3A-EMO method.

	Sl1(t) = e O.23 ( 1 + t) (0.5sin(1007l't) + sin(507l't)) S1 2 (t) = 2sin(2507l't) + e O.23 ( 1 + t) cos( 7l'(2.58t +21.95) 2 ) + 3cos(7l'(1.7t + 7.3) 2 ) + 3t S 2 1 (t) = e O.23t -0.46 [0.3cos( 7l'(2.58t + 14.2) 2 )

two bivariate (S 2 1, S 22 ) and one trivariate (S 3 1) signals, defined on the time interval T = [-1; 2] and sampled at

is = 10kHz: +0.9isin( 7l'(2.58t + 14.2) 2 )] +[0.4sin(207l't) + 0.7icos(247l't)] S 22 (t) = [0.3cos(4007l't) + 0.8isin(5007l't)] +[4cos(1007l't) + 7isin(1007l't)] +e O.23t -O.46 [5cos( 7l'(2.24t + 4.47) 2 ) +2isin(7l'(2.24t + 4.47) 2 )]

  The fig ure I presents criteria I and 2 on the left, and criterion 3 on the right for both monovariate and bivariate signals. Core performances of 3A-EMD are globally satisfactory and competitive compared with those of the reference meth
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							ods. Regarding border performances (eb), 3A-EMD gen
							erally offers more efficient results and seems to have a nice
							behaviour on the signal border. Finally, the computational
							complexity analysis suggests that, even if no significant
							differences are visible on monovariate signals, 3A-EMD
							generally requires less sifting iterations and less computa
							tional operations than the Rilling's method.		
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