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The persistent current in strictly one-dimensional Dirac systems is investigated within two different models,
defined in the continuum and on a lattice, respectively. The object of the study is the effect of a single magnetic
or nonmagnetic impurity in the two systems. In the continuum Dirac model, an analytical expression for the
persistent current flowing along a ring with a single delta-like magnetic impurity is obtained after regularization
of the unbounded negative energy states. The predicted decay of the persistent current agrees with the lattice
simulations. The results are generalized to finite temperatures. To realize a single Dirac massless fermion,
the lattice model breaks the time-reversal symmetry, and in contrast with the continuum model, a pointlike
nonmagnetic impurity can lead to a decay in the persistent current.
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I. INTRODUCTION

An isolated normal-metal ring threaded by a magnetic
flux � carries a nondissipative current I (�) at very low
temperature.1,2 This is called the persistent current (PC) and
it is a manifestation of quantum mechanics, reminiscent of
orbital magnetism in atomic physics. At zero temperature,
I (�) is defined as the change in the ground-state energy of the
electronic fluid with respect to the magnetic flux. According to
gauge invariance, I (�) is a periodic function of the magnetic
flux,3 the period being the magnetic flux quantum �0 = h/e,
where h is the Planck constant and −e, the electron charge.
The PC survives at finite temperature, and in the presence
of static disorder, as long as the electronic wave functions
are coherent over the whole ring.4 The current-flux relation
I (�) is sensitive to many physical ingredients including
band structure, static disorder, electronic interactions,5–8 ring
geometry, and measurement back-action.

The simplest case, namely strictly one-dimensional and
noninteracting electrons with quadratic dispersion, has been
studied thoroughly by Cheung et al.,9,10 both for ballistic
and disordered rings. In the clean limit, the zero-temperature
current-flux relation I (�) is a piecewise linear function of
� with discontinuities. The maximal current amplitude is
given by I0 = evF /L, where vF is the Fermi velocity and
L the ring circumference. In the presence of a single impurity,
the discontinuities are rounded, and the maximal current is
reduced. Finally, in the presence of multiple scatterers, the PC
is further suppressed by the Anderson localization, but remains
finite due to the presence of electronic states whose localization
length exceeds the ring size.9 This work has been extended
to more realistic situations including additional ingredients
such as multichannel effects and/or interaction effects.11 After
decades of controversy between those theoretical predictions
and the pioneering experiments,12–14 recent experiments on a
single ring and on arrays of many rings agree well with a model
based on the noninteracting electrons.15–17

Recent years have seen a surge in studies on materials
hosting Dirac fermions, including graphene18,19 and topolog-
ical insulators.20,21 In graphene, the particular honeycomb

lattice implies a linear dispersion of electrons near two
isolated Dirac points. Such electrons are described by a
two-component spinor wave function corresponding to the
sublattice isopin. The two-dimensional (2D) surface states
of topological insulators are characterized by a single (or an
odd number of) Dirac cone(s) and the electron momentum
is locked to the real spin (instead of the lattice isospin, in
graphene). Similarly, the one-dimensional (1D) edge state of
the quantum spin Hall state is characterized by a single Fermi
surface (consisting of only two Fermi points instead of four
Fermi points).

Being a measure of the flux sensitivity of the wave
function, the PC is a natural observable to investigate eventual
signatures of Dirac physics. However, most theoretical (and
all experimental) work on PC has been so far focused on
nonrelativistic electrons in standard metals, which are often
described by a parabolic dispersion relation, and by scalar
wave functions.9,10 Notable exceptions are the theoretical
investigations of PC in graphene22,23 and topological insulator
rings24 in the ballistic limit and with realistic finite-width
geometry. In rings patterned in HgTe/CdTe 2D topological
insulators, the edge states attached to the inner and outer
circumferences of the ring overlap, and therefore they are
gapped even for relatively large rings. For smaller rings, those
hybridized edge states are even pushed in the 2D bulk gap
of the HgTe/CdTe well.24 In order to avoid these effects,
and to study a single gapless Dirac fermion, one can use the
disk geometry.24 This is an interesting possibility offered by
topological insulators: one can have Aharonov-Bohm (AB)
like effects in singly connected samples because the insulating
bulk defines a region where the edge carriers are excluded
(as the hole region for a metallic ring). In the absence of
disorder, the shape of the current-flux relation, I (�), turns
out to be the same for nonrelativistic scalar electrons9 and
for massless Dirac electrons.22,24–26 Besides, the PC flowing
along ballistic bismuth rings was calculated assuming that
the dispersion is well approximated by the one of a massive
Dirac fermion.27 Persistent currents from fermions with linear
spectrum were also studied in the context of Luttinger liquid
physics. Here one works in a low-energy approximation, where
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FIG. 1. (Color online) The helical model Eq. (1) is implemented
on a ring of length L = 2πR, threaded by a tube of magnetic flux
�. There are two counterpropagating spin σ3 eigenstates denoted by
↑ and ↓ arrows. The arrow in the azimuthal direction indicates the
convention for positive (paramagnetic) persistent current I (�).

a quadratic spectrum is linearized at the Fermi momentum.28

In clean systems, the PC obtained in this approximation proved
to be identical to the one determined when the entire quadratic
spectrum is considered.

Experimentally, the AB oscillations of the conductance
in topological insulators have been observed.29,30 Disorder
effects turn out to be crucial in determining the nature of the
coherent surface state: namely, a single Dirac cone should host
a perfectly transmitted mode robust to strong disorder.31–33

Such experiments provide hope that the PC could be detected
in Dirac materials in a near future.

Motivated by these recent advances in transport, and
anticipating future PC experiments on topological insulator
rings, the focus of the present article is on the effect of a
single impurity in strictly one-dimensional rings. To this aim,
we have studied both massless Dirac fermions confined in a
continuous loop (Fig. 1), and lattice Dirac fermions hopping
on the discrete sites of a ring (Fig. 2). For both models, a
comparative study of the effect of magnetic or nonmagnetic
impurity is undertaken.

The outline of this paper reads as follows: In Sec. II, we
introduce the Dirac models studied along this paper, and the
formula for evaluating the PC-flux dependence, I (�). The first
(continuum) model describes one-dimensional, helical, mass-
less Dirac fermions confined in a continuous loop (Fig. 1). The
second model is a time-reversal-symmetry-breaking lattice
model, implemented on a ring made of discrete sites with spin-
dependent hopping terms (Fig. 2). The time-reversal-breaking
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FIG. 2. Left: Creutz model in zero flux on a linear infinite
lattice. The horizontal ladders represent symbolically the two spin
projections: the upper (lower) ladder with filled (empty) circles
denotes σ3 spin-up (spin-down) states. The spin degeneracy is lifted
by an on-site coupling m. There are two possible hopping amplitudes:
the g term that produces spin-flip processes and a spin-conserving
hopping t . The additional phase π/2 on the t links is only conventional
and has the role to move the Dirac point at k = 0. Right: The model
is shaped into a ring of length L and a flux � is threaded through it.
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FIG. 3. Energy dispersion in the clean system, in the absence
of magnetic flux. A Dirac point forms at k = 0, and the spectrum
is linear only near the Fermi point. At half filling, the spectrum is
particle-hole symmetric around Fermi energy EF = 0. By varying
the m = g parameter, one can go from a single Dirac cone (straight
line) to a double Dirac cone (m = g = 0) (dotted line). Away from
the k = 0 point, the lattice spectra deviate from the linear dispersion
of the continuum model Eq. (1) (dashed line referred to as “cont.”).
The system parameters are given in units of t .

terms allow tuning the 1D band structure from a situation with
two flavors of massless Dirac fermions to a situation with a
single massless Dirac fermion (Fig. 3).

Section III presents the case of a clean ring, where
the continuum and the tight-binding models are compared.
First we review the regularization for the continuum Dirac
model,25,26 which leads to a finite total energy and, conse-
quently, to a well-defined persistent current. The lattice model
reproduces perfectly the current-flux characteristic, I (�), of
the regularized Dirac spectrum in the continuum.

Section IV treats the case of a single impurity in the
ring. In the continuum model, a nonmagnetic impurity has no
effect on the persistent current, because it does not couple the
left- and right-movers. Nevertheless, the lattice model lacks
time-reversal symmetry (TRS). Hence there is no Kramers
degeneracy to protect the crossing in the energy-flux spectrum.
Consequently, even nonmagnetic impurities can open up gaps
and lead to a suppression of the PC. In contrast, the case of
a magnetic impurity allows a direct comparison between the
lattice and continuum model. Because TRS is broken in both
models, the same mechanism induces backscattering, thereby
producing a decrease of the PC. The analytical expression
obtained in the case of a delta-like impurity is cross-checked
with the numerical results revealing a good agreement for any
impurity strength, after a renormalization of impurity potential
in the continuum model.

Section V generalizes the results of the previous sections
to finite temperatures. The use of the ultraviolet regularization
proves particularly useful in determining the persistent current
for the case where the temperature and a single magnetic
impurity jointly work to decrease the maximum amplitude
of the persistent current. The equivalence between the lattice
and the continuum models (established at T = 0) also holds
at finite temperature.

205401-2
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In brief, the paper is organized as follows. The Dirac models
and the formalism are presented in Sec. II. The main body of
the paper is devoted to persistent currents flowing in a Dirac
ring with no impurity (Sec. III) and a single impurity (Sec. IV).
The generalization to finite temperatures is contained in Sec V,
with additional details enclosed in the Appendix. Conclusions
and perspectives are given in Sec VI.

II. DIRAC MODELS

This section introduces the two Dirac models investigated
in this paper, and the formalism used to evaluate the persistent
current-flux relation, I (�). The first model describes a helical
metal defined on a continuous loop (Fig. 1), while the second
one is a tight-binding model defined on a ring of discrete
sites with lattice spacing a (Fig. 2). The two models share
the same low-energy spectrum, consisting of a single Dirac
branch, over a wide range of parameters. Nevertheless, the
dispersions of the higher energy parts of their spectra differ
drastically (Fig. 3). Indeed the spectrum of the tight-binding
model is periodic and bounded, whereas the continuum helical
model has an infinite number of negative energy states. Most
importantly, in the absence of external magnetic flux (� =
0), the continuum helical model is time-reversal invariant,
whereas the tight-binding model is not, owing to the presence
of spin-mixing terms. In the next sections, we will investigate
the implications of those differences on the thermodynamical
PC, first for a clean ring (Sec. III) and then for a ring with an
impurity (Sec. IV).

A. Continuum helical model

Let us consider a strictly one-dimensional metallic ring,
lying in the xy plane, with radius R, and threaded by a tube
of magnetic flux � oriented along the z direction (Fig. 1). It is
assumed that the magnetic field is zero for electrons embedded
in the ring, and the electronic wave function is modified only
through a phase dependence on the electromagnetic vector
potential A = (�/2πR)eθ . The Zeeman coupling of the spins
with the magnetic field is neglected.

Let us consider the single-electron Hamiltonian:

H = h̄ω

(
−i∂θ + �

�0

)
σ3, (1)

where ω = vF /R, vF being the Fermi velocity, and h̄ = h/2π ,
the reduced Planck constant. The wave functions are two-
component spinors that depend on the azimuthal angle θ in
the xy plane, and σ3 is the standard diagonal Pauli matrix. In
particular, this model can be seen as an effective model for
the helical edge state of the 2D quantum spin Hall insulator
occupying a disk with radius R (assuming that the insulator
gap is so large that bulk excitations can be neglected).

Let us look for stationary states under the form �(θ,t) =
�ne

inθ−iEt , where �n is a (θ -independent) two-component
spinor, and n has to be an integer in order to satisfy periodic
boundary conditions �(θ,t) = �(θ + 2π,t). The eigenstates
are proportional to spin eigenvectors, |z±〉, of the σ3 Pauli
matrix: σ3|z±〉 = ±|z±〉.

The two wave functions read

�±
n (θ,t) = |z±〉einθ−iE±

n t , (2)

n = 1
n = 2

n = −1

n = 0
n = −3

n = −2

n = −1

n = 0

EF = 0

E
h̄ω

Φ
Φ0

−1

−2

1

−3

FIG. 4. (Color online) Energy-flux characteristic E±
n = ±h̄ω

(n + �/�0). Fermi energy EF is fixed at zero, and the flux �/�0

takes an arbitrary value (represented by the dashed green line) in the
interval (0,1). Filled (empty) spin states are represented by • (◦). The
spin-up (spin-down) states’ evolution under flux is represented by
dashed red (solid blue) lines. In the flux interval (0,1), the infinite
occupied number of spin-up states are indexed by integer n, n � −1,
while occupied spin-down states, by n � 0.

where +(−) stands for the (anti)clockwise movers. The
corresponding energies depend linearly on the magnetic
flux

E±
n (�) = ±h̄ω

(
n + �

�0

)
. (3)

Therefore the Dirac model in Eq. (1) has a strong
spin-momentum-locking property, clockwise (anticlockwise)
states being totally spin-up (or spin-down) polarized
(Fig. 4).

When the flux � is an integer or a half-integer multiple
of the magnetic flux quantum, �0, the system is time-reversal
invariant, and each single-electron state is twofold degenerated
with respect to the spin, (σ3 = ±1). Indeed the action of the
time-reversal symmetry T is to reverse both the spin and the
momentum operator −i∂θ . Therefore the Hamiltonian Eq. (1)
is time-reversal invariant if and only if the flux � is equivalent
to flux −�, which happens only for integer or half-integer
multiples of �0. For arbitrary non-(half-)integer flux �/�0,
the external flux breaks TRS, and the spin degeneracy is lifted,
as shown by Eq. (3) and Fig. 4.

Gauge invariance manifests itself in the periodicity of the
spectrum with respect to the magnetic flux �. Addition of
an integer number of flux quanta has no effect on the overall
spectrum because the set of energies Eq. (3) is unchanged after
proper shifting of the integers n.

The use of boundary conditions is justified by the fact that
the spin quantization axis of the edge state does not depend
on the angle θ . This situation is to be contrasted with the
case of a surface state wrapping around a topological insulator
cylinder, recently investigated in Refs. 31–34. In these works
on cylinders, the spin axis winds by 2π , when circulated
around the cylinder.

205401-3
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B. Lattice model

It would be interesting to simulate the single Dirac
fermion described by Eq. (1) by a lattice Hamiltonian for
several purposes, including investigations of band-curvature
effects at high energy, and temperature effects. Nevertheless
a straightforward discretization of a single-flavor Dirac model
[as Eq. (1)] is forbidden by the fermion-doubling problem:
any time-reversal invariant lattice model has an even number
of Dirac points.

This paper focuses on a lattice model that breaks time-
reversal symmetry (even at vanishing flux �). The single-
electron tight-binding Hamiltonian in real space reads

HCreutz = 1

2

L/a∑
j=1

[c†j (itσ3 − gσ1)eiφcj−1 + mc
†
j σ1cj ] + H.c.,

(4)

where the spin indices are implied, c
†
j = (c†j↑,c

†
j↓), and the

integer j ∈ {1, . . . ,L/a} indexes the different lattice sites
(Fig. 2). We work in units where the lattice constant is a = 1.
Therefore the wire length L equals the number of sites in the
ring. This model has already been studied for other purposes
in Refs. 35, and a proposal for its implementation using cold
atoms trapped in optical lattices was recently advanced.36 The
terms in σ1 (proportional to the parameters m and g) mix the
two spin directions and break time-reversal symmetry even
at � = 0. There is also an orbital effect due to the vector
potential, which is reflected in the phase

φ = 2πa

L

�

�0
, (5)

gained by an electron hopping between nearest-neighboring
sites. Note that at � = 0, there is a phase π/2 gained by spin-
conserving hoppings t . This does not break the time-reversal
symmetry because a spin-up electron gains the phase π/2,
while the spin-down electron will lose the phase π/2. In the
ring geometry, the sites j = 1 and j = N + 1 are identified. In
the following simulations, the energies are expressed in units
where the hopping strength is dimensionless, t = 1.

Before considering the model on a finite-size ring, let us
discuss its properties on an infinite lattice and in zero magnetic
flux. The model is classified in the BDI class of topological
insulators, which are described by an integer Z topological
invariant.37–39

Due to translational invariance, the Hamiltonian can be
written in momentum space, H = ∑

k c
†
kH(k)ck , with

H(k) = h3(k)σ3 + h1(k)σ1,
(6)

h1(k) = m − g cos k, h3(k) = t sin k,

where k is the 1D quasimomentum and σi are the usual spin
Pauli matrices. The first term proportional to σ3 alone would
describe a model with two Dirac points located at k = 0
and k = π , respectively. The additional time-reversal-breaking
terms, proportional to the Pauli matrix σ1, open up gaps at k =
0 and k = π , with size 2(m − g) and 2(m + g), respectively.

For |m/g| �= 1, the system becomes insulating, with a
gap 
 = 2|m − g|. There is a topological phase transition
between two different insulating phases defined by |m/g| >

1 (trivial phase) and |m/g| < 1 (topological phase). The

two topologically nontrivial phases are distinguished by a
topological invariant (the winding number) w = sgn(g), which
is zero in the trivial phase.

We will focus in particular on the phase of the Creutz model
where a single massless Dirac fermion coexists with a massive
one. For m = ±g the gap closes at least at one k point. Without
loss of generality, let us choose the case m = g, where the gap
vanishes at momentum k = 0, while a tunable gap of size 4m

remains at k = π (Fig. 3). Then the system can accommodate
two flavors of Dirac fermions, one massless at k = 0 and an
additional one at k = π with a tunable mass 2m.

The continuum Dirac Hamiltonian can be seen as an
effective model describing the low-energy, long-wavelength
limit of the lattice Wilson-Dirac fermion. This will allow us in
particular to discuss continuum versus lattice effects. Indeed,
the effective Hamiltonian near k = 0, for a generic m = g,
reads

H(|k| � 1) = h̄vF kσ3 + mk2

2
σ1 + O(k3), (7)

with the Fermi velocity vF = ta/h̄. Note that the dispersion
of the massless fermion is also affected by the time-reversal-
breaking terms at the second order in momentum k.

Although the Creutz model breaks time-reversal symmetry,
there is still an antiunitary operator T̄ , which commutes with
the Hamiltonian. Let us designate the symmetry represented
by this operator as a pseudo-time-reversal symmetry (PTRS),

T̄H(k)T̄ −1 = H(−k), T̄ = σ1K, T̄ 2 = 1, (8)

where K is the complex conjugation operator. At zero flux (or
half-integer flux �/�0), all the eigenvalues are degenerate
because states with opposite momentum k have the same
energy. However, this degeneracy is not protected, if nonmag-
netic impurities are added, because the system lacks TRS, and
the PTRS operator squares to 1. Moreover, the presence of the
PTRS ensures that all nondegenerate states at zero flux will
carry zero current (see Sec. IV A).

C. Persistent current

The persistent current is defined, at zero temperature, as the
derivative of the ground-state energy of the ring, E(�), with
respect to the magnetic flux �,

I (�) = −∂E

∂�
, (9)

using the sign conventions of Fig. 1: paramagnetic (dia-
magnetic) persistent current is positive (negative). At finite
temperature T and fixed chemical potential μ, the persistent
current is defined as

I (�) = −∂�

∂�
, (10)

where �(�) is the grand potential.
For a noninteracting system, the grand potential is given by

�(�) = − 1

β

∑
ν

ln[1 + e−β(Eν (�)−μ)], (11)

with β = 1/kBT ; kB is the Boltzmann constant, and T ,
the temperature. The index ν denotes a set of quantum
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numbers labeling the energy eigenstates of the system. After
differentiation with respect to the flux, one obtains the PC

I (�) =
∑

ν

f (Eν)iν(�), (12)

where iν(�) = −∂Eν(�)/∂� is the current carried by a single
energy level Eν , and

f (Eν) = 1

eβ(Eν−μ) + 1
(13)

is the Fermi-Dirac occupation function. Hence the persistent
current is the sum of the currents carried by all single-electron
states weighted by the Fermi-Dirac distribution.

Considering the continuum model of Eq. (1), the single-
electron states are labeled by their orbital index n, and spin-σ3

eigenvalues, σ = ±: ν = (n,σ ). In the zero-temperature limit,
T → 0, the total current is defined as

I (�) =
∑
n,σ

inσ (�), (14)

where the sum runs only over occupied states (n,σ ). In the
next section (Sec. III), the problems related to the presence of
an infinity of negative energy states in the continuum model
from Eq. (1) will be cured through an ultraviolet regularization.
But for the moment, let us focus on the current carried by a
single energy level. In the continuum model of Eq. (1), such a
single-state current can be calculated as the derivative,

inσ (�) = −∂Eσ
n

∂�
= −σ

evF

L
, (15)

where L = 2πR is the total length of the ring and σ = ±1
are the eigenvalues of spin σ3 matrix. Note that the current
does not depend explicitly on the orbital index, and all spin-up
(respectively spin-down) states carry the same diamagnetic
(respectively paramagnetic) current. This result can also be
derived from the current operator for a single electron,

i = −evF

L
σ3, (16)

whose quantum average

〈n,σ |i|n′,σ ′〉 = −σ
evF

L
δnn′δσσ ′ = inσ (�) (17)

is diagonal in the basis of the energy eigenstates. Finally, in
the lattice model, the current operator reads

J = −∂HCreutz

∂�
= I0

2t

∑
j

c
†
j (tσ3 + igσ1)eiφcj−1 + H.c.,

(18)

where the sum runs over all sites j in the ring. As already
noticed, I0 = evF /L is the absolute value of the current carried
by one eigenstate, and the Fermi velocity in the tight-binding
model is vF = ta/h̄. The PC is obtained again from a sum of
the currents carried by all occupied energy eigenstates |n〉 of
the Hamiltonian

I (�) =
∑
occ.n

〈n|J n〉. (19)

III. DIRAC FERMIONS IN A CLEAN RING

In this section, we consider the persistent current flowing
in a perfectly clean Dirac ring at zero temperature, using the
two models introduced in previous section. For the continuum
model (also describing the helical edge state of a quantum spin
Hall droplet), it is necessary to use a regularization procedure
to extract the PC carried by the infinite Fermi-Dirac sea.
In the lattice ring, the spectrum is automatically bounded,
and the total energy can be computed directly, without any
regularization procedure. It is shown that the two models lead
to the same persistent current, I (�), over a wide range of
parameters, provided the low-energy spectra coincide. This
was not a priori trivial since on one side, the PC is a
thermodynamical observable, which depends on the whole
spectrum, and, on the other side, the two models have very
different high-energy states.

A. Continuum helical model

It is well known that the Dirac Hamiltonian suffers
from having an infinite number of negative energy states.
Historically, Dirac solved this problem by supposing that all
the negative states are filled, forming the “Dirac sea,” and
proposed the hole picture, which led to the prediction of
antiparticles.40 In the present context of condensed matter
physics, the negative energy states are the occupied states
of the valence band and the “antiparticle” states correspond
to hole quasiparticles. The spectrum is bounded, the Dirac
Hamiltonian being a low-energy approximation near the Dirac
point. Nevertheless it would be interesting to extract the
exact persistent current using only the linearized low-energy
effective Dirac Hamiltonian. This can be done using an
ultraviolet regularization, where the energy states deep in the
Dirac sea have an exponentially small contribution to the
physical properties of the system. The next section follows
closely Refs. 25 and 26 in obtaining a regularized total energy.

Let us perform here a grand-canonical calculation with the
Fermi energy fixed at EF = 0. One defines the total regularized
charges for right- (+) and left- (−) movers as

Q± =
N±

ϕ∑
n=∓∞

eεE±
n /h̄ω, (20)

where N+
ϕ (N−

ϕ ) is the index of the highest occupied energy
level for right-moving, spin-up state (left-moving, spin-down
state). The constant ε is an infinitesimally small, positive, real
number. Note that for ε = 0, Q± counts the (infinite) number
of spin-up (+) and, respectively, spin-down (−) occupied
energy states. For finite ε, these series are made convergent,
because energy states below the cutoff �ε = −h̄ω/ε are
exponentially suppressed.

Owing to the flux periodicity, it is sufficient to consider the
reduced flux, �/�0, in the interval between 0 and 1. As shown
in Fig. 4, the occupied spin-up states are labeled by orbital
indices ranging from n = −∞ to n = N+

ϕ = −1, while the
occupied spin-down states are labeled from n = N−

ϕ = 0 to
n = ∞. As a result, the geometric sums in Eq. (20) read

Q+ =
−1∑

n=−∞
eεE+

n /h̄ω = eε(�/�0−1)

1 − e−ε
(21)
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and

Q− =
∞∑

n=0

eεE−
n /h̄ω = e−ε�/�0

1 − e−ε
. (22)

The power expansion in small parameter ε reads

Q± = 1

ε
±

(
�

�0
− 1

2

)
+ ε

2

(
�2

�2
0

− �

�0
+ 1

6

)
+ O(ε2).

(23)

This procedure has singled out an infinite contribution (1/ε)
to the charges from a finite and flux-dependent contribution.
The next step in the regularization procedure aims to cancel the
flux-independent infinities. From a physical point of view, the
total electric charge of ground state must be zero. This leads us
to introduce the total regularized charge Qreg = Q+ + Q− −
2/ε, which reads

Qreg = ε

(
�2

�2
0

− �

�0
+ 1

6

)
+ O(ε2). (24)

Note that in the limit ε → 0, one recovers the expected
physical result: Qreg = 0. The total regularized energy, E(�),
is obtained from the formal sums in Eq. (20),

E(�) = lim
ε→0

h̄ω
∂Qreg

∂ε
. (25)

Therefore the total energy in the flux interval �/�0 ∈ (0,1)
explicitly reads

E(�) = h̄ω

[(
�

�0
− 1

2

)2

− 1

12

]
. (26)

Owing to the �0 periodicity, this result can be immediately
extended to arbitrary noninteger flux �/�0:

E(�) = h̄ω

[(
�

�0
− 1

2
−

⌊
�

�0
− 1

2

⌉)2

− 1

12

]
, (27)

where �x� denotes the rounding of real x to the nearest integer
(see Fig. 5).

The total energy can be Fourier analyzed as

E(�) = h̄ω

π2

∞∑
m=1

1

m2
cos

(
2πm

�

�0

)
. (28)

The flux-independent constant h̄ω/12 could have been easily
thrown away in the regularization procedure together with the
infinite flux-independent term 1/ε. It was conveniently kept
to cancel the flux-independent constant, m = 0 term, in the
Fourier expansion for the energy.

Even if the spin-up and spin-down electrons have a
dispersion linear in the magnetic flux, the regularization has
determined a quadratic total energy between any two integer
values of the flux �/�0. Also notice that the final result is a
�0-periodic function in magnetic flux, reminiscent of the total
energy in the case for nonrelativistic fermions.9,10

The persistent current at zero temperature is determined
from the energy-flux characteristic from Eqs. (27) and (28).

0.0

0.1

0.2

0.3

0.4

0.5

E
/h̄

ω

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Φ/Φ0

Ereg

ΔE
Ireg/I0
I/I0

-1

0

1

I
/
I 0

-0.5 0.0 0.5

Φ/Φ0

FIG. 5. (Color online) The regularized ground-state energy of the
ring as a function of the magnetic flux, �/�0, from Eq. (27). The
regularized energy follows perfectly the variation in the total energy
obtained numerically in the lattice model (4); 
E(�) = E(�) −
Emin − h̄ω/12 (in units of h̄ω) is represented by red open circles. In
the inset is represented the dimensionless persistent current I/I0 as a
function of flux. The analytical result matches exactly the numerical
calculation. The parameters are h̄ω = hvF /L and I0 = evF /L, where
vF is the Fermi velocity and L = 300 the circumference of the
wire.

The PC-flux relation has a sawtooth shape (inset of Fig. 5),
which is identical to the I (�) curve for nonrelativistic
fermions.3,9 The current reads

I (�) = −∂E

∂�
= 2I0

π

∞∑
m=1

1

m
sin

(
2πm

�

�0

)
,

(29)
I (�)

2I0
= 1

2
− �

�0
−

⌊
1

2
− �

�0

⌉
,

where I0 = evF /L is the maximal current carried by one spin
eigenenergy.

The current presents discontinuities (cusps in the total
energy) at integer reduced fluxes �/�0. This can be un-
derstood by noticing that the states at E = 0 are doubly
degenerate. Upon an infinitesimal increase of the flux, the spin-
down state becomes occupied and the spin-up state becomes
empty. In contrast, an infinitesimal decrease of the flux reverses
the situation. Hence increasing the flux infinitesimally from
�/�0 = 0 has a net effect of replacing a spin-up by a
spin-down state, thereby yielding a positive (paramagnetic)
jump of 2I0 in the current, because a spin-up (respectively
spin-down) level carries a current −I0 (respectively +I0).

B. Creutz lattice model

For electrons on a lattice, the fact that the Brillouin zone
(BZ) is a compact manifold forces the linear dispersion to bend
in such a way to satisfy periodicity in the BZ. This generates
automatically a finite bandwidth and the regularization is
automatic. The presence of a lattice also allows us to
count electrons in occupied levels and therefore to discuss
even/odd parity effects. Here we provide for the reader who
might (legitimately) feel suspicious about the regularization

205401-6
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-1.0
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0.5

1.0

I
/I
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-1.0 -0.5 0.0 0.5 1.0

Φ/Φ0

N = 300
N = 299

FIG. 6. (Color online) Parity effects due to the variation in the
number of fermions from half filling. For a L = 300 site ring,
removing an odd number of fermions fermion has the effect to produce
a shift in the PC-flux characteristic. Compare the half-filling PC,
occupied states N = 300 (represented by blue triangles), with an odd
number of fermions, N = 299 (in red circles).

procedure a comparison between the regularization result and
the well-defined total energy of the lattice system.

1. Continuum-lattice comparison

The regularized model only captures the variation in the
total energy of the ring as a function of the flux. But the total
energy in the regularized model Eq. (27) cannot be directly
compared with the results in the lattice. The analytical result
gives the variation of the total energy and not a constant,
flux-independent, background energy. Thus it manages to
correctly predict the persistent charge currents. The regularized
energies and currents reproduce perfectly the numerical result
(see Figs. 5 and 6). From simulations, the variation in the total
energy 
E(�) is defined as


E(�) = E(�) − Emin − h̄ω/12, (30)

where E(�) is the total energy and Emin is the minimum
value of total energy as a function of flux. In the present
model, the energy is minimum at half-integer flux �/�0.
The comparison with the regularized result requires finally the
subtraction of the flux-independent constant −h̄ω/12, which
is of no consequence for the PC.

The essential feature of the total energy is its parabolic flux
dependence between two integer fluxes �/�0. This explains
why the PC in the Dirac clean system has a sawtooth flux
dependence as in the more familiar cases1,2 of nonrelativistic
fermions with quadratic dispersion (inset of Fig. 5).

2. Parity effects

Until now, the focus has been on the models at half filling. It
is interesting to discuss parity effects due to removal (addition)
of an even/odd number of electrons from the system. From a
comparison between the lattice total energy and the regularized
total energy, it is possible to infer that the half-filled case
(μ = 0) corresponds to a band with an even number of states
filled.

In the continuum system such effects are readily under-
stood. For example, removing an electron of any spin decreases
the total energy by h̄ω/2. Let us study again the evolution
of level in the magnetic flux, in Fig. 4, with �/�0 ∈ (0,1).
The removal of one electron moves the Fermi energy to
μ = −h̄ω/2. Consequently the spin-degenerate Fermi energy
states are placed at half-integer flux instead of integer flux.
Relabeling the states allows one to recover the half-filled
case, with the essential change that the energy- and PC-flux
characteristics have been shifted by half-flux quantum.

Owing to spectrum periodicity as a function of the flux, a
removal or addition of an even number of electrons recovers
the half-filled case. In contrast, a removal or addition of an
odd number of electrons from half filling amounts to a shift
of the flux by half-flux quantum. In terms of wave functions,
this behavior is equivalent to changing from periodic boundary
conditions to antiperiodic boundary conditions.

Parity effects are equally present in the lattice. Changing
the chemical potential by removing one electron produces the
predicted shift in the PC-flux characteristic (Fig. 6).

3. Crossover from one to two Dirac points

A remarkable feature of the model is the presence of two
Dirac fermions for a particular choice of parameters (m = g =
0). In this case there will be an equal contribution to the PC
from both cones. This leads to a doubling in the amplitude of
the current.

By increasing m = g, one of the Dirac points becomes
gapped. The contribution to the PC from this gapped Dirac
branch is exponentially suppressed.27 The amplitude will
decrease with the system size and the amplitude of the gap.

In the present case, let us gap the cone at k = π (see Fig. 3).
The gap at this point reads 
π = 2|m + g|. On the lattice,
any effects from the crossover will be seen at a scale where

π ∼ 1/L. Therefore, if the gap at k = π becomes larger
than 1/L, the maximal amplitude of the PC will seem to jump
directly from 2I0 in the two Dirac case to I0 for a single
Dirac cone. This effect is very difficult to observe for large
rings, because as soon as m = g is finite, a tiny gap is opened
and the current amplitude is immediately halved. A crossover
between the two cases due to this subtle finite-size effect is
presented in Fig. 7 for a small ring L = 20a. In the crossover
region, where the current interpolates between the curves for
one and two Dirac points, the gapped Dirac points still carries
a finite contribution to the PC.

4. Comparison with Josephson junctions

In this paper, we investigate the persistent current in purely
normal (nonsuperconducting) rings pierced by a magnetic flux.
Nevertheless, we would like to stress here a specific analogy
between the PC in normal rings and the DC supercurrent
in Josephson junctions (JJs). Let us consider a JJ consisting
of a single narrow ballistic channel (of length dN ) contacted
between two superconducting electrodes, whose phases differ
by χ . Below the gap, (ε < 
0), the discrete phase-dependent
Andreev levels εn(χ ) are trapped in the normal region, while
extended excitations form a continuum above the gap. In long
junctions, i.e., for dN � h̄vF /
0, the low-energy Andreev
levels (εn(χ ) � 
0) and the total supercurrent IJ (χ ) are
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FIG. 7. (Color online) Current-flux characteristic in the crossover
region, from two Dirac cones to single Dirac cone. When removing
the cone at k = π , with a gap 4m, the PC drops suddenly to the single
Dirac cone PC for m ∼ 1/L. The crossover is seen more easily in
small systems (here L = 20 sites).

piecewise linear in the phase χ .41,42 Moreover, the total DC
supercurrent, which is carried by all the phase-dependent
energy levels (below and above 
0) can be evaluated from
the knowledge of the zero-energy (Fermi-level) Andreev
scattering.43 In particular, this implies that the sawtooth
shape of IJ (χ ) is completely insensitive to the details of the
high-energy level flux dependence.

Therefore the Andreev spectrum of long SNS junctions is
very similar to the flux-dependent spectrum of the electronic
states in the normal ring (Fig. 4). In the continuum model, the
electronic levels evolve linearly in flux at all energies. This is
similar to the limit 
/ε → ∞ in the SNS junction case. In
the Creutz lattice model, we have checked that the sawtooth
current-flux relation holds, and it is insensitive to the details of
the high-energy spectrum (where the levels no longer evolve
linearly in flux). Nevertheless in Sec. III B3 (Fig. 7), we have
followed the current-phase relation of the normal ring when
the band structure is continuously modified from a single to
two Dirac points. Apart from the trivial factor 2, there are
indeed observable deviations from the sawtooth I (φ), but only
when the spectrum is nonlinear near the Fermi level, which
would correspond, in the SNS junction analogy, to the short
junction limit.

IV. RING WITH A SINGLE IMPURITY

This section investigates the effect of a single impurity
on the persistent current flowing in Dirac rings. First is
discussed the case of a spin-independent impurity potential
(scalar impurity) proportional to the identity matrix in spin
space σ0 (Sec. IV A). Second, we consider a magnetic impurity
that flips the spin via a potential proportional to the σ1 matrix
(Sec. IV B). A magnetic impurity, that breaks time-reversal
symmetry, is in general more harmful to the persistent current
than a scalar nonmagnetic impurity. For both types of impurity,
we compare in detail the helical continuum model and the
lattice model. For the helical continuum model, the current-
flux relation I (�) is obtained analytically, and its agreement
with the lattice model is discussed.

A. Scalar impurity

Here we consider a ring with a single scalar impurity acting
through a potential proportional to the identity matrix in spin
space σ0. We show that such perturbation has rather different
effects in the continuum helical model and in the lattice model.

1. Continuum helical model

Let us examine the Hamiltonian in Eq. (1), supplemented by
a potential term, U (θ )σ0, which affects identically the spin-up
and spin-down states:

H = h̄ω(−i∂θ + �/�0)σ3 + U (θ )σ0. (31)

This Hamiltonian remains spin-diagonal, which means that
the spin-up and spin-down channels are still decoupled in the
presence of the impurity. The impurity potential only produces
phase shifts for right-moving (spin-up) and for left-moving
(spin-down) carriers without inducing backscattering between
the two types of chiral particles. Therefore components ψ+ and
ψ− of the spinor wave function obey decoupled equations:[

± h̄ω

(
−i∂θ + �

�0

)
+ U (θ )

]
ψ± = Eψ±. (32)

To be more definite, let us choose a sharp barrier model for the
potential:

U (θ ) =
{
U, θ ∈ [0,α),
0, θ ∈ [α,2π ),

(33)

where α fixes the angular extension of the potential. By
imposing periodic boundary conditions, ψ±(2π ) = ψ±(0),
one finds the energy eigenvalues

E±
n = ±h̄ω(n + �/�0) + Uα

2π
. (34)

Let us now consider the limiting case of a delta-function
potential, namely U (θ ) = U0δ(θ ), which corresponds to U →
∞ and α → 0, while keeping Uα fixed. This limit must be
treated with care, because the equations for chiral fermions
Eq. (32) may yield a different scattering phase depending on
the regularization scheme.44 Both the spectrum energy cutoff,
�ε , and the impurity barrier height, ∼1/α, are sent to infinity,
and the result depends on which limit is taken first. For the
helical continuum model, we work in the infinite-bandwidth
approximation: the energy bandwidth is implicitly infinite, and
the limit 1/α → ∞ is taken last.

In this infinite-bandwidth approximation, the spectrum of
the continuum model ring with a delta scatterer is

E±
n = ±h̄ω(n + �/�0) + U0

2π
, (35)

where U (θ ) = U0δ(θ ). The potential strength U0 does not
depend on the flux and enters as an additive quantity to the
energy. As can be seen from Eq. (35), the scalar impurity is
just shifting the spectrum by a global constant with respect to
the clean-ring spectrum from Eq. (3). In particular, at external
fluxes �, proportional to an integer (or half-integer) multiple
of the flux quantum �0, the energy level crossings of the clean
spectrum (Fig. 4) are preserved. This is a manifestation of the
absence of backscattering in the helical liquid described by the
model in Eq. (1). The helical model in Eq. (1) is time-reversal
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invariant at these values of the flux, and the scalar impurity
does not break TRS.

In conclusion, within the helical model, the persistent
current-flux relation I (�) is unaffected by a scalar (nonmag-
netic) impurity, U0δ(θ ). All the energy levels are simply shifted
by a common energy offset, U0

2π
.

2. Creutz lattice model

Now let us turn to the Creutz lattice model in presence of
a single scalar impurity. The scalar scatterer is modeled by
adding to Eq. (4) an on-site spin-independent energy Us

0 ,

Hs = HCreutz + Us
0c

†
J σ0cJ , (36)

located at an arbitrary site J . If the impurity strength is small
with respect to the bandwidth, the mapping between the lattice
impurity strength and the continuum model has the simple
form

U0

h̄ω
= Us

0

t
. (37)

In the continuum model, the impurity strength U0 is expressed
in units of energy level spacing at the Dirac point, h̄ω, and,
on the lattice, Us

0 , in units of hopping strength t . For large
potential strength, one needs to renormalize the potential in
the continuum model (Sec. IV B2).

Several spectra, obtained from the numerical diagonaliza-
tion of Hs , are shown in Fig. 8 for different scalar impurity
strengths. The striking feature is the opening of gaps at integer
and half-integer fluxes, �/�0 (see Fig. 8). This is at odds with
the above result in the continuum helical model, in which a
scalar impurity was unable to remove the Kramers degeneracy
between levels at these fluxes.
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FIG. 8. (Color online) Energy-flux dependence in the Creutz
model (4) with a single scalar potential Us

0 . In contrast to the
continuum results, the time-reversal-symmetry breaking in the lattice
opens up gaps in the spectrum at (half-)integer reduced flux �/�0.
The model parameters are L = 300a and m = g = t in units where
t = 1.

The explanation is that the helical model respects time-
reversal invariance represented by T (with T 2 = −1) at those
fluxes, whereas the Creutz model breaks TRS, and has only
a pseudo-time-reversal invariance, T̄ (with T̄ 2 = 1). The
microscopic spin-mixing terms of the Creutz model break
time-reversal symmetry, T (even when the external flux is
a multiple of the flux quantum �0), and spoil the Kramers
protection, even against scalar disorder.

Nevertheless, the presence of the pseudo-time-reversal
symmetry (PTRS) has some consequences at (half-)integer
flux.45 Indeed, if |n〉 is a nondegenerate energy eigenstate, then
one can define the real eigenenergy state |n′〉 = |n〉 + T̄ |n〉 as
a T̄ eigenstate with +1 eigenvalue. Therefore

〈n′|J n′〉 = 〈n′T̄ |J T̄ n′〉 = −〈n′|J n′〉 = 0, (38)

where the second equality follows from the fact that the
current operatorJ from Eq. (18) anticommutes with the PTRS
operator at (half-)integer flux. Finally, each nondegenerate
individual level carries a vanishing current at � = n�0/2
(with n an arbitrary integer). This results in a smoothing of the
clean case discontinuities in the I (�) curve, even at T = 0,
and in a decrease of the maximal PC.

The only eigenstates that may carry current at zero flux
are the degenerate states. From the numerical simulations and
analytical approximations at � = 0, it follows that a doublet
of degenerate states exists at energy

Ed = Us
0 t

m
. (39)

This energy corresponds to a resonant state in the band.
Note that this energy is usually rather high in terms of
typical level spacings h̄ω. For instance, with the parameters
of Fig. 8, namely t = m, this degenerate doublet would appear
at Ed/h̄ω = Us

0/h̄ω = (Us
0/t)(R/a), where the factor R/a is

usually large for realistic rings.
In conclusion, a scalar impurity can bring a sizable decrease

in the persistent current in the Creutz lattice model in contrast
to the helical continuum model. However, this decrease
remains smaller than the decrease induced by a magnetic
impurity as described below.

B. Magnetic impurity

Here we consider a ring with a single magnetic impurity
acting as a local Zeeman coupling proportional to the Pauli
matrix σ1. Since time-reversal T flips all the components of
the spin, a potential proportional to any Pauli matrix will break
time-reversal symmetry. Nevertheless, for the helical model, a
potential proportional to σ3 is expected to be less harmful to the
PC than potentials proportional to σ1 or σ2. This is because σ3

defines the quantization axis of the helical liquid, and Zeeman
perturbations along this axis leave the system gapless.46

1. Continuum helical model

Ring spectrum. Since it breaks TRS, a magnetic potential
can lead to backscattering processes and to the opening of
gaps in the flux-dependent energy spectrum. This leads to
a suppression of the persistent current with respect to the
clean case. Let us consider the Hamiltonian Eq. (1), plus a

205401-9
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spin-mixing barrier U (θ )σ1,

H = h̄ω(−i∂θ + �/�0)σ3 + U (θ )σ1, (40)

where the potential U (θ ) has the rectangular shape defined in
Eq. (33).

The eigenvalue problem H�(θ ) = E�(θ ) for the wave
function �(θ ) reads

∂�

∂θ
=

(
iEσ3 + Uσ2

h̄ω
− i

�

�0
σ0

)
�, (41)

which can be solved in the transfer matrix formalism. The
transfer matrices read respectively

T (0,α) = exp

[(
iEσ3 + Uσ2

h̄ω
− i

�

�0
σ0

)
α

]
, (42)

in the region with a finite potential, and

T (α,2π ) = exp

[
i

(
E

h̄ω
σ3 − �

�0
σ0

)
(2π − α)

]
, (43)

in the region of vanishing potential, U (θ ) = 0. Then the energy
quantization condition follows from the fact that the wave
function comes back to itself after a circuit around the ring:

det[T (α,2π )T (0,α) − 1] = 0. (44)

This secular equation determines the eigenenergies in the
system. Let us further simplify the problem by considering a
Dirac-delta magnetic potential, U (θ ) = U0δ(θ ). The strength
of the delta potential is denoted by U0. This change implies
that the angular the angular width becomes infinitesimally
small, α → 0, while

∫
dθU (θ ) = U0. It is important to note

that in this limiting procedure, we are implicitly working in
the infinite-bandwidth approximation, which is appropriate
for potentials smaller or on the order of h̄ω. As the impurity
strength is ramped up to infinity, the transfer matrix over
the impurity becomes ill-defined.44 In the infinite-bandwidth
approximation, the quantization condition is determined by
the equation

cos

(
2πE

h̄ω

)
cosh

(
U0

h̄ω

)
= cos

(
2π

�

�0

)
. (45)

Then it follows from the quantization condition that the band
energies read

E±
n = h̄ω(n ± ϕ(�)), (46)

where n is an integer and ϕ(�) is an effective phase defined
by

ϕ(�) = 1

2π
arccos

[
cos(2π�/�0)

cosh(U0/h̄ω)

]
. (47)

Each individual level is �0-periodic in flux and it is labeled
by a pair of indices (n,λ = ±) (n an integer). In contrast, the
levels in the clean ring were linear in flux Eq. (3). With the
addition of the magnetic potential, the σ3 spin is no longer
a good quantum number. Consequently, the index λ for the
eigenenergies no longer describes spin-up and down states.

In the clean systems, there were spin-degenerate states at
integer and half-integer flux. In contrast, the magnetic impurity
couples the spins and opens up gaps at these values. Figure 9
illustrates the energy-flux dependence from Eq. (46) at some
small magnetic impurity potentials. Increasing the strength of

-2

-1

0

1

2

E
/h̄

ω

-0.5 0.0 0.5

Magnetic flux Φ/Φ0

U0/h̄ω = 0.2
U0/h̄ω = 0.8
Um

0 /t = 0.2
Um

0 /t = 0.8

FIG. 9. (Color online) Energy levels as a function of the magnetic
flux for a single magnetic Dirac-delta impurity potential of strength
U0. The straight lines correspond to the analytical result (46), while
the markers correspond to exact diagonalization of the Creutz model
(4) for an L = 300a system. The analytical result matches the
numerics for small impurity strength. The two results begin to deviate
when U0 is on the order of h̄ω. Increasing the magnetic potential U

(m)
0

leads to a flattening of the bands. On the lattice, h̄ω = 2πta/L,
m = g = t in units where t = 1 and lattice spacing a = 1.

the impurity potential leads to an increase of the gaps, and to a
flattening of the energy levels as a function of flux. Therefore
the current carried by each level decreases, and consequently
the overall persistent current is also expected to be suppressed.

Persistent current. In order to obtain a quantitative expres-
sion for the reduction to the PC within the helical model, one
needs to take into account the contribution from an infinite
number of states. As for the clean ring (Sec. III A), this
requires us to use a regularization scheme to extract physical
information. Here we use a gauge-invariant regularization of
the current itself.27 The PC at half filling is determined by
adding all the individual currents carried by levels below the
Fermi surface:

I |μ=0 = lim
ε→0

(
n=−1∑
n=−∞

i+n eεE+
n /h̄ω +

n=0∑
n=−∞

i−n eεE−
n /h̄ω

)
, (48)

where the flux dependencies I (�) and E±
n (�) have been omit-

ted, and where an energy cutoff ensures that the contribution
from deep energy states is exponentially small. The current
per energy level is iλn = −∂Eλ

n/∂�,

i±n (�) = ∓ I0 sin(2π�/�0)√
cosh2(U0/h̄ω) − cos2(2π�/�0)

. (49)

The PC at half filling is found after carrying the geometric
sums in Eq. (48),

I (�)|μ=0 = i−0
π

arccos

[
−cos(2π�/�0)

cosh(U0/h̄ω)

]
. (50)
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Effect of electronic filling. Equivalently, the Fermi energy
can be moved at half-integer values (μ/h̄ω = 2N + 1/2), and
the PC is computed in a similar fashion. In this operation, one
essentially removes or adds an odd number of fermions in the
the system. Therefore it is not surprising that the current-flux
characteristic is shifted by half-flux quantum. For example,
to obtain the PC when the Fermi energy moves from the gap
at zero energy to the next spectral gap at μ/h̄ω = 1/2, it is
necessary to add the contribution of one more current, i+0 , to
the result in Eq. (50).

The general formula for the regularized PC in the presence
of a single magnetic scatterer, as a function of the gap which
hosts the chemical potential, reads

I (�)|μ= Nh̄ω
2

= I0 sin(2π�/�0)√
cosh2(U0/h̄ω) − cos2(2π�/�0)

×
[

(−1)N

2
+ 1

π
arcsin

(
cos 2π�

�0

cosh U0
h̄ω

)]
. (51)

The result clearly indicates that varying the chemical potential
by h̄ω/2 (with μ in the gaps opened by the magnetic impurity)
leads to a shift by �0/2 in the PC-flux characteristic. This
“parity” effect is represented in Fig. 10 for different impurity
strengths. Finally, this result clearly identifies two conse-
quences due to an increasing Dirac-delta magnetic impurity
potential: first, a decrease in the amplitude of the current,
and second, the destruction of higher harmonics of the signal,
which tends to become a simple sine function.

Interpretation. The decay law of the current as a function
of the impurity can be obtained in a heuristic way. As the
impurity strength increases, the flux-dependent energy levels
become very flat at (half-)integer flux, and the electron velocity
decreases. The maximal amplitude of the current will then be

− 0 .5 0 0 .5

Φ/Φ0

− 1 .0

− 0 .5

0 .0

0 .5

1 .0

I
/I
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U0
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U0
h̄ω = 0.4

U0
h̄ω = 0.8

U0
h̄ω = 1.2

FIG. 10. (Color online) Regularized persistent current as a func-
tion of magnetic flux in the presence of four different strengths U0

for the delta-type magnetic impurity. The blue curves represent cases
when the Fermi energy is placed in the gaps at energy μ = 0 (modulo
h̄ω), while the red curves, for μ = h̄ω/2 (modulo h̄ω) [see Eq. (51)].
Parity effects are obtained by varying the Fermi energy. Increasing the
impurity strength leads to exponential suppression in the amplitude
for current oscillations as a function of the flux. The unit of current
is I0 = evF /L.

given by the point where the velocity is the largest, which is
�/�0 = 1/4. The maximal amplitude of the current does not
depend on the parity, so one can fix N = 0. Then at �/�0 =
1/4, an expansion of Eq. (51) in large potential U0 yields the
amplitude of the current:

Imax ∼ e−L/ξ , ξ = hvF

U0
, (52)

where we have defined a characteristic length ξ related to the
strength U0 of the magnetic impurity. The current amplitude
decays exponentially with the the size of the system and
the impurity strength. This type of behavior is similar to the
one found clean ring with massive Dirac fermions,27 where
the typical length was the inverse of the mass of the Dirac
fermions.

2. Creutz lattice model

The addition of a magnetic scatterer modifies the lattice
Hamiltonian (4) by having an on-site spin coupling at some
arbitrary site J . The new Hamiltonian, Hm, reads

Hm = HCreutz + Um
0 c

†
J σ1cJ , (53)

where Um
0 is the strength of magnetic delta potential. The

numerical results are for an L = 300 site system. The energies
are represented in Fig. 9 in units of h̄ω = 2πta/L. When the
impurity strength is larger than the distance between levels,
any effects due to the discrete nature of the system are washed
out, Um

0 > 2π/L. For large enough systems this condition
is always true, and the eigenenergies after scaling with h̄ω

coincide for different large system sizes.
To compare the analytical results with the numerical

simulation, it is necessary to provide the mapping between
related quantities. In the analytical case the strength of the
impurity is expressed in units of h̄ω = hvF /L. When the
system is discretized, the characteristic energy h̄ω expressed
in terms of lattice parameters reads 2πta/L, where a is the
lattice constant and t the hopping strength. Equivalents for the
quantities of interest—Dirac-delta impurity strengths U0 and
eigenvalue energies E—are obtained similarly:

h̄ω → 2πt
a

L
,

U0

h̄ω
→ Um

0

t
,

E

h̄ω
→ L

2πa

E

t
, (54)

where in the simulation, the hopping strength and lattice
constant are t = 1 and a = 1.

As mentioned in Sec. IV A, this simple mapping of the
impurity strength between the lattice and continuum model is
appropriate in the approximation of infinite bandwidth or for
small impurity strength. This implies that for, e.g., U0 < h̄ω

(continuum model) and Um
0 < t (lattice model), the numerical

results match perfectly the analytical results in Eq. (46).
However, at larger values, for Um

0 comparable to t , there
are deviations from the analytical result. This approximation
remains accurate for small impurity values, and becomes less
and less reliable when U0 becomes on the order of h̄ω or larger
(see Fig. 9).

Similarly one can compare the persistent currents at half
filling Eq. (50) obtained by regularizing the infinite Dirac sea
pertaining to the helical model in Eq. (40) with a magnetic
Dirac-delta impurity (see Fig. 11). At small disorder potential
the match is perfect and, as explained above, becomes less and
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FIG. 11. (Color online) Current-flux characteristic for three
magnetic potentials Um

0 at half filling. The comparison is between
the regularized current (50) (represented by lines) for a magnetic
Dirac-delta potential in the continuum model of Eq. (40), and the
numerical results (represented by colored markers) for Creutz model
with a single-site potential, Eq. (53). Following the mapping (54),
U0 is in units of h̄ω in the continuum model and in units of t on the
lattice. The analytical results overestimate the impact of the impurity
when Um

0 strength becomes comparable to the bandwidth t .

less reliable when the impurity strength in the lattice model
approaches t . The analytical results tend to overestimate the
impact of a strong single impurity in the system.

For larger impurity strengths, the continuum model impu-
rity strengths needs to be replaced by an effective strength,
to recover the lattice results. This is done in the following
by considering U0 in the PC expression, Eq. (51), as a fitting
parameter. The result of the fitting procedure is illustrated in
Fig. 12.

The effective continuum potential depends on the lattice
potential in an universal way: it does not depend on the

0.0

0.3

0.6

0.9

1.2

U
0
/h̄

ω

0.0 0.5 1.0 1.5 2.0

Um
0 /t

infinite bandwidth approx.
Ueff

0

FIG. 12. (Color online) Impurity strength in the continuum
model, U0 (in units of energy-level spacing at the Dirac point), as
a function of the strength of the single-site magnetic potential on the
lattice, Um

0 (in units of hopping strength t). The red dashed line is the
mapping suggested in the infinite-bandwidth approximation, which
is valid at small impurity strength. U eff

0 is the effective potential in the
continuum model, which would reproduce the result on the lattice.
The effective potential is described by an universal curve which does
not depend on the variation of the m = g parameter.

parameter m = g or on the lattice size L. Using the effective
potential obtained at zero temperature, it will be possible in
Sec. V to recover a perfect match between the lattice and
continuum results even at nonzero temperature.

C. Conclusion

The results of this section are the following. First, in the
case of a single magnetic impurity, both the continuum model
and the lattice model are well understood from the fact that
backscattering leads to opening of spectral gaps and to a
suppression of the persistent current. The analytical formula
for the decrease in the persistent current fits well the lattice
simulations for small impurity strengths. At large impurity
potential, we have numerically obtained the effective potential
necessary to match the lattice and continuum models. The
renormalized continuum potential does not depend on lattice
or parameter m = g variation (or on temperature; see Sec. V).

Second, the consideration of a scalar impurity has revealed
that the persistent current in the lattice model equally leads to
a decrease in the persistent current. The lack of TRS in the
lattice model allows opening spectral gaps at (half-)integer
flux. Combined with the symmetry constraints of the PTRS,
this leads to zero current at these values of the flux. Then the
impurity has smoothed the current discontinuities, and the PC
will exponentially decay with the impurity strength.

V. TEMPERATURE EFFECTS

Finite temperature suppresses the phase coherence of the
electronic wave functions. This in turn implies that quantum
interference effects such as the Aharonov-Bohm phase and
the persistent currents are suppressed when temperature is
increased. In the context of quantum rings with nonrelativistic
fermions, the decay of persistent currents under temperature
was first studied in Refs. 9 and 47. Moreover, PC fluctuations
can survive at (relative) higher temperatures, even for vanish-
ing average PC.48

The present section investigates the temperature depen-
dence of the average persistent current within the two Dirac
models studied in this paper. It considers first the clean-ring
models (Sec. V A), and afterward rings with a single magnetic
impurity (Sec. V B). In both cases, the system is treated in the
grand-canonical ensemble, at fixed chemical potential μ and
temperature T .

For the continuum helical model, the current-flux relation
I (�) is derived analytically using Eq. (9) and the ultraviolet
regularization introduced in Sec. IV B. Numerical lattice
simulations on the Creutz model agree with the analytical
results for the helical Dirac model.

A. Clean ring

At finite temperature, there is a single relevant energy scale
in the clean ring: the energy-level spacing at the Dirac point,
h̄ω = 2πh̄vF /L. This determines a characteristic temperature
T ∗ for metals, which is proportional to the level spacing,9

T ∗ = h̄vF

πkBL
, (55)

where kB is the Boltzmann constant.
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Continuum helical model. Let us first consider the helical
model defined by Eq. (1). Using the general formula Eq. (12)
with the clean ring spectrum Eq. (3), one obtains the persistent
current

I± = lim
ε→0

∑
σ=±

∞∑
n=−∞

f
(
Eσ

n

)
iσn eε[(Eσ

n −μ)/h̄ω], (56)

where ε is a small positive constant used to fix an ultraviolet
energy cutoff. All states below the chemical potential are
suppressed. The function f (x) is the Fermi-Dirac distribution.
The currents carried by each level are iσn = −∂Eσ

n /∂�.
The Fourier expansion of the regularized total PC reads (see

the Appendix)

I (�) =
∞∑

m=1

Im(T ,μ) sin

(
2πm

�

�0

)
, (57)

where the coefficients are given by

Im(T ,μ) = 2I0T

πT ∗
cos

(
2πm

μ

h̄ω

)
sinh(mT/T ∗)

. (58)

Above the characteristic temperature T ∗, the Fourier compo-
nents Im decay exponentially, and the PC-flux characteristic is
very well approximated by the first harmonics in the Fourier
expansion. In contrast, close to zero temperature, there are
PC discontinuities [2I0 jumps for μ = 0 or h̄ω/2 (modulo
h̄ω)] which are approximated only by summing many Fourier
components. Note that in the zero-temperature limit, and at
zero chemical potential, the result in Eq. (29) is recovered,
Im(T = 0,μ = 0) = 2I0/(πm).

The cosine dependence on the chemical potential encom-
passes the parity effects that were studied in the previous
sections. A change by h̄ω/2 in the chemical potential μ is
equivalent to a shift of the flux � by half-flux quantum. The
PC given by Eqs. (57) and (58) is identical to the one obtained
in Ref. 9 for fermions with quadratic dispersion in metallic
rings.

Creutz lattice model. In the lattice model, the PC at finite
temperature is also obtained by using the general formula
Eq. (12) with the spectrum obtained by diagonalization of
the lattice Hamiltonian Eq. (4). The characteristic temperature
T ∗ is given in Eq. (55), with the Fermi velocity h̄vF = ta.
Figure 13 shows that the the current of the analytical model fits
perfectly the Creutz lattice model for a range of temperatures
above and below T ∗.

B. Single magnetic impurity

We now turn to the ring in presence of a single magnetic
impurity, which mixes spins, and open gaps at all the crossings
in the energy-flux spectrum. At finite temperature, the PC is
given by the general formula Eq. (12) used with the spectrum
Eqs. (46) and (47) of the ring in presence of a magnetic
impurity:

I = lim
ε→0

∑
λ=±

∞∑
n=−∞

f
(
Eλ

n

)
iλneε(Eλ

n−μ)/h̄ω, (59)

where λ = ± are the level (not spin) indices introduced in
Sec. IV B. The energy eigenstates Eλ

n (�) are given in Eqs. (46)
and (47), and the level currents iλn (�), in Eq. (49).
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FIG. 13. (Color online) Temperature effects in the lattice (Creutz)
model and the continuum model at zero chemical potential. The
straight line represents analytical expression for the current, summing
the first ten Fourier components of the current given by Eqs. (57) and
(58), and the markers represent numerical simulations in the lattice
(Creutz) model. The ring circumference is L = 300a.

Following the regularization procedure detailed in the
Appendix, it follows readily that the PC is

I = i−0

∞∑
m=1

2T

πT ∗
cos

(
2πm

μ

h̄ω

)
sinh(mT/T ∗)

sin(2πmϕ). (60)

In comparison with the PC in the clean ring case from
Eqs. (57) and (58), the flux �/�0 in the Fourier harmonics
is naturally replaced by the effective phase, ϕ(�), determined
from the scattering of electrons on the magnetic potential (see
Sec. IV B). Also note that instead of the current carried by an
eigenstate in the clean ring near the Dirac point, I0, the formula
contains the current i−0 in one of the energy-flux bands which
were formed by the impurity potential. These two quantities
depend on the strength of the magnetic Dirac-delta impurity,
U0/h̄ω. The expression for i−0 and ϕ(�) are recalled here for
the reader’s convenience:

i−0 (�) = I0 sin(2π�/�0)√
cosh2(U0/h̄ω) − cos2(2π�/�0)

, (61)

ϕ = 1

2π
arccos

[
cos(2π�/�0)

cosh(U0/h̄ω)

]
. (62)

In the limit of zero temperature, and chemical potential μ ∈
{0, h̄ω

2 } (modh̄ω), one recovers the previous result for the PC
in Eq. (51).

The lattice simulations match remarkably the analytical
results for small impurity strength U0, regardless of tem-
perature. Any divergence of numerics from the result in
Eq. (60) is due to the infinite-bandwidth approximation, and
not to temperature effects. As in the case of spinless chiral
fermions,44 the analytical result in the infinite-bandwidth
approximation overestimates the effect of the impurity. To
cure this problem, instead of the simple mapping between the
impurity strength in the continuum model and lattice model,
U0/h̄ω → U0/t , it is better to use an effective potential in
the continuum. This renormalized potential was determined
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FIG. 14. (Color online) Decay of the persistent current under the
combined influence of temperature and magnetic potential U0. The
magnetic impurity strength in the lattice model is measured in units
of t on the lattice and listed in the legend. In the continuum model,
the effective potential is given by the curve in Fig. 12 (in units of
h̄ω). Straight lines represent the analytical prediction from the helical
continuum model (1), and the markers, the exact-diagonalization
results from Creutz model (4). The system size is L = 300a.

before in the zero-temperature case (Fig. 12). The analytical
formula in Eq. (60), supplemented by the effective potential,
can account perfectly for the lattice result. Figure 14 represents
this match between lattice and analytical results at small and
large impurity potential, for temperatures above and below T ∗.
This shows how both temperature and the magnetic potential
conspire to decrease the PC. But most importantly, it shows
that fitting a single quantity, the continuum U0, is enough to
map the lattice and continuum results, independent of system
parameters (arbitrary m = g), system size, or temperature.
This proves the utility of the analytical expression for persistent
currents [Eq. (60)] in the context of Dirac-fermion rings with
a single magnetic impurity.

VI. CONCLUSION

We have considered the persistent currents in two dif-
ferent models of strictly one-dimensional Dirac fermions.
The two models share the same low-energy dispersion, but
they have very different spectra at high energy and different
wave functions, even at low energy. The first model, the
Dirac helical model, is defined on a continuous ring and it
allows us to compute persistent currents analytically, using
an ultraviolet regularization of the unbound negative Dirac
sea. The second model, the Creutz model, is defined on
a lattice and allows well-controlled numerical calculations
of the flux-dependent spectrum, total energy, and persistent
currents.

In the case of a clean ring, the two models lead to the
same persistent current, I (�), which is a piecewise linear
function of magnetic flux � (at zero temperature) with period
�0 = h/e (inset of Fig. 5). This type of current-flux relation
is also exactly the one obtained for nonrelativistic fermions
described by a simple parabolic dispersion relation in one-
dimensional rings.9,10 This shows a remarkable independence
of the persistent current on the details of the band dispersion.

However, on the lattice system it was also possible to tune
between one and two massless Dirac fermions, which results
in a doubling (or halving) of the total amplitude of the
current.

The main part of the paper is devoted to the effect of a single
impurity on the persistent current, I (�), flowing in such Dirac
rings using both continuum and lattice models. The cases of
nonmagnetic and magnetic impurities are contrasted. First,
the effect of a scalar spin-independent impurity is treated
analytically in the continuum helical model. Then adding
a single nonmagnetic impurity cannot create backscattering,
and no effects on the persistent current are predicted within
the ideal helical model. However, the lattice model is more
sensitive to such nonmagnetic impurity because time-reversal
symmetry is broken in the Creutz model. As a consequence,
gaps can occur in the energy-flux spectrum, thereby leading to
a decrease of the persistent current.

Second, it is shown that a magnetic impurity is more
harmful to the persistent current than the nonmagnetic impurity
in both continuum and lattice models. The PC is computed
analytically for a single Dirac-delta magnetic impurity in the
helical Dirac model, both at zero and finite temperature. The
decay of the current due to impurity or temperature effects was
compared to the lattice simulations. The analytical formulas
agree with lattice simulations in the limit of a small impurity
strength compared to the bandwidth. For large impurity
strength, a renormalized continuum potential is necessary to
ensure the match between the two models.

In perspective, it would be of great value to extend the
present study to different geometries including cylinders,
nanowires, and disks of topological insulators hosting various
types of helical edge states. Moreover, extension to cases
with multiple magnetic and nonmagnetic scatterers is wanting.
This direct extension of the present study would uncover the
localization physics of Wilson-Dirac fermions.49 Due to TRS
breaking in the lattice model, one expects that even an on-site
random scalar potential would produce an exponential decay
of the persistent current.
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APPENDIX: PERSISTENT CURRENT IN A CLEAN DIRAC
FERMION RING AT FINITE TEMPERATURE

Let us consider the helical Dirac model represented by
the Hamiltonian in Eq. (1). The persistent current at finite
temperature is a sum over the currents carried by each
eigenstate, weighted by the Fermi-Dirac distribution. The
system contains an infinite number of occupied states. To
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extract meaningful physical results it is necessary to apply
an ultraviolet regularization of the currents.

Then, at arbitrary chemical potential μ, the currents for
spin-up states (+) and spin-down states (−) read

I± =
∞∑

n=−∞

i±n exp[ε(E±
n − μ)/h̄ω]

eβ(E±
n −μ) + 1

, (A1)

where the constant ε is an infinitesimal positive number. The
constant ε ensures an energy cutoff for deep states below the
chemical potential μ. The currents carried by each level are
i±n = −∂E±

n /∂�, with the energy eigenstates E±
n = ±h̄ω(n +

�/�0).
The Poisson summation formula can be used to further

simplify the problem,

∞∑
n=−∞

f (n) =
∞∑

m=−∞

∫ ∞

−∞
dxf (x)e2πimx. (A2)

Let us introduce the variable y = h̄ωβ(x + �/�0) − βμ in
the I+ expression, and y = h̄ωβ(−x − �/�0) − βμ in the
I− expression. Then the currents read

I±

I0
= ∓

∞∑
m=−∞

∫ ∞

−∞
dy

exp
[ (ε±2πim)y

h̄ωβ

]
ey + 1

×
exp

[−2πim
(

�
�0

∓ μ

h̄ω

)]
h̄ωβ

, (A3)

where the current is expressed in units of I0 = h̄ω/�0 =
evF /L. The presence of an infinitesimal positive ε ensures
the convergence of the integral over y. The integrals can be

carried out exactly by contour integration, yielding

I±

I0
= ∓

∞∑
m=−∞

T

2πT ∗ csc

[
T

T ∗

(
ε

2π
± im

)]

× exp

[
−2πim

(
�

�0
∓ μ

h̄ω

)]
, (A4)

where for convenience the following notation was introduced:

T ∗ = h̄ω

2π2kB

= h̄vF

πkBL
. (A5)

The temperature T ∗ is a characteristic temperature for system
and it is determined by the energy level spacing at the Dirac
point in zero flux, h̄ω.

The total current is defined as I = I+ + I−. Expanding in
ε allows one to single out the contribution independent of the
cutoff,

I

I0
=

∞∑
m=1

2T

πT ∗
cos

(
2πm

μ

h̄ω

)
sinh(mT/T ∗)

sin

(
2πm

�

�0

)
+ O(ε). (A6)

The cutoff can now be safely taken to zero to give the physical
result. The above formula is nothing but the Fourier series of
an odd quantity in the flux �. The PC’s Fourier components
Im, in units of the maximal current carried by an eigenstate I0,
read

Im

I0
= 2T

πT ∗
cos

(
2πm

μ

h̄ω

)
sinh(mT/T ∗)

. (A7)

The PC in the Dirac helical model (1) proves to be identical
to the PC expression for electrons with quadratic dispersion in
small metallic rings.9
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B. Büchner, and R. Giraud, Phys. Rev. Lett. 110, 186806 (2013).

31J. H. Bardarson, P. W. Brouwer, and J. E. Moore, Phys. Rev. Lett.
105, 156803 (2010).

32Y. Zhang and A. Vishwanath, Phys. Rev. Lett. 105, 206601 (2010).
33J. H. Bardarson and J. E. Moore, Rep. Prog. Phys. 76, 056501

(2013).
34K.-I. Imura, Y. Yoshimura, Y. Takane, and T. Fukui, Phys. Rev. B

86, 235119 (2012).
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