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Abstract 

We present a recursive method to construct a volume from 

particles generated by a physically based simulation of a flow 

field. The particles are scattered in the body of the simulated 

object giving no explicit information about its surface.  

We show how to build a surface representation of the non-convex 

"hull" of a scattered points set. The surface is supposed to enclose 

all the points and have a minimal volume. The surface that we 

obtain must maintain the main characteristics of accurate 

geometrical singularities of the phenomenon during its evolution. 

We have considered the case of toothpaste running out of a tube. 

Our method uses a density map to construct an enclosing volume 

of the generated particles, taking care of local singularities. 

Keywords: volume construction, particles models, visualisation. 

1. INTRODUCTION 

Animation is a main topic of image synthesis. Since several years, 

scientists are looking for methods that ease production of realistic 

animations. These animations must show realistic collisions 

between objects and good animation of characters or natural 

phenomena. 

Some years ago, animation was a series of pictures made by hand. 

To realize a movie, the work was hard and long, hence the 

necessity to automate the task. Three main methods have been 

developed: cinematic functions applied on geometrical objects, 

physically based models and artificial life algorithms. With the 

first one, we cannot easily obtain complex deformations such as in 

natural phenomena. With the others, we can perform very 

complex motions (displacements, deformations, transformations), 

but it is quite difficult to match complex shapes on these complex 

motions. 

Usually, the physically based simulations of natural phenomena 

are displayed with points, lines and simple geometric objects. 

Therefore, to obtain a well and aesthetic visualisation, we must 

construct a volume, or extract a surface. In this volume, we must 

be able to show the pertinent morphological features of the 

modelled phenomenon.  

When the movies produced by the simulation are visualised by 

points, human observers are able to recognize precisely the 

represented phenomenon: we have the feeling that the points are 

in the adequate volume (points are inside or at the borders of the 

fluid flow, if we modelled a fluid), even if we are not able to 

discern all the details. 

 

2. MODELLING AND SIMULATION 

2.1 Particle Systems 

Many methods to simulate natural phenomena and deformable 

objects are based upon physically based particles systems. 

Physically based particles models are generic and simple. 

Moreover, all deformations and topological changes can be 

modelled. Terzopoulos and al. ([9]) linked particles with non-

linear springs to simulate thermo-conductor behaviour, while G. 

Miller and A. Pearce ([7]) used Lennard-Jones forces between 

particles. In 1991, D. Tonnesen ([10]) designed a particle system 

in which the interaction law depends on the thermal energy. At 

the same time, the CORDIS-ANIMA system developed by A. 

Luciani and al. ([5]) implements generic non-linear interaction 

components to simulate unstructured materials for modelling 

natural phenomena such as granular materials ([5]) or fluids and 

smoke ([6]). 

 

2.2 CORDIS-ANIMA: A Physical Modeller-

Simulator ([2],[3]) 

 

We want to model a flow field using a physically based model. In 

this section, we explain how we can obtain a large variety of 

natural phenomena using the CORDIS-ANIMA library. 

To construct a model with this method, we assemble a great 

number of very simple automata. These automata are divided in 

two types: mass elements and interaction elements. The input of 

the former is a force value and the output is two opposite forces. 

The first type is characterized by only one algorithm (Newton's 

law). In the second type, the elasticity and viscosity of the 

interaction function can be controlled by linear or piecewise linear 

memory less functions, or in the more general case by finite state 

automata. 

All of CORDIS-ANIMA models are built by assembling these 

automata in networks in which the nodes are mass automata and 

arcs are interaction automata.  

In a more simple way, we can see a model like a network of 

masses linked by viscoelastic elements. 

2.3 A CORDIS-ANIMA Model of Generic 

Pastes 

By assembling all the particles with an elementary interaction: a 

viscoelasticity link with a single threshold, we obtained granular 

material dynamics ([5]) and fluids dynamics ([6]). 

We noticed that the dynamical behaviour of objects such as 

pastes, creams, foams seems to be an intermediate state between 

granular and fluids effects, we assume that it would be possible to 
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obtain granular, fluids and pastes effects with the same CORDIS-

ANIMA model.  

 

The CORDIS-ANIMA model of the toothpaste consists of:  

• N masses linked together by two non-linear elementary 

interactions 

• An elasticity K with its Ks threshold  

• A viscosity Z with its Zs threshold 

 

We obtained generic models of paste (toothpaste, creams, foams) 

with non-mixing piling and circumvolutions, if Ks << Zs, 

whatever K and Z are (see fig. 1). 

 

Figure 1.1 paste with N=900 masses (~400000 interactions) 

 

 

 

 

 

Figure 1.2 the same paste 4 seconds later 

 

 

3. VISUALISATION OF PARTICLES 

3.1 Related Works 

The surface or volume representation of particles systems 

represents a big challenge. Since the discrete masses are scattered 

in space without any explicit information about the simulated 

object surface (figures 1.1 – 2.2), the visualisation algorithm must 

be able to extract all the surface related information in order to 

obtain a geometrically realistic image or animation.  

The most used method is implicit surfaces ([1], [11]) with which 

we can obtain smooth surfaces. The implicit surfaces are often 

used to visualize highly deformable objects ([8], [9], [7], [10]). 

But because of the smoothness, this method is not able to render 

singularities such as breakpoints, dissymmetric fractures, 

bifurcations, forth order extremum, points of return, and their 

dynamical evolution (for example, evolution from forth order 

extremum to turn-back points). Then they cannot be used to 

display pastes behaviours without morphological pre-processing. 

The figures 2.1-2.2 show some singularities of the typical 

behaviour of paste flows. 

The Engraved Screen ([6]) is a method that produces highly 

aesthetic visualization of 2D fluids. It is also an implicit method 

but thanks to the fact that the density shape is deformable 

according to the dynamics of the particles, it is able to render 

some refined features but remains limited to 2D visualisation. 
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Figure 2.1 

 

 

Figure 2.2 

 

 

3.2 Geometrical Singularities 

During the simulation, the toothpaste shows some evolving 

geometrical singularities that can’t be efficiently rendered by 

classical methods. 

For example, when the paste flow forms multiple layers, the 

contact between them shows some evolving singularities (cf. 

Evolution of the geometrical singularities): 

• Simple contact between two layers (Figure 3 j) (can’t 

be constructed and rendered with implicit surfaces since 

such a method may blend the layers) 

• Packing  with fusion of the layers (Figure 3 i) (which 

can’t be rendered with generalised cylinders – implicit 

surfaces may produce an aesthetic (but not necessarily 

realistic) result) 

 

 
 

hpoint of inflection 

ipacking 

jpoint of return 

Figure 3 

 

 

 

 

 

 

 

Evolution of the geometrical singularities 

3.3 Volume Construction 

To explain our method, we explain the terms used in our 

algorithm while we notice them for the first time. 

To construct the volume, we chose a semi-automatic method in 

which the user remains master of the manner to construct the 

volume. The user specifies three parameters: the discrete size of 

the volume (number of voxels making up the volume), the 

neighbourhood size to consider to compute the density map 

(number of voxels that contains simulation’s points in a given 

area), and the average number of voxels which separate two 

simulation’s points in the discrete volume. The last parameter 

allows the algorithm to “construct” (fill in a voxel) in a pertinent 

region. 

The volume construction algorithm is composed of three steps. 

We firstly discretised the space in a volume made up out of 

hhhh

jjjj
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voxels. This discrete volume encloses all simulation’s points, 

which are all “put” in a voxel. A voxel that contains that kind of 

point is marked full. We worked in the discrete space.  

Secondly, we compute the density map (which has the same size 

as the discrete volume) by using a convolution mask, where the 

closest neighbour is more important than the furthest. This step is 

in O(N), where N is the number of voxels in the volume.  

Now, we have all the elements to construct the volume. We 

looked for connecting all the full voxels (voxels that contain 

simulation’s points). Connecting two voxels is the same action as 

to fill in the voxels that separate them. We chose the voxels to fill 

in according to the density map. We had to do this step for each 

pair of simulation’s points. To do that, we use a recursive method 

explained in the algorithm 1. The complexity is in O(N), where N 

represents the number of voxels in the discrete volume. 

We said in previous paragraph that we chose the voxels to fill in 

according to the density map. In fact, in the density map, we were 

looking for the voxel with the highest density value. If we found 

several voxels with a highest density, we chose the closest 

compared to the position of the current_voxel and of the voxel 

with highest density. It is possible to have several voxels with the 

same density and the same distance. The distance between these 

two voxels is less or equal to the third parameter specified by the 

user. 

With the highest density voxel, we determine the voxels to fill in. 

We fill in the voxels that lie on the discrete paths between the 

highest density voxel and the current_voxel (only the first voxel 

of the path are chose – see the figure below). 

 

Highest density voxel 

Current_voxel 

Path 1 

Path 2 

Voxels to fill in 

Figure 4: Determination of voxels to fill in 

 

 

Algorithm 1: the volume reconstruction phase  

For each point from data called current_point do 

 current_voxel = voxel which contains current_point 

 Detect(current_voxel) 

End for 

 

Detect(current_voxel)  

For each region surrounding current_voxel do  

With each of the highest density voxels  

Determine the voxels to fill in (compared to the position of the highest density voxel) 

For each new_voxel determinate by the previous step do 

If the new_voxel is empty  

Then fill in ; Detect(new_voxel)  

End for 

End for 

 

3.4 Rendering Method 

The constructed volume is made up out of voxels. The aim is not 

to obtain a smooth and aesthetic volume, but render the relevant 

volume in a simple way. We use the Marching Cubes method. 

The Marching Cubes algorithm was designed by William E. 

Lorensen and Harvey E. Cline ([4]) to extract surface 

information from a 3D field of values. We explain the algorithm 

in 2d space. For the Marching Cubes algorithm to work we need 

to provide some basic information, the question, we will need to 

ask of out data in order to reconstruct the surface is “Is the point 

at (x,y,z) inside or outside of the object?”. 

The basic principle behind the Marching Cubes algorithm is to 

subdivide space into a series of small cubes. The algorithm then 

instructs us to “march” through each of the cubes testing the 

corner points and replacing the cubes with an appropriate set of 

polygons. 

The first step is to calculate the corners that are inside the 

volume. We can now insert some vertices, since we know which 

points are inside and which are outside we can guess that a 

vertex should be positioned approximately halfway between an 

inside corner and any outside corners that are connected by the 

edge of a cell. 

The method usually used in the Marching Cubes algorithm is 

not suitable for our method. For us, the space is already 

subdivided and we know only if a voxel is inside or outside the 

volume, but no if a voxel vertex is inside or outside the volume. 

We have to find the conditions to determine if a voxel vertex is 

inside or outside the volume. We make a distinction between a 

full voxel and an empty voxel. The positions of full voxels 

compared to the current_voxel are important: a neighbour by the 
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faces is more important than a neighbour by the edges, which is 

itself more important than a neighbour by the vertices. From 

these observations, we defined conditions for knowing the 

“border” voxels. 

 

 

Figure 5.1 Constructed paste rendered with a simple voxel-

sphere association 

 

 

Figure 5.2 Constructed paste rendered with the marching cubes 

algorithm 

 

4. CONCLUSION 

In this paper, we have presented a recursive method for the 

volume construction from particles generated by a physically 

based simulation of a flow field.  Here our main focus has been 

to extract the pertinent morphological features of the toothpaste 

simulation. 

The method is efficient to visualise scattered particles without 

information on the volume: we can display geometrical 

singularities such as points of return, points of inflection, 

packing, … 

Being given that each element of the voxel space can be 

computed independently from the others, the parallel version of 

the algorithm is rather obvious to implement. 

• On a multiple-processor workstation, the parallel 

implementation of the algorithm shows an almost 

linear speedup.  

• On a network of workstations with distributed shared 

memory, the speedup can be made super-linear, 

depending on the size of the voxel space. 
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The apparent super-linear acceleration is only due to the size of 

the voxel space. With one workstation, the voxel space can’t fit 

entirely in memory. As the number of workstation increases, the 

ratio of local/non-local memory becomes better. An important 

speedup occurs when the used part of the voxel space can fit 

entirely in the local memory of the workstation. 
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