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In this paper, an analytical method for the computation of the electromagnetic field in the airgap of an inset permanent magnet 9 

synchronous machine is proposed. The originality lies in the fact that both the stator and rotor saliencies have been taken into account 10 
in the analytical procedure. The purpose in to compute both quickly and accurately the magnetic fluxes and instantaneous torque of 11 
the machine, in order to minimize torque ripples in an optimal pre-design process. It is shown that the instantaneous torque is in good 12 
agreement with finite element results, for a shorter computation time. The model presented here can be used when the 2D 13 
approximation of the machine is valid, which is the case for most of machines’ topologies. 14 
 15 

Index Terms—analytical modeling, torque calculation, airgap flux, finite element verification.  16 
 17 

I. INTRODUCTION 18 

LECTRIC MOTORS for electric and hybrid traction applications have received a lot of interest in recent years [1][2][3][4], due to 19 
the necessity of reducing fuel consumption, both for economic and environmental reasons. Permanent magnet synchronous 20 

machines are promising in these demanding applications, because of their potential high torque density and efficiency [5]. The 21 
design of the electric machine for such embedded application can be difficult, due to the necessity of reaching both a high torque 22 
density and a compact size, which are contradictory optimization criteria [6] [7]. The torque quality, i.e. small torque ripple, is also 23 
an important parameter in such applications [8]. 24 
The torque ripple computation is by no way an obvious problem. Most authors use the well known finite element method [9] [10]. 25 
This method presents the advantage of taking into account all the geometrical complexity of the machine, as well as magnetic 26 
saturation. However, the computation time can be prohibitive in a first design optimization process, since the instantaneous torque 27 
computation requires a time-stepping analysis [11]. Therefore, to include the cogging torque minimization criteria in the pre-design 28 
optimization process, it is better to develop an analytical approach [12]. Most of the analytical approaches proposed in the literature 29 
are done for surface mounted permanent magnet machines [13]. However, more complex permanent magnet rotor topologies, such as 30 
the inset permanent magnet structure, can be more suitable for high speed and flux weakening purpose [14]. 31 
This article proposes an exact analytical computation of the magnetic field in the airgap of a synchronous permanent magnet 32 
machine having an inset permanent magnet topology. The double saliency of the machine (i.e. the stator slotting and the rotor 33 
ferromagnetic teeth) is taken into account analytically. In a first part, a literature review on the subject is proposed. Then the 34 
analytical model is presented, with the detailed mathematical procedure. To finish, some results about the airgap induction and 35 
instantaneous torques are given and compared with finite element analysis. A good agreement, for a much smaller computation time, 36 
has been found. 37 

II. OVERVIEW OF THE PREVIOUS WORK ON THE TOPIC 38 

The problem of modeling the stator slotting effect of electrical permanent magnet machines has been dealt with in several 39 
references of the literature. In [15], the stator slotting effect has been computed in a radial flux machine by derivation of a relative 40 
modulation function. This modulation function has been computed using the same conformal map than the one of Carter in his well-41 
known paper [16]. However, this method only allows computing the airgap induction radial component, which is a problem for the 42 
tangential force computation by the Maxwell stress tensor method [17]. Moreover, the magnetic interaction between the slots is not 43 
taken into account. Other authors [18][19] have corrected these drawbacks of the conformal mapping method by using the numerical 44 
Schwartz-Christoffel Matlab toolbox [20], which permits to take into account rigorously the whole magnetic domain. However, this 45 
method requires the numerical computation of the conformal map coefficients, which is time consuming, because non linear 46 
transcendental equations must be solved numerically. 47 
As an alternative to conformal mapping, some authors prefer the subdomain method [21] [22] [23], which permits to find an exact 48 
solution of the potential in the airgap of the machine, under the form of Fourier series. The idea of this method is to decompose the 49 
machine airgap into elementary rectangular domains. The Laplace or Poisson equation is solved in each domain, and the domains are 50 
linked using classical boundary conditions in electromagnetism. This method generally requires a numerical inversion of a linear 51 
Cramer system, which can be done quite easily and fastly compared to the transcendental equations of the conformal map. Some 52 
papers [21][22] apply this method to the rotor saliency for inserted permanent magnet machines. Other authors [13], on the contrary, 53 
use this method to compute the stator slotting effect of surface mounted permanent magnet machines, which can be with a double 54 
excitation winding [24]. Other authors have even managed to take into account analytically a more complex shape for the slots than a 55 
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simple rectangular [25]. 56 
In each case, some work remains to be done to take into account both the stator slotting effect, and the salient pole rotor topology 57 
with inset magnets. This is the purpose of the further analytical development. 58 
Thanks to the model presented in this work, it will be possible to include the torque ripple minimization criterion from early pre-59 
design stages, without increasing too much the computation time. Indeed, the pre-design of hybrid vehicles is a hard task [26], since 60 
all the traction chain has to be taken into consideration. Thus, for computation time purposes, the model used for the actuator is often 61 
simplified. For example, in [27], the slotting effect of the machine has been neglected. This can be a problem, because the torque 62 
quality (i.e. low torque ripples) is also an important point in such applications. 63 

III.  SYMPLIFYING HYPOTHESIS FOR THE ANALYTICAL MODELLING 64 

A. 2D assumption and machine’s topology 65 

As done in all the previous references about analytical modeling, the machine is considered as bi-dimensional (2D), i.e. the edges 66 
effects are neglected. This means that the machine is considered as infinite perpendicularly to the plane of representation. 67 
This is typically the case in conventional radial flux machines [19] in which the axial length H is important compared to the pole 68 
pitch characteristic dimension τ. 69 
Notice that this 2D assumption can be also valid for others topologies than conventional radial flux machines. For example, for axial 70 
flux machines [28], the 2D assumption is also possible, provided the difference H between the external and internal radii is important 71 
compared to the pole pitch τ at the mean radius. More precisely, for an axial flux machine, it is first assumed that the electromagnetic 72 
phenomena happening at the mean radius are sufficient to describe the behavior of the machine. The machine is made equivalent to a 73 
fictitious linear actuator having the same geometry than the real axial flux machine at its mean radius. Then the thickness H of this 74 
fictitious linear actuator is assumed to be very important compared to its pole pitch τ. This 2D approximation for the axial flux 75 
machine is summed up in Fig. 1. 76 

 77 
Fig. 1: 2D approximation of the axial flux machine 78 

 79 

Then, under the 2D assumption, for both a radial and axial flux machine, the problem to study can be represented in Fig. 2 (the main 80 
geometrical parameters are given in this figure, and are recalled in Table I). For the radial flux machine, such a representation 81 
implies that the curvature of the machine has been neglected, which is valid if the mean airgap radius (i.e. the mid airgap radius) is 82 
important compared to the dimensions along the y axis. This is assumed to be the case in the following of this paper. A discussion 83 
about this simplifying assumption is given in the Appendix 1. 84 

 85 
Fig. 2: 2D problem to study for both a radial and axial flux machine, and main geometrical parameters 86 
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TABLE I 87 
GEOMETRICAL PARAMETERS OF THE MACHINE 88 

Description Notation 

Dimensions along the x direction 
Pole pitch τ 

Magnet relative opening with regard to the pole 
pitch 

βa1 (0<βa1<1) 

Rotor inter-teeth space relative opening with 
regard to the pole pitch 

βa2 (βa1<βa2<1) 

Stator slot width we 
Stator tooth width wd 

Dimensions along the y direction 
Magnet thickness ha 

Airgap width e 
Rotor yoke thickness ecr 
Stator yoke thickness ecs 

Slot dept he 
Total width of the machine L=ecr+ha+e+he+ecs 

Dimensions along the z direction 
Active thickness of the machine along the z axis H 

Physical data 
Remanent induction of the magnets (NdFeB) at 

room temperature 
Br 

 89 

B. Other hypothesis 90 

Other classical simplifying assumptions are made: 91 
− No saturation effect is taken into account. The magnetic permeability of the ferromagnetic parts is assumed to be infinite. This 92 
assumption is also discussed in Appendix I. 93 
− It is assumed that continuous rate has been reached, and that the machine is driven with sinusoidal currents waves. 94 
− Finally, the current density in each slot is assumed to be uniform in the entire slot surface. 95 

IV. THE CALCULATION METHOD 96 

A. Definition of the problem 97 

Fig. 3 shows the machine over one pole pitch. For simplicity, the number of stator slots per pole is chosen to equal to 3. 98 

 99 
Fig. 3: Representation of the problem to solve, with double (i.e. rotor and stator) saliencies 100 

 101 
Due to the 2D approximation, the problem can be reduced to the computation of the following vector potential: 102 
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Each slot is characterized by a number l, where l can evolve between 1 and 3. The current density in the slot l is called j l, and is 103 
assumed to be uniform over the slot. A first difficulty arises from the fact that the geometry of the problem and its solution depend 104 
on the rotor displacement Xd. The stator slots zone is called Zone I, the airgap is called Zone II, and Zone III is the magnet zone (Fig. 105 
3). 106 

B. Vector potential mathematical expressions 107 

In Zone III, due to the magnet (whose magnetization function is called M(x)), the potential is given by a Poisson equation: 108 

( )
0

III M
A

x

∂∆ =
∂

µ  (2)

As done in [22], the magnetization can be developed into a Fourier series: 109 

1 2

( ) .cosR n R
n a

M X M n X
π

β τ

+∞

=

  =    
∑  (3)

The coefficients Mn are given by: 110 

1

20
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2
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n
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β π

π µ β

  =    
 (4)

 111 
Fig. 4: Zoom on the rotor 112 

It can be shown that the Poisson equation (2), as well as the homogeneous Neumann boundary conditions dA/dn=0 on the segments 113 
[BC], [DE] and [CD] (Fig. 4) are satisfied if the following expression for the potential is chosen, in the main coordinate system 114 
(0xy): 115 
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The unknown coefficients cn (n≥0) are determined in the next sections. 116 
For Zone II, a Laplace Equation must be solved: 117 

( ) 0IIA∆ =  (6)

Moreover, in this zone, in the airgap (Zone II), an anti-periodicity condition has to be taken into account: 118 

( ) ( ) ( ) ( ), ,II IIA x y A x yτ+ = −  (7)

This implies that the Fourier series only present odd terms: 119 

( ) ( ) ( ) ( )

( ) ( )
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The Laplace equation (6) implies: 120 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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For Zone I, a generic slot l is considered, with its local coordinate system (0l,Xl,Yl) (Fig. 5). 121 
Due to the currents, the equation in the slot is a Poisson equation: 122 

( )
0.l

ljµΙ,∆Α = −  (10)

The homogeneous solution can be found by solving the corresponding Laplace equation (( ) 0l
h
Ι,∆Α = ): 123 

( ) ( ) ( ) ( ) ( ),
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1

, cosh cosI l l l
l l m l e lh

e em

A X Y a a m Y h m X
w w

π π

≥
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(11)
A particular solution to the Poisson equation ( ),I l

p ljµ0∆Α = − must be found. The following quadratic form can be proposed as a 124 

particular solution in the slot: 125 

( ) ( ) ( )2, 1
,

2
I l

p l l l l eA X Y j Y hµ0= − −  (12)

 126 
Fig. 5: Zoom on a stator slot 127 

In the main (0xy) axis system, it can be found: 128 

 129 
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  130 
 131 

C. Boundary conditions between all the different domains 132 

Starting from the mathematical expressions of the previous section, it is possible to write the boundary conditions between all the 133 
zones, and determine the series’ coefficients. As known in electromagnetic theory, the boundary conditions to satisfy are: 134 

− the continuity of the vector potential 135 
− the continuity of its normal derivative 136 

The following notations are introduced: 137 

− ( ) ( )( ) cosh 2 1 = − + 
 k

II
acK k h e

π
τ

 138 

− ( ) ( )( ) sinh 2 1 = − + 
 k

II
asK k h e

π
τ

 139 
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 144 
1) Boundary conditions between Zone I and Zone II. 145 

The continuity of the potential between Zone I and Zone II can be written, in mathematical terms, as: 146 
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Using the boundary integral method explained in [29][30], the following equation can be obtained: 147 
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And, for each slot l: 148 
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The normalized coefficients ( )
,
l

C kI , ( )
,
l

S kI , ( )
,( , )
l

C m kα , and ( )
,( , )
l

S m kα  are given in Appendix II. 149 

Concerning the normal derivative of the potential between Zone I and Zone II, it is possible to write: 150 
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Using again the boundary integral method [29][30], it can be found: 151 
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And also: 152 
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2) Boundary conditions between Zone II and Zone III. 153 
Using the same method as in the previous section for taking into account the boundary conditions, it is possible to get the following 154 
relation, for each rotor displacement Xd, for what concerns the potential continuity between Zone II and Zone III: 155 
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And also:  156 
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The definitions and expressions of the normalized numbers ,C kJ , ,S kJ , ,( , )C m kβ , and ,( , )S m kβ  are given in appendix II. 157 

For the continuity of the normal derivative of the potential between Zones II and III, the two following equations are obtained: 158 

( ) ( )1 2( ) ( ) ( )
,( , )

1

1

1

2 1 ≥

∀ ≥

′ ′− =
− ∑k k n

II II III
n C n kk kc s c

n

k

b K b K nc K
k

β  (22)

( ) ( )3 4( ) ( ) ( )
,( , )

1

1

1

2 1 ≥

∀ ≥

′ ′− =
− ∑k k n

II II III
n S n kk kc s c

n

k

b K b K nc K
k

β
 (23)

D. Solution of the problem. 159 

1) Matrix formulation 160 
All the series are limited to a finite number of terms, called N. This number is computed in the next part, so as to offer the best 161 

compromise between the computation time, and the accuracy. 162 
The unknown parameters are, using the vector notation: 163 
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Equation (16) can be written for all the numbers m between 1 and N. So the following matrix equation is obtained, for all slot number l 165 
between 1 and qs: 166 
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(24)
The following square matrixes for each slot are introduced (see appendix II): 167 
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,( , ) ( , ) 1,
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∈

   =   
 and 

[ ]2
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. 168 

The other diagonal matrixes are also defined in Appendix II. 169 
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Equations (18) and (19), for each k between 1 and N, lead to the following matrix relations: 170 
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The matrix [INV], as well as the following matrixes, are also defined in Appendix II:
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 171 

Thanks to (16), it can be obtained: 172 
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And, from (21): 173 
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The matrix 
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   =     and 
[ ]2,( , ) ( , ) 1,S S n k n k N

β β
∈
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Equations (22) and (23) lead to the following matrix equations: 176 
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2) Numerical computation of the problem. 177 
Recalling the equations’ system to solve: 178 
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If qs=3, a system of 8 equations with 8 unknown vectors must be solved. Equations (25) and (26) are substituted in Equation (24). 179 
In order to reduce the number of equations, the following process is proposed: in a first stage, by an analytical substitution, we can 180 
express this system with only the unknown series’ coefficients vectors: [b(1)][b(2)][b(3)][b(4)]. 181 
After algebraic substitutions, the system can be written under the form: 182 

[ ] [ ] [ ].M b P=  (32)

Where the unknown vector [b] is [ ]

( )

( )

( )

( )

1

2

3

4

b

b
b

b

b

  
  
    
 =
  
  
     

. The matrix [M] and the vector [P] are obtained by linear combinations of the matrixes 183 

introduced in the previous section. 184 
To solve the linear system (32), it is necessary to perform a numerical inversion of the matrix [M]. It is also necessary to choose the 185 
number N of harmonics. For that, the following numerical procedure may be proposed: firstly, it is possible to compute the inversion 186 
of the system for N=1, which is very fast, since the size of the matrix [M] is just 4. Then the following algorithm is applied. 187 
Suppose that we have just computed the solution for a certain number N of harmonics. For this number, the matrix [M] is called [MN], 188 
[V] is called [VN], and the solution [bN] is: 189 

[ ] ( ) ( ) ( ) ( )1 2 3 4
TT T T T

N N N N Nb b b b b
        =                 

 190 

To compute the vector solution [bN+1] for N+1 harmonics, which is solution of the equation [MN+1].[bN+1]=[V N+1], a Gauss-Siedel 191 
algorithm can be used. In this inversion method, a first initialisation of the solution is required. Instead of taking the zero vector for the 192 
initialisation, we use in the initial step the solution of the previous system with N harmonics, more precisely: 193 

( ) ( ) ( ) ( )1 2 3 4
1,0 0 0 0 0

TT T T T

N N N N Nb b b b b+
          =                   

 194 

So the number of iterations of the Gauss-Seidel process is reduced in order to get the solution [bN+1]. 195 
We stop increasing the number N when the difference of the solutions between two iterations becomes as small as wanted (in practice 196 
less than 1% in relative value). So the number N of harmonics is not fixed, but is optimized for each machine’s geometry. 197 

V. COMPARISON WITH FINITE ELEMENTS 198 

For the finite element verification, as well as for the torque computations, the geometry presented in Table II is used. Moreover, for the 199 
torque computations, the mean airgap radius (i.e. the mid airgap radius Rm of the radial flux machine, or the mean active radius of the 200 
axial flux machine) is assumed to be 0.1m (see Appendix I for a detailed discussion about this point). In the finite element code, in 201 
order to be consistent with the assumption of infinite iron permeability made for the analytical model, a high relative permeability is 202 
assigned to the ferromagnetic parts (in practice, this relative permeability is taken equal to 1000). A discussion about the consequences 203 
of this linear model is provided in Appendix I: the results are compared with ones obtained using non linear B-H experimental 204 
relationships. 205 
 206 

TABLE II 207 
GEOMETRY OF THE MACHINE CHOSEN FOR THE INDUCTION AND TORQUE COMPUTATIONS (ANALYTICAL AND FINITE ELEMENT VERIFICATION ) 208 

Notation Numerical values 

ha 5mm 
e 2mm 
ecr 10mm 
ecs 10mm 
he 30mm 
τ 60mm 
βa1 0.6 
βa2 0.8 
we 10mm 
wd 10mm 
H 100mm 
Br 1.2T 
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A. The magnets’ field. 209 

The no-load airgap magnetic field (created by the magnets, when all the stator currents are zero) has been computed, both 210 
analytically and by finite elements. On Fig. 6, a contour [AB] in the middle of the airgap is chosen, on which we shall plot the 211 
induction caused by the magnets (all the current densities j1=j2=j3=0). This segment length is equal to the pole pitch τ. The results are 212 
shown on Fig. 7, Fig. 8 and Fig. 9, respectively for the potential, the Bx and the By induction components. The agreement is satisfying. 213 

 214 

 215 
Fig. 6: The plot contour [AB] in the airgap 216 

 217 

 218 
Fig. 7: The potential caused by the magnets on the segment [AB] 219 

 220 

 221 
Fig. 8: The Bx induction caused by the magnets on the segment [AB] 222 
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 224 
Fig. 9: The By induction caused by the magnets on the segment [AB] 225 

B. The stator currents’field. 226 

The results of the field caused by the stator currents (in the computation procedure, Br=0) are now analyzed. According to the 227 
Park theory, a d axis current is applied. Since the system is linear, the calculus is performed for a current of just 1A in each slot. So, 228 
on Fig. 6, current densities of j1=1A/Sslot (Sslot is the slot surface), j2=j1/2, and, j3=-j1/2 have been applied. For the q axis current, the 229 
rotor undergoes a translation of a half pole pitch in comparison with the d axis calculation. The results for the d axis currents are 230 
shown on Fig. 10, Fig. 11 and Fig. 12, in good accordance with finite elements. 231 

 232 
Fig. 10: The potential caused by the d axis currents on the segment [AB] 233 

 234 
 235 

 236 
Fig. 11: The Bx induction caused by the d axis currents on [AB] 237 
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 239 
Fig. 12: The By induction caused by the d axis currents on [AB] 240 

 241 
The results obtained using the two methods are in good agreement. The time necessary for the analytical computation is about 30% 242 
less than the time necessary for the finite element calculation. 243 

VI.  THE INSTANTANEOUS TORQUE COMPUTATION 244 

A. The calculation method 245 

The analytical model can be used for the computation of the instantaneous torque. The analytical computation is performed as the 246 
following: the Maxwell stress tensor formula is applied on the [AB] segment of Fig. 6 located in the middle of the airgap, giving the 247 
tangential effort on this segment as: 248 

[ ]
t x y

AB

F H B dx= ∫  (33)

This analytical calculation is repeated for each elementary position of the rotor. 249 
The torque calculation with finite elements is based on the same principles, but the field and induction and then the Maxwell stress 250 
tensor are computed numerically on the [AB] segment. The spatial period of the torque is a tooth pitch. The tooth pitch has been 251 
decomposed in ten elementary positions (both for finite element or analytical computation). For each of them, the calculation has been 252 
carried out, and a cubic interpolation has been applied between the ten points. This strategy permits to save computation time, without 253 
decreasing the model accuracy. 254 
In the Park formalism, a q current of 800A per slot and a d current per slot of -100A are applied. The total torque is shown on Fig. 13. 255 
The analytical and finite elements calculations are in good agreement: the mean torque is around 170Nm for the two methods. 256 

 257 
Fig. 13: The total torque over a tooth pich 258 

 259 
The cogging torque is given on Fig. 14, (it is computed with zero currents). Its mean value is zero (as expected), although its variations 260 
are quite high (50Nm). The discrepancy of 8% on the maximum value can be explained by the fact that the instantaneous torque 261 
computation is very sensitive to the number N of harmonics chosen for the analytical computation. Indeed, the torque is obtained by 262 
multiplying two derivatives of the potential: the normal induction By and the tangential field Hx=Bx/µ0. These derivatives are quite 263 
irregular signals (see the previous section), and an important number of harmonics can be required to represent them with a good 264 
precision. Here, as explained in Section IV.D.2, we stopped increasing the number N of harmonics if the [b] vectors between two 265 
iterations do not present more than 1% of difference in relative value. If we choose a lowest error, the torques computed by finite 266 
elements and analytically become closer (a difference of 4% is observed for a relative error of 0.3%). However, this solution does not 267 
appear as optimal, because it increases much the computation time, and then cannot be used for a pre-design process. We believe that a 268 
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difference of about 10% is acceptable in a pre-design process stage. The most important is however to get an exact mean value, which 269 
is the case, even for a small number of harmonics. 270 

 271 

 272 
Fig. 14: The cogging torque over a tooth pich 273 

 274 
The reluctant torque, which is due only to the stator currents (the remanent induction of the magnets is put to zero), is presented in Fig. 275 
15. The fluctuation is quite important, but the mean value remain weak (10Nm) compared to the total torque, mainly due to the hybrid 276 
torque component. This one is obtained by subtracting to the total torque the cogging and the reluctant torque (Fig. 16). 277 

 278 
Fig. 15: The reluctant torque over a tooth pich 279 

 280 

 281 
Fig. 16: The hybrid torque over a tooth pich 282 

B. Discussion 283 

It has been shown that the analytical method gives results in good agreement with finite elements. Nevertheless, it could be 284 
interesting to illustrate the limit of this method. 285 

The main limit of the method consists in the fact that saturation of the machine’s ferromagnetic parts is not taken into account. So 286 
torque calculations are performed in this section using the finite element method including ferromagnetic material saturation (the FeSi 287 
B-H curve given in Appendix I), and the results are compared with the analytical model. This calculation permits to understand the 288 
consequences of this limitation on the torque computation. 289 
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So a high q axis current (up to 500A) is applied, so as to create saturation, and this case is studied using finite elements 290 
computations. The mean torque is computed over a tooth pitch, as in the previous section. The torque curve taking into account 291 
saturation is compared with the one derived from our analytical linear model. This work has been done for two values of d axis 292 
current. The first is for a zero d axis current (Fig. 17), and the second is for a d axis current per slot of nId=-600A (Fig. 18). 293 
The first fact to notice is that the saturation phenomena reduces the total flux in the machine, especially when the q axis current is high 294 
Therefore the torque is not as high as in the non saturated case. 295 
Another point is the effect of the d axis current. A strong d axis current permits to increase the torque significantly, since it allows a 296 
reluctant torque component. But it also permits a reduction of the effect of saturation (Fig. 18), because the total flux of the machine is 297 
weakened. It could be shown in the same way that flux weakening also decreases the iron losses. 298 

 299 
Fig. 17: Mean torque with and without saturation (nId=0) 300 

 301 

 302 
Fig. 18: Mean torque with and without saturation (nId=-600A) 303 

VII.  CONCLUSION 304 

An analytical method was developed in order to take into account the stator and rotor saliency of the machine, for the computation of 305 
the magnetic induction in the machine airgap. This permits to compute precisely the machine’s torque. In a coming paper, we are 306 
going to use this model for the computation of the inductions in the ferromagnetic parts of the machine, so as to be able to evaluate the 307 
iron losses, taking into account the stator leakage flux. 308 
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APPENDIX 1 311 

In this appendix, the two fundamental simplifying assumptions of this work (no curvature effect, no saturation) are discussed. 312 

A. The curvature effect 313 

It is possible to use the model presented in this article for a radial flux machine, on the condition of neglecting the curvature effect. It 314 
means that the real machine is made equivalent to a linear actuator, as shown in Fig. 19. The pole pitch τ of the linear actuator is 315 
chosen equal to the pole pitch of the radial flux machine at is mean airgap radius Rm (i.e. the mid airgap radius). All the other radial 316 
dimensions (magnet thickness ha, airgap width e, slot dept he…) are the same for both actuators. The relative magnet opening on the 317 
pole pitch and the relative slot opening on the tooth pitch are also identical. 318 
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 319 
Fig. 19: Development of the radial flux machine to its mean radius to obtain the equivalent linear actuator 320 

This approximation is justified if the mean airgap radius Rm is important compared to the other radial dimensions (magnet thickness, 321 
airgap width, slot dept…). To understand to what extend the approximation can be done, finite element calculations have been carried 322 
out with the radial flux machine, and with the equivalent linear actuator, in order to compare the results. The machine geometry used 323 
in the comparison is given in Table III. The ferromagnetic parts are taken into account using a linear material of relative magnetic 324 
permeability equal to 1000. 325 

TABLE III 326 
GEOMETRICAL PARAMETERS OF THE RADIAL FLUX MACHINE 327 

Description Notation 
Numerical value 

Dimensions along the radial direction 
Mean airgap radius Rm 0.076m 

Airgap width e 0.002m 
Slot dept he 0.03m 

Magnet thickness ha Interval [0.001m;0.01m] 
Dimensions along the orthoradial direction 

Pole pair number p 4 
Pole pitch τ 0.06m 

Magnet relative opening with 
regard to the pole pitch 

βa1 (0<βa1<1) 
0.6 

Rotor inter-teeth space relative 
opening with regard to the pole 

pitch 

βa2 
(βa1<βa2<1) 

0.8 

Stator relative slot opening with 
regard to the tooth pitch 

βe 
(0<βe<1) 

0.5 

Dimensions along the z direction 
Active thickness of the machine 

along the z axis 
H 

0.1m 

Physical data 
Remanent induction of the 
magnets (NdFeB) at room 

temperature 
Br 1.2T 

 328 
For example, the no-load flux is studied. The parameter of importance is the value of the ratio ha/Rm between the magnet radial 329 
thickness and the mean airgap radius. The magnet thickness varies between 0.001m and 0.01m. The ratio between the no-load flux of 330 
the two actuators is shown in Fig. 20. 331 

 332 
Fig. 20: Ratio between the no-load fluxes obtained in the radial flux machine and the equivalent linear machine 333 

As expected, the two fluxes are nearly the same for small magnet thicknesses with regard to the pole pitch, whereas some discrepancy 334 
appears by increasing the magnet thickness. However, the difference is never more than 7% in relative value. Moreover, a magnet 335 
thickness of 0.01m (for which the difference is the highest) is not useful, because, as shown in Fig. 21, no significant increase of the 336 
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no-load flux appears between the two last points of the magnet thicknesses. Thus it can be concluded that the error on the no-load flux 337 
made by the development of the radial flux machine to the equivalent linear one is restricted to a few percent in relative value. 338 
However, if this error has to be corrected, some authors have proposed methods based on conformal mapping [29], in order to 339 
rigorously transform the radial flux machine to an equivalent linear actuator. This conclusion allows us to compute the magnetic field 340 
in the linear equivalent actuator (in Cartesian coordinates), and then apply the results to the case of the radial flux machine. 341 

 342 
Fig. 21: No-load flux in the radial flux machine (in function of the magnet thickness ha) 343 

It can also be useful to check if the inductions are locally also the same for the two kinds of machines. For that, it is proposed to plot in 344 
Fig. 22 and Fig. 23 the normal and the tangential inductions in the middle of the airgap (dotted red line in Fig. 19). Indeed these 345 
inductions are involved in the cogging torque computation, and of course in the no-load flux calculation (the no-load flux is the 346 
integral of the normal induction component). It can be seen that the waveforms are nearly identical, which demonstrates the validity of 347 
the mean radius development also for the local induction computation. 348 

 349 
Fig. 22: No-load induction (normal component) in the radial flux machine and in the equivalent linear one (for a magnet thickness ha=0.0035m) on a line located in the 350 

middle of the airgap (dotted red line of Fig. 19) 351 

 352 

 353 
Fig. 23: No-load induction (tangential component) in the radial flux machine and in the equivalent linear one (for a magnet thickness ha=0.0035m) on a line located in 354 

the middle of the airgap (dotted red line of Fig. 19) 355 

B. The saturation effect 356 

The analytical model implies that the ferromagnetic parts are assumed to have an infinite magnetic permeability. It is appropriate to 357 
compare the results provided by this model with the ones obtained with real non-linear B-H anhysteretic relationships experimentally 358 
measured in Iron-Silicon (FeSi) and Iron-Cobalt (FeCo) laminations (Fig. 24). The main advantage of Iron-Cobalt material is its high 359 

0.02 0.04 0.06 0.08 0.1 0.12
0

0.005

0.01

0.015

0.02

0.025

0.03

ha/Rm

Φ
ra

di
al

 (
W

b)

0 0.02 0.04 0.06
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x or r.θ (m)

B
.n

 (
T

)

 

 

Radial machine

Linear machine

0 0.02 0.04 0.06
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

x or r.θ (m)

B
.t 

(T
)

 

 

Radial machine

Linear machine



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

18 

saturation magnetization (nearly 2.3T), and high initial permeability. Its drawback is its high cost and low resistivity, which implies 360 
high dynamic loss. The computations are then carried out using a non-linear finite element code. 361 

 362 
Fig. 24: Non-linear B-H anhysteretic relationships experimentally obtained in FeSi and FeCo laminations 363 

In this study, the same geometry as in Table II is adopted. The By inductions obtained on the [AB] segment (Fig. 6), using the 364 
analytical and the non-linear finite element models, are plotted in Fig. 25 for no-load excitation conditions. The analytical model and 365 
the non-linear finite element model with the FeCo curve provide identical results, while a decrease of the airgap induction can be seen 366 
with the FeSi material. This decrease is responsible of an error of 8% on the total no-load flux between the analytical model, and the 367 
model using the FeSi curve. 368 

 369 
Fig. 25: By induction obtained on the [AB] segment (Fig. 6) for the analytical model, and the non-linear finite element models using the FeCo material and the FeSi 370 

material (no-load excitation conditions) 371 

In Fig. 26, the same analysis has been repeated, being this time under field weakening conditions: in addition to the magnets’ field, a d 372 
axis current has been added (nId=-600A/m, see Section VI.B). The level and the waveform shape has been changed compared to the 373 
previous case in which only the no-load flux was considered. It is interesting to notice that the field weakening permits to reduce the 374 
saturation level of the machine, and then justify the use of the linear analytical model. Indeed the difference on the fluxes between the 375 
linear model and the FeSi saturated model is now 3% in relative value, whereas it was 8% under no-load condition. 376 

 377 
Fig. 26: By induction obtained on the [AB] segment for the analytical model, and the non-linear finite element models using the FeCo material and the FeSi material 378 

(field weakening condition: superposition of the magnets’ field and d axis current nId=-600A/m) 379 

To conclude, it must be said that the saturation effect can decrease the airgap induction level, and then the torque (see Section VI for a 380 
detailed discussion). The flux weakening reduces the saturation effect. However, for the studied geometry, this effect is limited to a 381 
decrease of 10% of the airgap induction between the analytical model and the non-linear model using FeSi laminations. For FeCo 382 
laminations, due to the very high saturation level of this material, the saturation do not need to be taken into account, justifying the use 383 
of the analytical model. 384 
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It must be noticed that the saturation effect can be taken into account using the model proposed by the author of [31]. The decrease of 385 
the airgap induction due to the saturation effect is modeled by a fictitious increase of the airgap thickness in the analytical 386 
computations. 387 
 388 
 389 

APPENDIX 2 390 

The numbers α introduced in for the continuity conditions were defined the formulas: 391 
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The different normalized coefficients for the potential continuity equalities between Zone I and Zone II are given by: 392 
 393 
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When the equations are put under a matrix formulation, it is convenient to introduce the following diagonal matrix: 394 
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