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Abstract

In this paper is proposed an analysis method for Physical Model networks, based on connectionist
learning algorithms. The first experimental results, obtained on limited cases, are quite encouraging and suggest
some improvements, using the interactivity of Physical Models.

1 Frem synthesis to analysis

Synthesis and analysis form a pair of two
symmetrical processes: while synthesis turns
computer parameters into sound, analysis attemps to
infer, from a sound behaviour, the parameters of the
model in the machine. Given a physically based
sound synthesis system, this paper deals with
analysis techniques that have to be associated with it.

CORDIS [Cadoz er al., 1993] is a physical
description language for music instruments. It has
specificities that generate some constraints in the
corresponding analysis system:

- instead of considering large differential equations
from the instrument to be modeled and then
numerically integrating them, it manipulates a large
number of simple physical automata, which
represent small "pieces of matter”, with which it
“reconstructs” the object. Thus, the music
instrument is represented by a network of punctunal
masses linked together by elastic, viscous and
nonlinear elements of various types (fig. 1).
Therefore, the purpose is to find analysis methods
which can be implemented in a network similar to
the one used in synthesis. Traditional identification
techniques do not provide such a method.
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Figure 1: a CORDIS network

- In order to keep up a central property of
physical objects, any CORDIS unit is
bidirectional: it does not receive any information
(forces for example) without sending other
information (displacements for example). Thus, the
analysis process is not conceived as “information
processing” but as an "interacting process”, in

bidirectional communication with its environment.
Furthermore, this environment not only contains the
instrument to be analysed but also the
instrumentalist himself, since sound behaviour
depends both on the instrumentalist action and the
instrument response. This leads us to the following
interaction diagram (fig. 2):
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Fig. 2: the interacting process of analysis

- CORDIS enables real-time simulation of
physical models ... so has to do the analysis...

Three main characteristics of the physical
models of CORDIS have just been described: the use
of many simple processing units, the bidirectionality
and the real-time capabilities; It turns out that these
tend also to be significant features of many cognitive
models (Artificial Intelligence becomes more and
more Distributed Artificial Intelligence, Multi-agent
or Neural Networks; interactivity and real-time are
main features of Human-Computer Communication,
Knowledge Acquisition and Autonomous Robotics).
In particular, Neural Networks offer learning
algorithms dedicated to the modification of the
parameters of a network according to its
environment,

The "physical models that learn" decribed here
are mechanical networks endowed with the learning
abilities of neural networks. In so far as they interact
with the instrumentalist and the instrument, they
should be able to reproduce the mechanical behaviour
of the instrument.



2 Neural networks

The Neural Networks group together several
kinds of algorithms, implemented in structures
inspired by neurobiological data. A connectionist
(neural) network consists of many simple units
connected with each other. All the acquired
knowledge of the network lies in these connections.
To each of them is assigned a weight, qualifying the
influence of a unit upon the other (fig. 3).
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A network has an activation rule (specifying
the way the outputs are calculated) and a learning rule
(specifying the way the weights are updated), which
are equivalent to synthesis and analysis.

The comparison between the CORDIS
networks and the connectionist networks leads to the
following remarks:

- The two types of networks are very similar.
Thus, the mapping between them will be simple: a
neural unit corresponds to a punctual mass or a
visco-elastic element (fig. 4).
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Figure 4: mapping between neural and CORDIS networks

- In the large spectrum of connectionist
researches, the learning CORDIS networks are
concerned only with a specific class of neural
networks: the supervised recurrent neural networks
with hidden units (thal is networks which have units
that are neither inputs nor outputs, whose
connectivity contains cycles, and which learn how to
reproduce an external signal or behaviour). These
networks process temporal sequences. In this paper,
they will be called dynamic networks.

Here is a brief historic of dynamic networks...
In 1985 was proposed the very famous Back-

Propagation Algorithm for feedforward networks.
Since any recurrent architecture is equivalent to a
feedforward architecture (in a finite time), this
algorithm is easily adaptable for dynamic networks
(it is then called Back-Propagation Through Time, ie
BPTT [William and Peng, 1990]). Unfortunately,
this algorithm needs to store all the temporal historic
of the network, which is quite expensive. Later,
several algorithms were proposed to cope with this
problem but they only concerned limited cases
(learning of a fixed point or special architectures).
Eventually was proposed an algorithm that needs no
storage , which is therefore particularly well suited
for real-time applications (it is called Real-Time
Recurrent Learning, ie RTRL [William and Zipser,
1989]). Since 1989, several improvements have been
studied, but nothing quite new has been found. The
major drawbacks of the RTRL algorithm are its
nonlocality and its large amount of storage (spatial
storage). Nevertheless, this is the one used in this
paper because of its real-time capabilities.

3 The Algorithms

Although Neural Networks are able to deal
with nonlinear processing units, the present study is
limited to linear vibrating structures. Furthermore,
only non-dissipative structures are studied here.

The synthesis formulas are established by
discretising the laws of mechanics:

- a punctual mass is an automaton receiving
forces and yielding one position, according to the
fundamental principle of dynamics:

X{(n) = 2X(n-1) - X @-2) + -3 Fym) (1)
T

where Xj(n) is the position of the
mass i at time n, Fji(n) the force
applied to the mass i by the spring
located between the masses i and j,
and mj the value of the mass i;

- the link element is an automaton receiving two
positions and yielding two opposite forces, obeying
the law of springs:

Fij(ﬂ) = klj(X i(n)- Xj(n)) = "FJ 1(I‘l) (2)
where kijj is the stiffness of the
spring between the masses i and j.

Suppose that the desired behaviour Xd;(n) of
one of the masses in the network, be known. This
mass is called the access point.

Then define the error Ego¢ between the actual
signal and the desired signal by:

N
Eioc= 2, E®) - En) = [Xy(n) - Xdl(n)]2 3)
n=1

where N is the total length of the simulation.



The purpose of the learning algorithm is to
adapt the parameters (masses or stiffnesses) in order
to minimise Etgt. First has to be studied the
minimisation of E(n). As for the classical Back-
Propagation algorithm, this minimisation is
achieved by a steepest gradient descent: the error is a
function of the parameters, which can be represented
by a surface in a multidimensional space (fig. 5); the
current error (with the current parameters) is a point
on this surface; the principle of the algorithm is to
move this point to a local minimum of the surface,
by following the direction in which the slope is the
steepest, that is the gradient of the error;
consequently, the parameters are modified according
to:

—

Ap = p(n) - p(n-1) = - VE(n) @)

where o is the learning rate (when  is too
small, the convergence is slow, but when « is too
great, one can skip over the minimum).
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Figure 5: gradient descent

In the case of CORDIS networks, this leads
to the definition of four signals:
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By differentiating the equations (1) and (2)
with respect to the parameters, one obtains:

* $ln+1) = 28¥m) - shn-1)
1 1j
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* pij(n)= khl(ij(n) - Gi_;(n))
+ 855, qn(Xim) - X{m)

where 8 is the kronecker symbol.

By applying (4) to (3), one obtains the
learning rules:

Al/mi(n) =-20(X (n) - Xdl(n))Si(n)

1
AkiJ(n) = —20£(X I(l’l) - Xdl(n))olj(n)
where "I" is the access point.

These formulas specify how to move the
parameters m and k at each time step n.

It is quite interesting to note that (5) and (6)
form a pair of equations very similar to (1) and (2).
Thus, SijJ(n) and Si]J(n) can be considered
respectively as positions and forces of a mechanical
network similar to the first one (fig. 6) associated
with the mass i and excited by a force:
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Figure 6: structure of a physical model that leamns

To succeed in learning, the initial network is
duplicated many times. Therefore, due to the
parallelism of the implementation, the analysis can
be carried out as fast as the synthesis. However, it
requires structures that are more complex than the
resulting structure.

Note that this algorithm is not interactive,
since the network does not influence the
environment.

4 Testing and results

Instead of being implemented directly on a
real-time analysis system, the algorithms are tested
in more restricted situations:

- there is no actual speed constraint;

- the analysed object, instead of a real instrument,
is a computer simulated object, that is a CORDIS
object (it is still called the real object);

- the structures of the learning object and the real
object are the same (only the parameters differ).
Thus, it is guaranteed that a perfect solution exists;



- the structures are simple: from one to four
parameters to be adapted (fig. 7);
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Figure 7a: the basic cell
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Figure 7b: the line

- the simulations are very short: up to 50
samples.

Among the many possible experiments, three
types of results are set out in this section:

- An empirical study of the local convergence:
given an initial learning line, it is essential to test if
it is able to find the parameters of a close real line
whatever its relative position in the parameters
space. In this test, four masses are adaptative. Each
of these can be greater or smaller than the
corresponding mass in the real object: this leads to
16 tests. In all cases, the learning is successful,
which empirically demonstrates the local
convergence.

- The limit of the convergence: in the case the
learning object and the real object are too far from
each other, the learning fails. In a series of
experiments with basics cells, the initial stiffness of
the learning object was set to 0.1, whereas the
stiffness of the real object was set to a different value
in each experiment (the masses are all set to 5). As a
result, the convergence succeeds if the real stiffness
is smaller or equal to 0.4.

- The convergence to a local minimum: fig. 8
shows the two position signals of the final learning
object and the real object. The learning process has
achieved a solution which is not the optimal one,
however a rather good one. In the Neural Networks
terminology, this situation is called a local
minimum, because the learning is “stuck" in a local
minimum of the error surface.
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Figure 8: convergence to a local minimum

These results beget some comments. The
learning networks succeed in learning a real object,
but only when this learning needs small changes of
parameters. This is due to the irregular shape of the
error surface, which contains many local minima.

To cope with this problem, it is possible to
use global minimum tracking algorithms (simulated
annealing for example), but these techniques are

often very slow. The next direction of study is rather
the use of action, from the instrumentalist and from
the learning object to the real object, in order to
achieve a progressive learning: thus, the error surface
can be more simple at each stage of the learning,
since the difficulty is gradual.

S The cognitive point of view

It is interesting to distinguish the present
study from the classical approaches. Generally,
intelligent systems are usually split up into two
hierarchical levels: the physical level and the control
level. The first level is an analogical representation
of the environment; the second level controls the
first level to learn, plan, predict, act... Consequently,
the "intelligence" of such a system is condensed in
the control level. Conversely, the learning
mechanical networks presented here tend to include
an intelligent mechanism directly in the physical
level itself.

To apply this to human cognition, it is
inconceivable to affirm that intelligence could be
reduced to the physical level. However, the learning
physical models suggest that the frontier between the
intelligent and non-intelligent processes may not be
the same as the one between the non-physical and
physical representations. Some physical
representations, that is analogical representations,
may fulfil much more intelligent functions than
what it is usually admitted.

6 Conclusion

Analysis in Physical Models may be carried
out in quite an elegant way: adding to synthesis
networks some properties and elements in order to
obtain analysis networks. To that end, Neural
Networks provide useful tools.

The first results are encouraging, but the
algorithms still need improvements before being
implemented in a real-time machine.
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