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EIGENVALUE ASYMPTOTICS FOR SCHRÖDINGER

OPERATORS ON SPARSE GRAPHS

MICHEL BONNEFONT, SYLVAIN GOLÉNIA, AND MATTHIAS KELLER

Abstract. We consider Schrödinger operators on sparse graphs. The geomet-
ric definition of sparseness turn out to be equivalent to a functional inequality
for the Laplacian. In consequence, sparseness has in turn strong spectral and
functional analytic consequences. Specifically, one consequence is that it allows
to completely describe the form domain. Moreover, as another consequence it
leads to a characterization for discreteness of the spectrum. In this case we
determine the first order of the corresponding eigenvalue asymptotics.

1. Introduction

The spectral theory of discrete Laplacians on finite or infinite graphs has drawn
a lot of attention for decades. One important aspect is to understand the relations
between the geometry of the graph and the spectrum of the Laplacian. Often a
particular focus lies on the study of the bottom of the spectrum and the eigenvalues
below the essential spectrum.

Certainly the most well-known estimates for the bottom of the spectrum of
Laplacians on infinite graphs are so called isoperimetric estimates or Cheeger in-
equalities. Starting with [D1] in the case of infinite graphs, these inequalities were
intensively studied and resulted in huge body of literature, where we here mention
only [BHJ, BKW, D2, DK, F, M1, M2, K1, KL2, Woj1]. In certain more spe-
cific geometric situations the bottom of the spectrum might be estimated in terms
of curvature, see [BJL, H, JL, K1, K2, KP, LY, Woe]. There are various other
more recent approaches such as Hardy inequalities in [G] and summability criteria
involving the boundary and volume of balls in [KLW].

In this work we focus on sparse graphs to study discreteness of spectrum and
eigenvalue asymptotics. In a moral sense, the term sparse means that there are
not ‘too many’ edges, however, throughout the years various different definitions
were investigated. We mention here [EGS, L] as seminal works which are closely
related to our definitions. As it is impossible to give a complete discussion of
the development, we refer to some selected more recent works such as [AABL, B,
LS, M2] and references therein which also illustrates the great variety of possible
definitions. Here, we discuss three notions of sparseness that result in a hierarchy
of very general classes of graphs.

Let us highlight the work of Mohar [M3], where large eigenvalues of the adja-
cency matrix on finite graphs are studied. Although our situation of infinite graphs
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with unbounded geometry requires fundamentally different techniques – functional
analytic rather than combinatorial – in spirit our work is certainly closely related.

The techniques used in this paper owe on the one hand to considerations of
isoperimetric estimates as well as a scheme developed in [G] for the special case of
trees. In particular, we show that a notion of sparseness is a geometric characteri-
zation for an inequality of the type

(1− a) deg−k ≤ ∆ ≤ (1 + a) deg+k

for some a ∈ (0, 1), k ≥ 0 which holds in the form sense (precise definitions and
details will be given below). The moral of this inequality is that the asymptotic
behavior of the Laplacian ∆ is controlled by the vertex degree function deg (the
smaller a the better the control).

Furthermore, such an inequality has very strong consequences which follow from
well-known functional analytic principles. These consequences include an explicit
description of the form domain, characterization for discreteness of spectrum and
eigenvalue asymptotics.

Let us set up the framework. Here, a graph G is a pair (V ,E ), where V denotes
a countable set of vertices and E : V × V → {0, 1} is a symmetric function with
zero diagonal determining the edges. We say two vertices x and y are adjacent or
neighbors whenever E (x, y) = E (y, x) = 1. In this case, we write x ∼ y and we
call (x, y) and (x, y) the (directed) edges connecting x and y. We assume that G is
locally finite that is each vertex has only finitely many neighbors. For any finite set
W ⊆ V , the induced subgraph GW := (W ,EW ) is defined by setting EW := E |W ×W ,
i.e., an edge is contained in GW if and only if both of its vertices are in W .

We consider the complex Hilbert space ℓ2(V ) := {ϕ : V → C such that
∑

x∈V
|ϕ(x)|2 < ∞} endowed with the scalar product 〈ϕ, ψ〉 :=

∑

x∈V
ϕ(x)ψ(x),

ϕ, ψ ∈ ℓ2(V ).
For a function g : V → C, we denote the operator of multiplication by g on

ℓ2(V ) given by ϕ 7→ gϕ and domain D(g) := {ϕ ∈ ℓ2(V ) | gϕ ∈ ℓ2(V )} with slight
abuse of notation also by g.

Let q : V → [0,∞). We consider the Schrödinger operator ∆+ q defined as

D(∆ + q) :=
{

ϕ ∈ ℓ2(V ) |
(

v 7→
∑

w∼v

(ϕ(v)− ϕ(w)) + q(v)ϕ(v)
)

∈ ℓ2(V )
}

(∆ + q)ϕ(v) :=
∑

w∼v

(ϕ(v)− ϕ(w)) + q(v)ϕ(v).

The operator is non-negative and selfadjoint as it is essentially selfadjoint on Cc(V ),
the set of finitely supported functions V → R, (confer [Woj1, Theorem 1.3.1], [KL1,
Theorem 6]). In Section 2 we will allow for potentials whose negative part is form
bounded with bound strictly less than one. Moreover, in Section 4 we consider also
magnetic Schrödinger operators.

As mentioned above sparse graphs have already been introduced in various con-
texts with varying definitions. In this article we also treat various natural general-
izations of the concept. In this introduction we stick to an intermediate situation.

Definition. A graph G := (V ,E ) is called k-sparse if for any finite set W ⊆ V

the induced subgraph GW := (W ,EW ) satisfies

2|EW | ≤ k|W |,
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where |A| denotes the cardinality of a finite set A and we set

|EW | := 1

2
|{(x, y) ∈ W × W | EW (x, y) = 1}|,

that is we count the non-oriented edges in GW .

Examples of sparse graphs are planar graphs and, in particular, trees. We refer
to Section 6 for more examples.

For a function g : V → R and a finite set W ⊆ V , we denote

g(W ) :=
∑

x∈W

g(x).

Moreover, we define

lim inf
|x|→∞

g(x) := sup
W ⊂V finite

inf
x∈V \W

g(x), lim sup
|x|→∞

g(x) := inf
W ⊂V finite

sup
x∈V \W

g(x).

For two selfadjoint operators T1, T2 on a Hilbert space and a subspace D0 ⊆ D(T1)∩
D(T2) we write T1 ≤ T2 on D0 if 〈T1ϕ,ϕ〉 ≤ 〈T2ϕ,ϕ〉 for all ϕ ∈ D0. Moreover, for a
selfadjoint semi-bounded operator T on a Hilbert space, we denote the eigenvalues
below the essential spectrum by λn(T ), n ≥ 0, with increasing order counted with
multiplicity.

The next theorem is a special case of the more general Theorem 2.2 in Section 2.
It illustrates our results in the case of sparse graphs introduced above and includes
the case of trees, [G, Theorem 1.1], as a special case. While the proof in [G] uses a
Hardy inequality, we rely on some new ideas which have their roots in isoperimetric
techniques. The proof is given in Section 2.2.

Theorem 1.1. Let G := (V ,E ) be a k-sparse graph and q : V → [0,∞). Then,
we have the following:

(a) For all 0 < ε ≤ 1,

(1− ε)(deg+q)− k

2

(

1

ε
− ε

)

≤ ∆+ q ≤ (1 + ε)(deg+q) +
k

2

(

1

ε
− ε

)

,

on Cc(V ).
(b) D

(

(∆ + q)1/2
)

= D
(

(deg + q)1/2
)

.
(c) The operator ∆+ q has purely discrete spectrum if and only if

lim inf
|x|→∞

(deg + q)(x) = ∞.

In this case, we obtain

lim inf
λ→∞

λn(∆ + q)

λn(deg + q)
= 1.

As a corollary, we obtain following estimate for the bottom and the top of the
(essential) spectrum.

Corollary 1.2. Let G := (V ,E ) be a k-sparse graph and q : V → [0,∞). Define
d := infx∈V (deg+q)(x) and D := supx∈V (deg+q)(x). Assume d < k ≤ D < +∞,
then

d− 2

√

k

2

(

d− k

2

)

≤ inf σ(∆ + q) ≤ supσ(∆ + q) ≤ D − 2

√

k

2

(

D − k

2

)

.
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Define dess := lim inf |x|→∞(deg+q)(x) and Dess := lim sup|x|→∞(deg+q)(x). As-
sume dess < k ≤ Dess < +∞, then

dess−2

√

k

2

(

dess −
k

2

)

≤ inf σess(∆+q) ≤ supσess(∆+q) ≤ Dess−2

√

k

2

(

Dess −
k

2

)

.

Proof of Corollary 1.2. The conclusion follows by taking ε = min
(√

k
2d−k , 1

)

in

(a) in of Theorem 1.1. �

Remark 1.3. The bounds in Corollary 1.2 are optimal for the bottom and the top
of the (essential) spectrum in the case of regular trees.

The paper is structured as follows. In the next section an extension of the notion
of sparseness is introduced which is shown to be equivalent to a functional inequality
and equality of the form domains of ∆ and deg. In Section 3 we consider almost
sparse graphs for which we obtain precise eigenvalue asymptotics. Furthermore,
in Section 4 we shortly discuss magnetic Schrödinger operators. Our notion of
sparseness has very explicit but non-trivial connections to isoperimetric inequalities
which are made precise in Section 5. Finally, in Section 6 we discuss some examples.

2. A geometric characterization of the form domain

In this section we characterize equality of the form domains of ∆+ q and deg+q
by a geometric property. This geometric property is a generalization of the notion
of sparseness from the introduction. Before we come to this definition, we introduce
the class of potentials that is treated in this paper.

Let α > 0. We say a potential q : V → R is in the class Kα if there is Cα ≥ 0
such that

q− ≤ α(∆ + q+) + Cα,

where q± := max(±q, 0). For α ∈ (0, 1), we define the operator ∆+ q via the form
sum of the operators ∆+ q+ and −q− (i.e., by the KLMN Theorem, see e.g., [RS,
Theorem X.17]). Note that ∆+ q is bounded from below and

D(|∆+ q| 12 ) = D((∆ + q+)
1
2 ) = D(∆

1
2 ) ∩ D(q

1
2
+),

where |∆ + q| is defined by the spectral theorem. The last equality follows from
[GKS, Theorem 5.6]. in the sense of functions and forms.

An other important class are the potentials

K0+ :=
⋂

α∈(0,1)

Kα.

In our context of sparseness, we can characterize the class K0+ to be the po-
tentials whose negative part q− is morally o(deg+q+), see Corollary 2.9. Let us
mention that if q− is in the Kato class with respect to ∆ + q+, i.e., if we have
lim supt→0+ ‖e−t(∆+q+)q−‖∞ = 0, then q := q+ − q− ∈ K0+ by [SV, Theorem 3.1].

Next, we come to an extension of the notion of sparseness. For a set W ⊆ V ,
let the boundary ∂W of W be the set of edges emanating from W

∂W := {(x, y) ∈ W × V \ W | x ∼ y}.
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Definition. Let G := (V ,E ) be a graph and q : V → R. For given a ≥ 0 and
k ≥ 0, we say that (G , q) is (a, k)-sparse if for any finite set W ⊆ V the induced
subgraph GW := (W ,EW ) satisfies

2|EW | ≤ k|W |+ a(|∂W |+ q+(W )).

Remark 2.1. (a) Observe that the definition depends only on q+. The negative
part of q will be taken in account through the hypothesis Kα or K0+ in our theo-
rems.
(b) If (G , q) is (a, k)-sparse, then (G , q′) is (a, k)-sparse for every q′ ≥ q.
(c) As mentioned above there is a great variety of definitions which were so far
predominantly established for (families of) finite graphs. For example it is asked
that |E | = C|V | in [EGS], |EW | ≤ k|W |+ l in [L, LS], |E | ∈ O(|V |) in [AABL] and
deg(W ) ≤ k|W | in [M3].

We now characterize the equality of the form domains in geometric terms.

Theorem 2.2. Let G := (V ,E ) be a graph and q ∈ Kα, α ∈ (0, 1). The following
assertions are equivalent:

(i) There are a, k ≥ 0 such that (G , q) is (a, k)-sparse.

(ii) There are ã ∈ (0, 1) and k̃ ≥ 0 such that on Cc(V )

(1− ã)(deg+q)− k̃ ≤ ∆+ q ≤ (1 + ã)(deg+q) + k̃.

(iii) There are ã ∈ (0, 1) and k̃ ≥ 0 such that on Cc(V )

(1− ã)(deg+q)− k̃ ≤ ∆+ q.

(iv) D(|∆+ q|1/2) = D(| deg+q|1/2).
Furthermore, ∆+ q has purely discrete spectrum if and only if

lim inf
|x|→∞

(deg + q)(x) = ∞.

In this case, we obtain

1− ã ≤ lim inf
n→∞

λn(∆ + q)

λn(deg+q)
≤ lim sup

n→∞

λn(∆ + q)

λn(deg+q)
≤ 1 + ã.

Before we come to the proof of Theorem 2.2, we summarize the relation be-
tween the sparseness parameters (a, k) and the constants (ã, k̃) in the inequality in
Theorem 2.2 (ii).

Remark 2.3. Roughly speaking a tends to ∞ as ã tends to 1− and a tends to
0+ as ã tends to 0+ and vice-versa. More precisely, Lemma 2.5 we obtain that for
given ã and k̃ the values of a and k can be chosen to be

a =
ã

1− ã
and k =

k̃

1− ã
.

Reciprocally, given a, k ≥ 0 and q : V → [0,∞), Lemma 2.7 distinguishes the case
where the graph is sparse a = 0 and a > 0. For a = 0 we may choose ã ∈ (0, 1)
arbitrary and

k̃ =
k

2

(1

ã
− ã
)

.
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For an (a, k)-sparse graph with a > 0 the precise constants are found below in
Lemma 2.7. Here, we discuss the asymptotics. For a→ 0+, we obtain

ã ≃
√
2a and k̃ ≃ k

2a
,

and for a→ ∞
ã ≃ 1− 3

8a2
and k̃ ≃ 3k

4a
.

In the case q ∈ Kα, the constants ã, k̃ from the case q ≥ 0 have to be replaced by
constants whose formula can be explicitly read from Lemma A.3. For α→ 0+, the
constant replacing ã tends to ã while the asymptotics of the constant replacing k̃
depend also on the behavior of Cα from the assumption q− ≤ α(∆ + q) + Cα.

Remark 2.4. (a) Observe that in the context of Theorem 2.2 statement (iv) is
equivalent to

(iv’) D(|∆+ q|1/2) = D((deg+q+)
1/2).

Indeed, (ii) implies the corresponding inequality for q = q+. Thus, as q ∈ Kα,

D(|∆+ q| 12 ) = D((∆ + q+)
1
2 ) = D((deg+q+)

1
2 ).

(b) The definition of the class K0+ is rather abstract. Indeed, Theorem 2.2 yields
a very concrete characterization of these potentials, see Corollary 2.9 below.
(c) Theorem 2.2 characterizes equality of the form domains. Another natural ques-
tion is under which circumstances the operator domains agree. For a discussion on
this matter we refer to [G, Section 4.1].

The rest of this section is devoted to the proof of the results which are divided
into three parts. The following three lemmas essentially show the equivalences
(i)⇔(ii)⇔(iii) providing the explicit dependence of (a, k) on (ã, k̃) and vice versa.
The third part uses general functional analytic principles collected in the appendix.

The first lemma shows (iii)⇒(i).

Lemma 2.5. Let G := (V ,E ) be a graph and q : V → R. If there are ã ∈ (0, 1)

and k̃ ≥ 0 such that for all f in Cc(V ),

(1− ã)〈f, (deg+q)f〉 − k̃‖f‖2 ≤ 〈f,∆f + qf〉,
then (G , q) is (a, k)-sparse with

a =
ã

1− ã
and k =

k̃

1− ã
.

Remark 2.6. We stress that we suppose solely that q : V → R and work with
∆|Cc(V ) + q|Cc(V ). We do not specify any self-adjoint extension of the latter.

Proof. Let f ∈ Cc(V ). By adding q− to the assumed inequality we obtain immedi-
ately

(1− ã)〈f, (deg+q+)f〉 − k̃‖f‖2 ≤ 〈f,∆f + q+f〉.
Let W ⊆ V be a finite set and denote by 1W the characteristic function of the set
W . We recall the basic equalities

deg(W ) = 2|EW |+ |∂W | and 〈1W ,∆1W 〉 = |∂W |.
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Therefore, applying the asserted inequality with f = 1W , we obtain

2|EW | ≤ k̃

1− ã
|W |+ ã

1− ã
(|∂W |+ q+(W )) .

This proves the statement. �

The second lemma gives (i)⇒(ii) for q ≥ 0.

Lemma 2.7. Let G := (V ,E ) be a graph and q : V → [0,∞). If there are a, k ≥ 0
such that (G , q) is (a, k)-sparse, then

(1− ã)(deg+q)− k̃ ≤ ∆+ q ≤ (1 + ã)(deg+q) + k̃.

on Cc(V ), where if (G , q) is sparse, i.e., a = 0, we may choose ã ∈ (0, 1) arbitrary
and

k̃ =
k

2

(1

ã
− ã
)

.

In the other case, i.e. a > 0, we may choose

ã =

√

min
(

1
4 , a

2
)

+ 2a+ a2

(1 + a)
and k̃ = max

(

max
(

3
2 ,

1
a − a

)

k

2(1 + a)
, 2k(1− ã)

)

.

Proof. Let f ∈ Cc(V ) be complex valued. Assume first that 〈f, (deg+q)f〉 < k‖f‖2.
In this case, remembering ∆ ≤ 2 deg, we can choose ã ∈ (0, 1) arbitrary and k̃ such
that

k̃ ≥ 2(1− ã)k.

So, assume 〈f, (deg+q)f〉 ≥ k‖f‖2. Using an area and a co-area formula (cf. [KL2,
Theorem 12 and Theorem 13]) with

Ωt := {x ∈ V | |f(x)|2 > t},
in the first step and the assumption of sparseness in the third step, we obtain

〈f,(deg+q)f〉 − k‖f‖2 =

∫ ∞

0

(

deg(Ωt) + q(Ωt)− k|Ωt|
)

dt

=

∫ ∞

0

(

2|EΩt
|+ |∂Ωt|+ q(Ωt)− k|Ωt|

)

dt

≤ (1 + a)

∫ ∞

0

|∂Ωt|+ q(Ωt)dt

=
(1 + a)

2

∑

x,y,x∼y

∣

∣|f(x)|2 − |f(y)|2
∣

∣+ (1 + a)
∑

x

q(x)|f(x)|2

≤ (1 + a)

2

∑

x,y,x∼y

|(f(x)− f(y))(f(x) + f(y))|+ (1 + a)
∑

x

q(x)|f(x)|2

≤ (1 + a)

2

(

∑

x,y,x∼y

|f(x)− f(y)|2 + 2
∑

x

q(x)|f(x)|2
)1/2

×
(

∑

x,y,x∼y

|f(x) + f(y)|2 + 2
∑

x

q(x)|f(x)|2
)1/2

= (1 + a)〈f, (∆ + q)f〉 1
2

(

2〈f, (deg+q)f〉 − 〈f, (∆ + q)f〉
)

1
2 ,
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where we used the Cauchy-Schwarz inequality in the last inequality and basic al-
gebraic manipulation in the last equality. Since the left hand side is non-negative
by the assumption 〈f, (deg+q)f〉 ≥ k‖f‖2, we can take square roots on both sides.
To shorten notation, we assume for the rest of the proof q ≡ 0 since the proof with
q 6= 0 is completely analogous.

Reordering the terms, yields

(1 + a)2〈f,∆f〉2 − 2(1 + a)2〈f, deg f〉〈f,∆f〉+ (〈f, (deg−k)f〉)2 ≤ 0.

Resolving the quadratic expression above gives,

〈f, deg f〉 −
√
δ ≤ 〈f,∆f〉 ≤ 〈f, deg f〉+

√
δ,

with

δ := 〈f, deg f〉2 − (1 + a)−2(〈f, (deg−k)f〉)2.
Using 4ξζ ≤ (ξ + ζ)2, ξ, ζ ≥ 0, for all 0 < λ < 1, we estimate δ as follows

(1 + a)2δ = (2a+ a2)〈f, deg f〉2 + k‖f‖2〈f, (2 deg−k)f〉

≤ (2a+ a2)〈f, deg f〉2 +
(

λ〈f, deg f〉+ k

2

(

1

λ
− λ

)

‖f‖2
)2

≤
(

√

λ2 + 2a+ a2〈f, deg f〉+ k

2

(

1

λ
− λ

)

‖f‖2
)2

.

If a = 0, i.e., the k-sparse case, then we take λ = ã to get

δ ≤ k‖f‖2〈f, 2 deg f〉 ≤
(

ã〈f, deg f〉+ k

2

(

1

ã
− ã

)

‖f‖2
)2

.

As k/2ã ≥ 2(1− ã)k, this proves the desired inequality with k̃ = k/2ã.
If a > 0, we take λ = min

(

1
2 , a
)

to get

(1 + a)2δ =

((
√

min

(

1

4
, a2
)

+ 2a+ a2

)

〈f, deg f〉+ k

2
max

(

3

2
,

(

1

a
− a

))

‖f‖2
)2

.

Keeping in mind the restriction k̃ ≥ 2(1− ã)k for the case 〈f, (deg+q)f〉 < k‖f‖2,
this gives the statement with the choice of (ã, k̃) in the statement of the lemma. �

The two lemmas above are sufficient to prove Theorem 2.2 for the case q ≥ 0. An
application of Lemma A.3 turns the lower bound of Lemma 2.7 into a corresponding
lower bound. This straightforward argument does not work for the upper bound.
However, the following surprising lemma shows that such a lower bound by deg
automatically implies the corresponding upper bound. There is a deeper reason
for this fact which shows up in the context of magnetic Schrödinger operators.
We present the non-magnetic version of the statement here for the sake of being
self-contained in this section. For the more conceptual and more general magnetic
version, we refer to Lemma 4.4.

Lemma 2.8 (Upside-Down-Lemma – non-magnetic version). Let G := (V ,E ) be

a graph and q : V → R. Assume there are ã ∈ (0, 1), k̃ ≥ 0 such that for all
f ∈ Cc(V ),

(1− ã)〈f, (deg+q)f〉 − k̃‖f‖2 ≤ 〈f,∆f + qf〉,



EIGENVALUE ASYMPTOTICS FOR SCHRÖDINGER OPERATORS ON SPARSE GRAPHS 9

then for all f ∈ Cc(V ), we also have

〈f,∆f + qf〉 ≤ (1 + ã)〈f, (deg+q)f〉+ k̃‖f‖2.
Proof. By a direct calculation we find for f ∈ Cc(V )

〈f, (2 deg−∆)f〉 = 1

2

∑

x,y∈V ,x∼y

(2|f(x)|2 + 2|f(y)|2)− |f(x)− f(y)|2)

=
1

2

∑

x,y,x∼y

|f(x) + f(y)|2 ≥ 1

2

∑

x,y,x∼y

||f(x)| − |f(y)||2

= 〈|f |,∆|f |〉.
Adding q to the inequality and using the assumption gives after reordering

〈f, (∆ + q)f〉 − 2〈f, (deg+q)f〉 ≤ −〈|f |, (∆ + q)|f |〉
≤ −(1− ã)〈|f |, (deg+q)|f |〉+ k̃〈|f |, |f |〉
= −(1− ã)〈f, (deg+q)f〉+ k̃〈f, f〉

which yields the assertion. �

Proof of Theorem 2.2. The implication (i)⇒(iii) follows from Lemma 2.7 applied
with q+ and from Lemma A.3 with q. The implication (iii)⇒(ii) follows from
the Upside-Down-Lemma above. Furthermore, (ii)⇒(i) is implied by Lemma 2.5.
The equivalence (ii)⇔(iv) follows from an application of the Closed Graph The-
orem, Theorem A.1. Finally, the statements about discreteness of spectrum and
eigenvalue asymptotics follow from an application of the Min-Max-Principle, The-
orem A.2. �

Proof of Theorem 1.1. (a) follows from Lemma 2.7. The other statements follow
directly from Theorem 2.2. �

As a corollary we can now determine the potentials in the class K0+ explicitly
and give necessary and sufficient criteria for potentials being in Kα, α ∈ (0, 1).

Corollary 2.9. Let (G , q) be an (a, k)-sparse graph for some a, k ≥ 0.

(a) The potential q is in K0+ if and only if for all α ∈ (0, 1) there is κα ≥ 0
such that

q− ≤ α(deg+q+) + κα.

(b) Let α ∈ (0, 1) and ã =
√

min(1/4, a2) + 2a+ a2/(1 + a) (as given by
Lemma 2.7). If there is κα ≥ 0 such that q− ≤ α(deg+q+) + κα, then
q ∈ Kα/(1−ã). On the other, hand if q ∈ Kα, then there is κα ≥ 0 such
that q− ≤ α(1 + ã)(deg+q+) + κα.

Proof. Using the assumption q− ≤ α(deg+q−) + κα and the lower bound of Theo-
rem 2.2 (ii), we infer

q− ≤ α(deg+q+) + κα ≤ α

(1− ã)
(∆ + q+) +

α

(1− ã)
k̃ + κα.

Conversely, q ∈ Kα and the upper bound of Theorem 2.2 (ii) yields

q− ≤ α(∆ + q+) + Cα ≤ α(1 + ã)(deg+q+) + αk̃ + Cα.

Hence, (a) follows. For (b), notice that ã =
√

min(1/4, a2) + 2a+ a2/(1 + a) by
Lemma 2.7. �
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3. Almost-sparseness and asymptotic of eigenvalues

In this section we prove better estimates on the eigenvalue asymptotics in a more
specific situation. Looking at the inequality in Theorem 2.2 (ii) it seems desirable
to have ã = 0. As this is impossible when the degree is unbounded, we consider a
sequence of ã that tends to 0. Keeping in mind Remark 2.3, this leads naturally to
the following definition.

Definition. Let G := (V ,E ) be a graph and q : V → R. We say (G , q) is almost
sparse if for all ε > 0 there is kε ≥ 0 such that (G , q) is (ε, kε)-sparse, i.e., for any
finite set W ⊆ V the induced subgraph GW := (W ,EW ) satisfies

2|EW | ≤ kε|W |+ ε (|∂W |+ q+(W )) .

Remark 3.1. (a) Every sparse graph G is almost sparse.
(b) For an almost sparse graph (G , q), every graph (G , q′) with q′ ≥ q is almost
sparse.

The main result of this section shows how the first order of the eigenvalue asymp-
totics in the case of discrete spectrum can be determined for almost sparse graphs.

Theorem 3.2. Let G := (V ,E ) be a graph and q ∈ K0+ . The following assertions
are equivalent:

(i) (G , q) is almost sparse.
(ii) For every ε > 0 there are kε ≥ 0 such that on Cc(V )

(1− ε)(deg+q)− kε ≤ ∆+ q ≤ (1 + ε)(deg+q) + kε.

(iii) For every ε > 0 there are kε ≥ 0 such that on Cc(V )

(1− ε)(deg+q)− kε ≤ ∆+ q.

Moreover, D((∆+q)1/2) = D((deg+q)1/2) and the operator ∆+q has purely discrete
spectrum if and only if lim inf |x|→∞(deg + q)(x) = ∞. In this case, we have

lim
n→∞

λn(∆ + q)

λn(deg+q)
= 1.

Proof. The statement is a direct application of Theorem 2.2 if one keeps track of
the constants given explicitly by Lemma 2.5, Lemma 2.7 and Lemma A.3. �

4. Magnetic Laplacians

In this section, we consider magnetic Schrödinger operators. Clearly, every lower
bound can be deduced from Kato’s inequality. However, for the eigenvalue asymp-
totics we also need to prove an upper bound.

We fix a phase

θ : V × V → R/2πZ such that θ(x, y) = −θ(y, x).
For a potential q : V → [0,∞) we consider the magnetic Schrödinger operator
∆θ + q defined as

D(∆θ + q) :=
{

ϕ ∈ ℓ2(V ) |
(

v 7→
∑

x∼y

(ϕ(x)− eiθ(x,y)ϕ(x)) + q(x)ϕ(x)
)

∈ ℓ2(V )
}

(∆θ + q)ϕ(x) :=
∑

x∼y

(ϕ(x)− eiθ(x,y)ϕ(y)) + q(x)ϕ(x).
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A computation for ϕ ∈ Cc(V ) gives

〈ϕ, (∆θ + q)ϕ〉 = 1

2

∑

x,y,x∼y

∣

∣

∣
ϕ(x)− eiθ(x,y)ϕ(y)

∣

∣

∣

2

+
∑

x

q(x)|ϕ(x)|2.

The operator is non-negative and selfadjoint as it is essentially selfadjoint on Cc(V )
(confer e.g. [G]). For α > 0, let K θ

α be the class of real-valued potentials q such
that q− ≤ α(∆θ + q+) + Cα for some Cα ≥ 0. Denote

K
θ
0+ =

⋂

α∈(0,1)

K
θ
α .

Again, for α ∈ (0, 1) and q ∈ K θ
α , we define ∆θ + q to be the form sum of ∆θ + q+

and −q−.
We present our result for magnetic Schrödinger operators which has one impli-

cation from the equivalences of Theorem 2.2 and Theorem 3.2.

Theorem 4.1. Let G := (V ,E ) be a graph, θ be a phase and q ∈ K θ
0+ be a potential.

Assume (G , q) is (a, k)-sparse for some a, k ≥ 0. Then, we have the following:

(a) There are ã ∈ (0, 1), k ≥ 0 such that on Cc(V )

(1− ã)(deg+q)− k ≤ ∆θ + q ≤ (1 + ã)(deg+q) + k.

(b) D
(

|∆θ + q|1/2
)

= D
(

|deg + q|1/2
)

.
(c) The operator ∆θ + q has purely discrete spectrum if and only if

lim inf
|x|→∞

(deg + q)(x) = ∞.

In this case, if (G , q) is additionally almost sparse, then

lim inf
λ→∞

λn(∆θ + q)

λn(deg + q)
= 1.

Remark 4.2. (a) The constants ã and k̃ can chosen to be the same as the ones
we obtained in the proof of Theorem 2.2, i.e., these constants are explicitly given
combining Lemma 2.7 and Lemma A.3.
(b) Statement (a) and (b) of the theorem above remain true for q ∈ Kα, α ∈ (0, 1)
since Kα ⊆ K θ

α by Kato’s inequality below.

We will prove the theorem by applying Theorem 2.2 and Theorem 3.2. The
considerations heavily rely on Kato’s inequality and a conceptual version of the
Upside-Down-Lemma, Lemma 2.8, which shows that a lower bound for ∆+q implies
an upper and lower bound on ∆θ + q. Secondly, in Theorem 3.2 potentials in K0+

are considered, while here we start with the class K θ
0+ . However, it can be seen

that K0+ = K θ
0+ in the case of (a, k)-sparse graph, see Lemma 4.5 below.

As mentioned above a key fact is Kato’s inequality, see e.g. [DM, Lemma 2.1] or
[GKS, Theorem 5.2.b].

Proposition 4.3 (Kato’s inequality). Let G := (V ,E ) be a graph, θ be a phase
and q : V → R. For all f ∈ Cc(V), we have

〈|f |, (∆|f |+ q|f |)〉 ≤ 〈f, (∆θf + qf)〉.
In particular, for all α > 0

Kα ⊆ K
θ
α and K0+ ⊆ K

θ
0+ .
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Proof. The proof of the inequality can be obtained by a direct calculation. The
second statement is an immediate consequence. �

The next lemma is a rather surprising observation. It is the magnetic version of
the Upside-Down-Lemma, Lemma 2.8.

Lemma 4.4 (Upside-Down-Lemma – magnetic version). Let G := (V ,E ) be a
graph, θ be a phase and q : V → R be a potential. Assume that there are ã ∈ (0, 1)

and k̃ ≥ 0 such that for all f ∈ Cc(V ), we have

(1− ã)〈f, (deg+q)f〉 − k̃‖f‖2 ≤ 〈f,∆f + qf〉
then for all f ∈ Cc(V ), we also have

(1− ã)〈f, (deg+q)f〉 − k̃‖f‖2 ≤ 〈f,∆θf + qf〉 ≤ (1 + ã)〈f, (deg+q)f〉+ k̃‖f‖2.
Proof. The lower bound follows directly from Kato’s inequality and the lower bound
from the assumption (since 〈f, (deg+q)f〉 = 〈|f |, (deg+q)|f |〉 for all f ∈ Cc(V )).
Now, observe that for all θ

∆θ = 2deg−∆θ+π.

So, the upper bound for ∆θ + q follows from the lower bound of ∆θ+π + q which
we deduced from Kato’s inequality. �

The lemma above allows to relate the classes Kα and K θ
α for (a, k)-sparse graphs.

Lemma 4.5. For a, k ≥ 0 let G := (V ,E ) be an (a, k)-sparse graph, θ be a phase
and α > 0. Then,

K
θ
α ⊆ Kα′ , for α′ =

1 + ã

1− ã
α,

where ã is given in Lemma 2.7. In particular,

K
θ
0+ = K0+ .

Moreover, if (G , q) is almost-sparse, then

K
θ
α ⊆ Kα′ , for all α′ > α.

Proof. Let q ∈ K θ
α . Applying Lemma 2.7, we get ∆+ q+ ≥ (1− ã)(deg+q+)− k̃.

Now, by the virtue of the Upside-Down-Lemma, Lemma 4.4, we infer

∆θ + q+ ≤ (1 + ã)(deg+q+) + k̃ ≤ 1 + ã

1− ã
(∆ + q+) +

2

1− ã
k̃

which implies the first statement and K θ
0+ ⊆ K0+ . The reverse inclusion K θ

0+ ⊇
K0+ follows from Kato’s inequality, Lemma 4.3. For almost sparse graphs a can
be chosen arbitrary small and accordingly ã (from Lemma 2.7) becomes arbitrary
small. Hence, the statement K θ

α ⊆ Kα′ , for α′ > α follows from the inequality
above. �

Proof of Theorem 4.1. Let q ∈ K θ
0+ . By Lemma 4.5, q ∈ K0+ . Thus, (a) follows

from Theorem 2.2 and Lemma 4.4. Using (a) statement (b) follows from an appli-
cation of the Closed Graph Theorem, Theorem A.1 and statement (c) follows from
an application of the Min Max Principle, Theorem A.2. �
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Remark 4.6. Instead of using Kato’s inequality one can also reproduce the proof
of Lemma 2.7 using the following estimate

||f(x)|2 − |f(y)|2| ≤ |(f(x)− eiθ(x,y)f(y))(f(x) + e−iθ(x,y)f(y))|.
So, we infer the key estimate:

〈f,(deg+q)f〉 − k‖f‖2

≤ (1 + a)〈f, (∆θ + q)f〉 1
2 〈f, (∆θ+π + q)f〉 1

2 ,

= (1 + a)〈f, (∆θ + q)f〉 1
2

(

2〈f, (deg+q)f〉 − 〈f, (∆θ + q)f〉
)

1
2 .

The rest of the proof is analogous.

It can be observed that unlike in Theorem 2.2 or Theorem 3.2 we do not have
an equivalence in the theorem above. A reason for this seems to be that our
definition of sparseness does not involve the magnetic potential. This direction
shall be pursued in the future. Here, we restrict ourselves to some remarks on the
perturbation theory in the context of Theorem 4.1 above.

Remark 4.7. (a) If the inequality Theorem 4.1 (a) holds for some θ, then the
inequality holds with the same constants for −θ and θ ± π. This can be seen by
the fact ∆θ+π = 2deg−∆ and 〈f,∆θf〉 = 〈f,∆−θf〉 while 〈f, deg f〉 = 〈f, deg f〉
for f ∈ Cc(V ).

(b) The set of θ such that Theorem 4.1 (a) holds true for some fixed ã and k̃
is closed in the product topology, i.e., with respect to pointwise convergence. This
follows as 〈f,∆θnf〉 → 〈f,∆θf〉 if θn → θ, n→ ∞, for fixed f ∈ Cc(V ).

(c) For two phases θ and θ′ let h(x) = maxy∼x |θ(x, y)− θ′(x, y)|. By a straight
forward estimate lim sup|x|→∞ h(x) = 0 implies that for every ε > 0 there is C ≥ 0
such that

−ε deg−C ≤ ∆θ −∆θ′ ≤ ε deg+C

on Cc(V ). We discuss three consequences of this inequality:

First of all, this inequality immediately yields that if D(∆
1/2
θ ) = D(deg1/2) then

D(∆
1/2
θ′ ) = D(deg1/2) (by the KLMN Theorem, see e.g., [RS, Theorem X.17]) which

in turn yields equality of the form domains of ∆θ and ∆θ′ .
Secondly, combining this inequality with Theorem 3.2 we obtain the following:

If lim sup|x|→∞ maxy∼x |θ(x, y)| = 0 and for every ε > 0 there is kε ≥ 0 such that

(1− ε) deg−kε ≤ ∆θ ≤ (1 + ε) deg+k,ε

then the graph is almost sparse and in consequence the inequality in Theorem 4.1 (a)
holds for any phase.

Thirdly, using the techniques in the proof of [G, Proposition 5.2] one shows that
the essential spectra of ∆θ and ∆θ′ coincide. With slightly more effort and the
help of the Kuroda-Birman Theorem, [RS, Theorem XI.9] one can show that if
h ∈ ℓ1(V ), then even the absolutely continuous spectra of ∆θ and ∆θ′ coincide.

5. Isoperimetric estimates and sparseness

In this section we relate the concept of sparseness with the concept of isoperi-
metric estimates. First, we present a result which should be viewed in the light of
Theorem 2.2 as it points out in which sense isoperimetric estimates are stronger
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than our notions of sparseness. In the second subsection, we present a result re-
lated to Theorem 3.2. Finally, we present a concrete comparison of sparseness and
isoperimetric estimates. As this section is of a more geometric flavor we restrict
ourselves to the case of potentials q : V → [0,∞).

5.1. Isoperimetric estimates. Let U ⊆ V and define the Cheeger or isoperimet-
ric constant of U by

αU := inf
W ⊂U finite

|∂W |+ q(W )

deg(W ) + q(W )
.

In the case where deg(W ) + q(W ) = 0, for instance when W is an isolated point,
by convention the above quotient is set to be equal to 0, Note that αU ∈ [0, 1).

The following theorem illustrates in which sense positivity of the Cheeger con-
stant is linked with (a, 0)-sparseness. We refer to Theorem 5.4 for precise constants.

Theorem 5.1. Given G := (V ,E ) a graph and q : V → [0,∞). The following
assertions are equivalent

(i) αV > 0.
(ii) There is ã ∈ (0, 1)

(1− ã)(deg+q) ≤ ∆+ q ≤ (1 + ã)(deg+q).

(iii) There is ã ∈ (0, 1) such that

(1− ã)(deg+q) ≤ ∆+ q.

The implication (iii)⇒(i) is already found in [G, Proposition 3.4]. The implica-
tion (i)⇒(ii) is a consequence from standard isoperimetric estimates which can be
extracted from the proof of [KL2, Proposition 15].

Proposition 5.2 ([KL2]). Let G := (E ,V ) be a graph and q : V → [0,∞). Then,
for all U ⊆ V we have on Cc(U ).

(

1−
√

1− α2
U

)

(deg+q) ≤ ∆+ q ≤
(

1 +
√

1− α2
U

)

(deg+q).

5.2. Isoperimetric estimates at infinity. Let the Cheeger constant at infinity
be defined as

α∞ = sup
K ⊆V finite

αV \K .

Clearly, 0 ≤ αV ≤ αU ≤ α∞ ≤ 1 for any U ⊆ V .
As a consequence of Proposition 5.2, we get the following theorem.

Theorem 5.3. Let G := (E ,V ) be a graph and q : V → [0,∞) be a potential.
Assume α∞ > 0. Then, we have the following:

(a) For every ε > 0 there is kε ≥ 0 such that on Cc(V )

(1− ε)
(

1−
√

1− α2
∞

)

(deg+q)− kε ≤ ∆+ q

≤ (1 + ε)
(

1 +
√

1− α2
∞

)

(deg+q) + kε.

(b) D((∆ + q)1/2) = D((deg+q)1/2).
(c) The operator ∆ + q has purely discrete spectrum if and only if we have

lim inf |x|→∞(deg + q)(x) = ∞. In this case, if additionally α∞ = 1, we get

lim inf
λ→∞

λn(∆ + q)

λn(deg + q)
= 1.
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Proof. (a) Let ε > 0 and K ⊆ V be finite and large enough such that

(1− ε)
(

1−
√

1− α2
∞

)

≤
(

1−
√

1− α2
V \K

)

(

1 +
√

1− α2
V \K

)

≤ (1 + ε)
(

1 +
√

1− α2
∞

)

.

From Proposition 5.2 we conclude on Cc(V \ K )

(1− ε)
(

1−
√

1− α2
∞

)

(deg+q) ≤
(

1−
√

1− α2
V \K

)

(deg+q)

≤ ∆+ q ≤
(

1 +
√

1− α2
V \K

)

(deg+q)

≤ (1 + ε)
(

1 +
√

1− α2
∞

)

(deg+q)

By local finiteness the operators 1V \K (∆+ q)1V \K and 1V \K (deg+q)1V \K are
bounded (indeed, finite rank) perturbations of ∆ + q and deg+q. This gives rise
to the constants kε and the inequality of (a) follows. Now, (b) is an immediate
consequence of (a), and (c) follows by the Min-Max-Principle, Theorem A.2. �

5.3. Relating sparseness and isoperimetric estimates. We now explain how
the notions of sparseness and isoperimetric estimates are exactly related.

First, we consider classical isoperimetric estimates.

Theorem 5.4. Let G := (V ,E ) be a graph, a, k ≥ 0, and let q : V → [0,∞) be a
potential.

(a) αV ≥ 1

1 + a
if and only if (G , q) is (a, 0)-sparse.

(b) If (G , q) is (a, k)-sparse, then

αV ≥ d− k

d(1 + a)
,

where d := infx∈V (deg+q)(x). In particular, αV > 0 if d > k.
(c) Suppose that (G , q) is (a, k)-sparse graph that is not (a, k′)-sparse for all

k′ < k. Suppose also that there is d such that d = deg(x) + q(x) for all
x ∈ V . Then

αV =
d− k

d(1 + a)
.

Proof. Let W ⊂ V be a finite set. Recalling the identity deg(W ) = 2|EW | + |∂W |
we notice that

1

1 + a
≤ |∂W |+ q(W )

(deg+q)(W )

is equivalent to

2|EW | ≤ a(|∂W |+ q(W ))

which proves (a).
For (b), the definition of (a, k)-sparseness yields

|∂W |+ q(W )

(deg+q)(W )
= 1− 2|EW |

(deg+q)(W )
≥ 1− a

|∂W |+ q(W )

(deg+q)(W )
− k

|W |
(deg+q)(W )

.

This concludes immediately.
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For (c), the lower bound of αV follows from (b). Since (G , q) is not (a, k′)-sparse
there is a finite W0 ⊂ V such that

|∂W0|+ q(W0)

(deg+q)(W0)
< 1− a

|∂W0|+ q(W0)

(deg+q)(W0)
− k′

|W0|
(deg+q)(W0)

.

Therefore αV < (d− k′)/(d(1 + a)). �

We next address the relation between almost sparseness and isoperimetry and
show two “almost equivalences”.

Theorem 5.5. Let G := (V ,E ) be a graph and let q : V → [0,∞) be a potential.

(a) If α∞ > 0, then (G , q) is (a, k)-sparse for some a > 0, k ≥ 0. On the other
hand, if (G , q) is (a, k)-sparse for some a > 0, k ≥ 0 and

l := lim inf
|x|→∞

(deg+q)(x) > k,

then

α∞ ≥ l − k

l(a+ 1)
> 0,

if l is finite and α∞ ≥ 1/(1 + a) otherwise.
(b) If α∞ = 1, then (G , q) is almost sparse. On the other hand, if (G , q) is

almost sparse and lim inf |x|→∞(deg+q)(x) = ∞, then α∞ = 1.

Proof. The first implication of (a) follows from Theorem 5.3 (a) and Theorem 2.2
(ii)⇒(i). For the opposite direction let ε > 0 and K ⊆ V be finite such that
deg+q ≥ l − ε on V \ K . Using the formula in the proof of Theorem 5.4 above,
yields for W ⊆ V \ K

|∂W |+ q(W )

(deg+q)(W )
= 1− 2|EW |

(deg+q)(W )
≥ 1− k|W |+ a(|∂W |+ q(W ))

(deg+q)(W )

≥ 1− k

(l − ε)
− a(|∂W |+ q(W ))

(deg+q)(W )
.

This proves (a).
The first implication of (b) follows from Theorem 5.3 (a) and Theorem 3.2 (ii)⇒(i).
The other implication follows from (a) using the definition of almost sparseness. �

Remark 5.6. (a) We point out that without the assumptions on (deg+q) the con-
verse implications do not hold. For example the Cayley graph of Z is 2-sparse (cf.
Lemma 6.2), but has α∞ = 0.
(b) Observe that α∞ = 1 implies lim inf |x|→∞(deg+q)(x) = ∞. Hence, (b) can
be rephrased as the following equivalence: α∞ = 1 is equivalent to (G , q) almost
sparse and lim inf |x|→∞(deg+q)(x) = ∞.

The previous theorems provides a slightly simplified proof of [K1] which also
appeared morally in somewhat different forms in [D1, Woe].

Corollary 5.7. Let G := (V ,E ) be a planar graph.

(a) If for all vertices deg ≥ 7, then αV > 0.
(b) If for all vertices away from a finite set deg ≥ 7, then α∞ > 0.

Proof. Combine Theorem 5.4 and Theorem 5.5 with Lemma 6.2. �
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6. Examples

6.1. Examples of sparse graphs. To start off, we exhibit two classes of sparse
graphs. First we consider the case of graphs with bounded degree.

Lemma 6.1. Let G := (V ,E ) be a graph. Assume D := supx∈V deg(x) < +∞,
then G is D-sparse.

Proof. Let W be a finite subset of V . Then, 2|EW | ≤ deg(W ) ≤ D|W |. �

We turn to graphs which admit a 2-cell embedding into Sg, where Sg denotes
a compact orientable topological surface of genus g. (The surface Sg might be
pictured as a sphere with g handles.) Admitting a 2-cell embedding means that
the graphs can be embedded into Sg without self-intersection. By definition we say
that a graph is planar when g = 0. Note that unlike other possible definitions of
planarity, we do not impose any local compactness on the embedding.

Lemma 6.2. (a) Trees are 2-sparse.
(b) Planar graphs are 6-sparse.
(c) Graphs admitting a 2-cell embedding into Sg with g ≥ 1 are 4g + 2-sparse.

Proof. (a) Let G := (V ,E ) be a tree and GW := (W ,EW ) be a finite induced
subgraph of G . Clearly |EW | ≤ |W | − 1. Therefore, every tree is 2-sparse.

We treat the cases (b) and (c) simultaneously. Let G := (V ,E ) be a graph which
is connected 2-cell embedded in Sg with g ≥ 0 (as remarked above planar graphs
correspond to g = 0). Let GW := (W ,EW ) be a finite induced subgraph of G which,
clearly, also admits a 2-cell embedding into Sg. The statement is clear for |W | ≤ 2.
Assume |W | ≥ 3. Let FW be the faces induced by GW := (W ,EW ) in Sg. Here,
all faces (even the outer one) contain at least 3 edges, each edge belongs only to 2
faces, thus,

2|EW | ≥ 3|FW |.
Euler’s formula, |W | − |EW |+ |FW | = 2− 2g, gives then

2− 2g + |EW | = |W |+ |FW | ≤ |W |+ 2

3
|EW |

that is

|EW | ≤ 3|W |+ 6(g − 1) ≤ max(2g + 1, 3)|W |.
This concludes the proof. �

Next, we explain how to construct sparse graphs from existing sparse graphs.

Lemma 6.3. Let G1 := (V1,E1) and G2 := (V2,E2) be two graphs.

(a) Assume V1 = V2, G1 is k1-sparse and G2 is k2-sparse. Then, G := (V ,E )
with E := max(E1,E2) is (k1 + k2)-sparse.

(b) Assume G1 is k1-sparse and G2 is k2-sparse. Then G1 ⊕ G2 := (V ,E ) with
where V := V1 × V2 and

E ((x1, x2), (y1, y2)) := δ{x1}(y1) · E2(x2, y2) + δ{x2}(y2) · E1(x1, y1),

is (k1 + k2)-sparse.
(c) Assume V1 = V2, G1 is k-sparse and E2 ≤ E1. Then, G2 is k-sparse.
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Proof. For (a) let W ⊆ V be finite and note that |EW | ≤ |E1,W | + |E2,W |. For (b)
let p1, p2 the canonical projections from V to V1 and V2. For finite W ⊆ V we
observe

|EW | = |E1,p1(W )|+ |E2,p2(W )| ≤ k1|p2(W )|+ k2|p1(W )| ≤ (k1 + k2)|W |.

For (c) and W ⊆ V finite, we have |E2,W | ≤ |E1,W | which yields the statement. �

Remark 6.4. (a) We point out that there are bi-partite graphs which are not
sparse. See for example [G, Proposition 4.11] or take an antitree, confer [KLW,
Section 6], where the number of vertices in the spheres grows monotonously to ∞.
(b) The last point of the lemma states that the k-sparseness is non-decreasing when
we remove edges from the graph. This is not the case for the isoperimetric constant.

6.2. Examples of almost-sparse and (a, k)-sparse graph. We construct a se-
ries of examples which are perturbations of a radial tree. They illustrate that
sparseness, almost sparseness and (a, k)-sparseness are indeed different concepts.

Let β = (βn), γ = (γn) be two sequences of natural numbers. Let T = T (β)
with T = (V ,E T ) be a radial tree with root o and vertex degree βn at the n-th
sphere, that is every vertex which has natural graph distance n to o has (βn − 1)
forward neighbors. We denote the distance spheres by Sn. We let G (β, γ) be the
set of graphs G := (V ,E G ) that are super graphs of T such that the induced
subgraphs GSn

are γn-regular and E G (x, y) = E T (x, y) for x ∈ Sn, y ∈ Sm, m 6= n.
Observe that G (β, γ) is non empty if and only if γn

∏n
j=0(βj − 1) is even and

γn < |Sn| =
∏n
j=0(βj − 1) for all n ≥ 0.

Figure 1. G with β = (3, 3, 4, . . .) and γ = (0, 2, 4, 5, . . .).

Proposition 6.5. Let β, γ ∈ N
N0
0 , a = lim supn→∞ γn/βn and G ∈ G (β, γ).

(a) If a = 0, then G is almost sparse. The graph G is sparse if and only if
lim supn→∞ γn <∞.

(b) If a > 0, then G is (a′, k)-sparse for some k ≥ 0 if a′ > a. Conversely, if
G is (a′, k)-sparse for some k ≥ 0, then a′ ≥ a.

Proof. Let ε > 0 and let N ≥ 0 be so large that

γn ≤ (a+ ε)βn, n ≥ N.
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Set Cε :=
∑N−1
n=0 degG (Sn). Let W be a non-empty finite subset of V . We calculate

2|E G

W |+ |∂G
W | = degG (W ) = degT (W ) +

∑

n≥0

|W ∩ Sn|γn

≤ degT (W ) + (a+ ε)
∑

n≥0

|W ∩ Sn|βn +

N−1
∑

n=0

|W ∩ Sn|γn

≤ (1 + a+ ε) degT (W ) + Cε|W |
= 2(1 + a+ ε)|E T

W |+ (1 + a+ ε)|∂T
W |+ Cε|W |

≤ (2(1 + a+ ε) + Cε)|W |+ (1 + a+ ε)|∂T
W |,

where we used that trees are 2-sparse in the last inequality. Finally, since |∂G W | ≥
|∂T W |, we conclude

2|E G

W | ≤ (2(1 + a+ ε) + Cε) |W |+ (a+ ε)|∂G
W |.

This shows that the graph in (a) with a = 0 is almost sparse and that the graph in
(b) with a > 0 is (a+ ε, kε)-sparse for ε > 0 and kε = 2(1+ a+ ε) +Cε. Moreover,
for the other statement of (a) let k0 = lim supn→∞ γn and note that for GSn

2|ESn
| = γn|Sn|.

Hence, if k0 = ∞, then G is not sparse. On the other hand, if k0 < ∞, then G is
(k0 + 2)-sparse by Lemma 6.3 as T is 2-sparse by Lemma 6.2. This finishes the
proof of (a). Finally, assume that G is (a′, k)-sparse with k ≥ 0. Then, for W = Sn

γn|Sn| = 2|ESn
| ≤ k|Sn|+ a′|∂GSn| = k|Sn|+ a′βn|Sn|

Dividing by βn|Sn| and taking the limit yields a ≤ a′. This proves (b). �

Remark 6.6. In (a), we may suppose alternatively that we have the complete

graph on Sn and the following exponential growth limn→∞
|Sn|

|Sn+1|
= 0.

Appendix A. Some general operator theory

We collect some consequences of standard results from functional analysis that
are used in the paper. Let H be a Hilbert space with norm ‖ · ‖. For a quadratic

form Q, denote the form norm by ‖ · ‖Q :=
√

Q(·) + ‖ · ‖2. The following is a direct
consequence of the Closed Graph Theorem, (confer e.g. [We, Satz 4.7]).

Theorem A.1. Let (Q1,D(Q1)) and (Q2,D(Q2)) be closed non-negative quadratic
forms with a common form core D0. Then, the following are equivalent:

(i) D(Q1) ≤ D(Q2).
(ii) There are constants c1 > 0, c2 ≥ 0 such that c1Q2 − c2 ≤ Q1 on D0.

Proof. If (ii) holds, then any ‖ · ‖Q1
-Cauchy sequence is a ‖ · ‖Q2

-Cauchy sequence.
Thus, (ii) implies (i). On the other hand, consider the identity map j : (D(Q1), ‖ ·
‖Q1) → (D(Q2), ‖ · ‖Q2). The map j is closed as it is defined on the whole Hilbert
space (D(Q1), ‖ · ‖Q1) and, thus, bounded by the Closed Graph Theorem [RS,
Theorem III.12] which implies (i). �

For a selfadjoint operator T which is bounded from below, we denote the bottom
of the spectrum by λ0(T ) and the bottom of the essential spectrum by λess0 (T ). Let
n(T ) ∈ N0 ∪ {∞} be the dimension of the range of the spectral projection of
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(−∞, λess0 (T )). For λ0(T ) < λess0 (T ) we denote the eigenvalues below λess0 (T ) by
λn(T ), for 0 ≤ n ≤ n(T ), in increasing order counted with multiplicity.

Theorem A.2. Let (Q1,D(Q1)) and (Q2,D(Q2)) be closed non-negative quadratic
forms with a common form core D0 and let T1 and T2 be the corresponding selfad-
joint operators. Assume there are constants c1 > 0, c2 ∈ R such that on D0

c1Q2 − c2 ≤ Q1.

Then, c1λn(T2)−c2 ≤ λn(T1), for 0 ≤ n ≤ min(n(T1), n(T2)). Moreover, c1λ
ess
0 (T2)−

c2 ≤ λess0 (T1), in particular, σess(T1) = ∅ if σess(T2) = ∅ and in this case

c1 ≤ lim inf
n→∞

λn(T1)

λn(T2)
.

Proof. Letting

µn(T ) = sup
ϕ1,...,ϕn∈H

inf
0 6=ψ∈{ϕ1,...,ϕn}⊥∩D0

〈Tψ, ψ〉
〈ψ, ψ〉 ,

for a selfadjoint operator T , we know by the Min-Max-Principle [RS, Chapter
XIII.1] µn(T ) = λn(T ) if λn(T ) < λess0 (T ) and µn(T ) = λess0 (T ) otherwise, n ≥ 0.

Assume n ≤ min{n(T1), n(T2)} and let ϕ
(j)
0 , . . . , ϕ

(j)
n be the eigenfunctions of Tj to

λ0(Tj), . . . , λn(Tj) we get

c1λn(T2)− c3 = inf
0 6=ψ∈{ϕ

(2)
1 ,...,ϕ

(2)
n }⊥∩D0

(

c1
〈T2ψ, ψ〉
〈ψ,ψ〉 − c3

)

≤ inf
0 6=ψ∈{ϕ

(2)
1 ,...,ϕ

(2)
n }⊥∩D0

〈T1ψ,ψ〉
〈ψ, ψ〉 ≤ µn(T1) = λn(T1)

This directly implies the first statement. By a similar argument the statement
about the bottom of the essential spectrum follows, in particular, λess0 (T2) = ∞
implies limn→∞ µn(T1) = ∞ and, thus, λess0 (T1) = ∞. In this case λn(T2) → ∞,
n→ ∞, which implies the final statement. �

Finally, we give a lemma which helps us to transform inequalities under form
perturbations.

Lemma A.3. Let (Q1,D(Q1)), (Q2,D(Q2)) and (q,D(q)) be closed symmetric
non-negative quadratic forms with a common form core D0 such that there are
α ∈ (0, 1), Cα ≥ 0 such that

q ≤ αQ1 + C

on D0. If for a ∈ (0, 1) and k ≥ 0

(1− a)Q2 − k ≤ Q1 on D0,

then

(1− α)(1− a)

(1− α(1− a))
(Q2 − q)− (1− α)k + aCα

(1− α(1− a))
≤ Q1 − q, on D0.

In particular, if a → 0+, then (1− α)(1− a)/(1− α(1− a)) → 1− and if α → 0+,
then (1− α)(1− a)/(1− α(1− a)) → (1− a).
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Proof. The assumption on q implies

q ≤ α

(1− α)
(Q1 − q) +

Cα
(1− α)

.

We subtract (1−a)q on each side of the lower bound in (1−a)Q2− k ≤ Q1. Then,
we get

(1− a)(Q2 − q)− k ≤ (Q1 − q) + aq ≤ 1− α(1− a)

(1− α)
(Q1 − q) +

aCα
(1− α)

and, thus, the asserted inequality follows. �
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