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Abstract

Frequency-damping constant relationship for normal modes of linear isotropic resonators are derived
from various viscoelastic constitutive equations. As an invariant of the material, this frequency-
damping relationship is then used in Physical Modeling sound synthesis, in order to represent an
arbitrary shaped material.

INTRODUCTION

Vibration analysis of linear insulated resonators made of an isotropic material leads to an invariant
relationship between frequencies and damping constants of the pormal modes. The frequency-damping
relationship, which we refer to as the sound signature, reflects the viscoelastic properties of the
material. Results on the sound signature associated to common viscoelastic models will be stated. In
particular, the so-called proportional damping assumption, known also as the Rayleigh or the modal
damping [1] will be reconsidered in the light of the former results.

The knowledge of this invariant feature allows us to introduce the material as an independent
parameter into Physical Modeling sound synthesis. The second part of the paper sketches a framework
for Physical Modeling in terms of shape and material parameters. Thus, time domain simulation of
viscoelastic resonators will be considered with emphasis on the modular synthesis approach based on
discrete time rheological models.

LINEAR VISCOELASTIC BEHAVIOR

In most musical instruments, vibration of resonators is of small amplitudes. Therefore, we assume
linearity throughout this work. Linear viscoelasticity considers a material sample as a linear time
invariant (LTI) system with strain &(t) and stress o(t) as input-output pair {2]. In one dimension, the
material sample is characterized by one of its response functions, for instance the step response k;(?),
known as the relaxation modulus. The relaxance, which is the system transfer function is denoted as
k(s), where s is the Laplace variable. In three dimensions, the stress-strain relationship involves from 2
to 21 viscoelastic moduli k;(s), each one having a different time/frequency dependence [2].

Relaxation spectrum
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In the canonical representation, the relaxation modulus and the relaxance are expressed as

;GH(g) =t NH(C)
k,(t)=k,+[=2Le%a k(s)=k, - [=——22d¢ (1)
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in which H({)/{ is the distribution of relaxation moduli and H({) the relaxation spectrum. The constant
term k, = ky(o0) = k(0), known as the equilibrium modulus is assumed positive in order to represent a
viscoelastic solid. The glassy or instantaneous modulus k, = k4(0) = k(o) is assumed finite: &, < 0.
We define the non-dimensional normalized viscoelastic moduli (denoted by underlined symbols) by
notmalizing by k. For instance, H = H/k, and k(s) = k(s)/k,.



Particular spectra

Line spectrum. A line spectrum H({) = Zk;&({-() is a sum of delta functions at a finite set of
relaxation frequencies. It can be represented as a combination of two idealized elements, the pure
spring and the pure dashpot, in series-parallel assemblies. The two integrals in (1) reduce then to finite
sums. The constitutive stress-strain relation is an ordinary differential equation. The Zener model (Fig.
l.a), with a single relaxation peak, is the simplest model of a hnear viscoelastic solid. Related
viscoelastic functions are : :
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Power law spectrum. The material sample is supposed to exhibit a power law relaxation spectrum
between 2 frequencies ¢; and &: H(E) = ko&’, with 0< 6 <1, and H({) = 0 otherwise. The 6 = 0 case is
referred to as the box spectrum. If, in particular {; = 0 and §; = +oo, the power law spectrum leads to
the Kelvin fractional derivative model, obtained from the Kelvin model by replacing the pure dashpot
by the spring-pot [3]. The first integral in (1) is then converted into k,(f) = k+koL'(6)t°. To obtain a
finite glassy modulus, the spring-pot has to be combined with pure springs in a series-parallel
mounting. For example, the Zener fractional model (Fig. 1.d) has the following viscoelastic functions
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VISCOELASTIC OSCILLATORS

Let us consider p punctual masses interconnected by viscoelastic links represented by a transfer matrix
[K(s)]: coefficients of [K(s)] are transfer functions of the viscoelastic links. Let's say that the system is
homogeneous if [K(s)] can be factored as [K(s)] = [K]k(s), where [K] is a constant matrix and k(s), a
normalized relaxance, i.e. k(c0) = 1. In the modal coordinates ‘of the ¢onservative system defined by
[K] and the mass matrix [M], the characteristic equation of the whole system reduces to a set of scalar
equations

s? + 5 k(s)=0 @)

where @y is a modal frequency of the underlying spring-mass system. Each mode can then be
considered as an uncoupled scalar viscoelastic oscillator. No exact analytical solution of (4) is
available, however approximate analytical forms can be obtained.

Line spectrum. If the spectrum has n delta peaks, the scalar oscillator is an n+2 order system having
at least n negative poles —o; (interlaced by the relaxation peaks —(;) and at most a single pair of
complex oscillatory poles -octio. The impulse response of the oscillator is then a sum of an oscillatory
component exp(-o+iw)t and a finite sum of exponential components exp(-¢;t). Series expansion of (4)
with respect to (-0i @)/ {min and §pax/(-0tio) yields the first order approximations

n 2 n
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Free vibration of the viscoelastic oscillator is then a sum of an oscillatory component and a finite set of
aperiodic components corresponding to the negative poles.

Continuous spectrum. Note that if H({) possesses an analytic continuation, then k(s) has a branch cut
singularity along the negative axis, running from —{, to —;. If {; > 0, then the oscillator has a negative
pole -0y with 0 < ; < {;. The transfer function of the oscillator can then be inverted using the
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integration contour shown in (Fig. 2). The impulse response of a continuous spectrum oscillator is then
a combination of an aperiodic component exp(-¢;f), an oscillatory component exp(-oti@)t and a
decaying function o(?) corresponding to the branch cut singularity

G
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which replaces the finite sum of decaying exponential functions in the previous case. Figure 3 shows
the plot of a(?) in the case of a bounded power law spectrum. Note that the plot of ¢(?) is close to an
exponentially decaying function. For a bounded continuous spectrum, equations (5) can be extended to
the first order approximations
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As a particular case, for the bounded power law spectrum, equations (7) is converted into
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Within the transition region [{;,{,], the plot of a(ay) in log-log axes is close to a straight line with the
slope 1+6 (Fig. 4).

To summarize, for a bounded spectrum, in the rubbery region, i.. wy<{;, the damping constant
is proportional to the natural frequency squared, while in the glassy region, i.e. @y>{,, the damping
constant reaches a stationary value 04, Note that the proportionality relation in the rubbery region, is
consistent with the classical proportional damping assumption, often introduced in modal analysis,
which assumes that the viscosity matrix is proportional to the stiffness matrix: [Z] = 7 [K]. In fact, for
a classical second order oscillator, the last relationship induces a quadratic frequency-damping
constant relationship o(ay) = Ta)oz/2, for all ay. Thus, proportional viscosity may reproduce
approximately the o(ay) function in the rubbery region.

In the case of the Zener fractional oscillator (see Equation 3), as {; = 0, the negative pole —oy
disappears and the integration contour of (Fig. 2) must be adapted in order to exclude the whole
negative axis. The transition frequency { divides the frequency axis into two regions, with two
approximate forms for of ay):
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Figure 1 Viscoelastic Models: Zener (a), Wiechert model Figure 2 Integration contour
(b), Continuous Spectrum (c) and Fractional Zener (d). for bounded spectrum oscillators.

Material sound signature

The frequency-damping constant relationships (7) and (9) are 'shape’ invariant provided that [K(s)] =
[K]k(s), i.e. the time and space variables are separable. By replacing the elasticity matrix [K] by an



appropriate differential operator, the preceding discussion extends to simple homogeneous resonators
such as strings, isotropic membranes, Euler-Bernoulli beams and isotropic Kirchhoff plates. Note that
for strings, membrane and Euler-Bernoulli beams the elastic modulus k is proportional to the Young's
modulus E. Thus, modal frequencies and damping constants of all of these resonators observe the
same (ayp) function, regardless of the dimensionality, the shape and the boundary conditions.
However, in the case of an isotropic plate, due to the time dependence of the Poisson ratio v(s), the
flexural rigidity D(s) = E(s)/(1-W(s)*) does not have the same spectrum than the Young's modulus E(s).
Therefore, the o) relationship for plates is generally not identical to the one in the former cases.

In the case of anisotropic materials, or for vibration problems involving several elastic moduli,
e.g. Timoshenko beams with flexural and torsional elasticity [1], the resulting frequency-damping
relationship is shape dependent. In fact, in such cases, several time dependent elastic moduli combine
according to the geometric data of the resonator. Therefore, no shape independent feature can be
expected. It is of interest to note that, for an anisotropic resonator, the o ayp) need not to be even an
increasing function. In addition, coupled field relaxation phenomena are generally size dependent. For
instance, in the case of thermoelastic relaxation, which is of great importance in metals, the relaxation
peak depends on the sample width (see [2], §8.3.2).
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Figure 4 Damping constant vs. frequency curves corres-
ponding to viscoelastic models represented in (Fig. 1).

Figure 3 Plot of the off) function defined by equation (6),
in the case of a bounded power law spectrum.

PHYSICAL MODELING SOUND SYNTHESIS

The material invariant feature permits us to organize shape and material design in independent ways
[4]. Shape modeling may be performed by classical approximation techniques such as finite element
or finite difference methods. This way, the strain operator and geometrical data such as dimensionality
and the boundary conditions are translated into the parameters of a spring-mass conservative system.

Material modeling

Given a conservative spring-mass system, defined by mass and stiffness matrices [M] and [K], the
natural approach is to replace each pure spring with stiffness constant k; by a viscoelastic link with
relaxance k;; k(s), where k(s) is the normalized relaxance of the material. As the resulting oscillator is
homogeneous in the sense defined above, it possesses a modal decomposition with real mode shapes
identical to those of the underlying conservative system. However, the state space of a p degrees of
freedom viscoelastic oscillator has the dimension p(n+2), where n is the number of relaxation peaks.
Therefore, time simulation of such high order systems is a heavy task. An alternative method is to
compute a viscosity matrix [Z], using the modal coordinates defined by [K] and [M], in order to assign
to the mass-ss)ring-dashpot system the desired o(ay) relationship. This 'equivalent' viscous oscillator is
a classical 2" order oscillator defined by [M], [K] and [Z]. It has the saine complex poles and the same
mode shapes as the original (n+2) order system. It should be pointed out that there is no natural way to
extend the above construction to the case of a general non homogeneous viscoelastic oscillator.



In free oscillations, the missing negative poles do not have any acoustic relevance. However, in
coupled situations, linear or non-linear, they can have a quite perceptible effect. For instance, consider
the elementary 2-mode system of (Fig. 5), which is the (linear) elastic coupling of a unitary mass (top)
with a Zener oscillator (bottom). The damping constant of the first mode of the compound system
increases with the negative pole of the bottom Zener oscillator, while the converse is true for the
second mode (complex poles are kept constant: & = 10 sec”’, @ = 900 cps and K = 900> N/m). The
dashed lines represent the modal damping constants if the bottom oscillator was a simple 2™ order
oscillator with the same oscillatory mode. Clearly, this influence should be perceptible in non linear
coupling as well. Figure 6 compares the non linear coupling of the Zener oscillator (o = 1 sec”, ot =
10 sec”’, @ = 200 Hz) with its 'equivalent' second order oscillator (top). The spectrograms represents
the responses to a square pulse of 1 second.
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Figure 5 Influence of the negative pole on the damping Figure 6 Step responses of the Zener oscillator (bottom)
constants of the (linear) coupled system and its equivalent viscous (top), faced to a dead zone.

Discrete time rheological models

Among various methods for time discretization of finite order viscoelastic oscillators, the modular
approach [5] is based on assembling discrete time rheological models: discrete masses, and discrete
springs and dashpots. A particular advantage of this approach is the possibility to operate independent
discretization schemes on the first and the second derivatives. Classical criteria are accuracy, stability
and efficiency, but, due numerical dispersions, each difference scheme can be considered from the
frequency-damping relationship as well.

To study the sound signature of discrete models, let us consider the Zener oscillator as a
workbench. A mass m is attached to the ground by a Zener mounting defined by three parameters: the
glassy modulus k,, the relaxation peak { with the corresponding amplitude k. According to (4), the
natural frequency @y is defined by k, = may’. By combining centered difference for the mass and
respectively forward, backward and trapezoidal difference schemes forithe dashpot, we obtain three 3
order explicit schemes CF, CB and CT. The discrete Newton's 2™ law for the mass and the discrete
stress-strain relationship for the dashpot are given by the following finite difference approximations

72 A (CaE-S T +o(T,) Forward
Ynet == fo +=2Y, + Ypa +0(T2) 0, =1(€, =& )T;* +o(T,) Backward (10)
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where f and y are force and displacement and 7 the time step. It should be pointed out that combining
the central difference scheme for both the mass and the dashpot leads to an unstable 4™ order scheme.
The same combination yields however a 2™ order accurate with acceptable stability behavior in the
case of a classical 2™ order oscillator.

Stability analysis. The stability conditions of the above schemes are expressed by

il ~L ¥ JC 24402 k
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Note that the rather complicated stability condition of CB is weaker than the CT one's: T,<2/ay. Thus,
due to the absolute stability of the backward and the trapezoidal schemes, the corresponding stability
thresholds do not depend on the viscoelastic spectrum. This is specially interesting for viscoelastic stiff
systems involving relaxation peaks of very different magnitudes. In contrast, the stability threshold of
the CF scheme, is controlled by the relaxation frequency, i.e. 7, < 2/{ in the rubbery region, while in

the glassy region, it is determined by the natural frequency: 7 < 2/(ay JZ ):

Dispersion analysis. Unlike continuous to discrete conversions obtained by s-plane to z-plane
mappings, dispersion analysis of combined discretization schemes is rather difficult. As a general rule,
centered difference for the mass raises the frequency, while the non symmetrical schemes lower it.
The similar statement is true about the damping constants. However, dispersion on the damping
constant is much more affected by the discretization scheme chosen for the dashpot: backward
difference lowers the damping constants, while the converse is true for the forward difference. Figure
7 illustrates the relative dispersion on frequencies and damping constants. It is appropriate now to
consider the resulting sound signature altered by numerical dispersions. To be consistent with the
discussion on continuous time systems, the sound signature of the discrete system should be analyzed
as discrete damping constants versus discrete natural frequencies. Figure 8 shows the sound signatures
of the aforementioned discrete systems in comparison to the continuous one's. The CT scheme, which
is of 2™ order accuracy, turns out to be the most accurate.
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Figure 7 Numerical dispersion on damping factors and Figure 8 Signatures of the continuous and the discrete
damped frequencies (=400 Hz, k = 0.1, F; = 4000 Hz). models (Fy=4000 Hz, { =100 Hz, k= 0.2).
SUMMARY

Approximate frequency-damping constant relationships for bounded spectrum and power law
viscoelastic models are stated. As a shape independent feature, the frequency-damping relationship
can be used as an invariant of the material in Physical Modeling sound synthesis. Discrete time
rheological models are in turn analyzed in terms of the frequency-damping relation above.
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