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APPROXIMATION OF THE INVARIANT LAW OF SPDES: ERROR ANALYSIS

USING A POISSON EQUATION FOR A FULL-DISCRETIZATION SCHEME

CHARLES-EDOUARD BRÉHIER AND MARIE KOPEC

Abstract. We study the long-time behavior of fully discretized semilinear SPDEs with additive
space-time white noise, which admit a unique invariant probability measure µ. We show that the
average of regular enough test functions with respect to the (possibly non unique) invariant laws of
the approximations are close to the corresponding quantity for µ.

More precisely, we analyze the rate of the convergence with respect to the different discretization
parameters. Here we focus on the discretization in time thanks to a scheme of Euler type, and on
a Finite Element discretization in space.

The results rely on the use of a Poisson equation, generalizing the approach of [21]; we obtain
that the rates of convergence for the invariant laws are given by the weak order of the discretization
on finite time intervals: order 1/2 with respect to the time-step and order 1 with respect to the
mesh-size.

1. Introduction

In this article, we want to analyze in a quantitative way the effect of time and space discretization
schemes on the knowledge of the unique invariant law of a semi-linear Stochastic PDE of parabolic
type, written in the abstract form of [8]

(1)
dX(t, x) =

(

AX(t, x) + F (X(t, x))
)

dt+ dW (t), 0 < t ≤ T,

X(0, x) = x.

This process takes value in an infinite-dimensional Hilbert space H - typically H = L2(0, 1); A is
a negative, self-adjoint, unbounded linear operator on H, with a compact inverse - for instance,

A = ∂2

∂ξ2
, given on the domain H2(0, 1)∩H1

0 (0, 1) when homogeneous Dirichlet boundary conditions

are applied. The coefficient F is an operator on H, on which regularity conditions are assumed and
given below.

Finally,
(

W (t)
)

t∈[0,T ]
is a cylindrical Wiener process on H, so that we have a space-time white

noise in (1).
More precise assumptions are given below. In a more general setting, one could for instance

intend to remove boundedness of F , or include spatially correlated noise processes. However, we
already consider the main technical and conceptual difficulties in this paper.

In our setting, it is known that the SPDE (1) admits a unique invariant probability measure µ,
and that convergence is exponentially fast. This result comes from the spatial non-degeneracy of
the noise and from a dissipation relation satisfied by the drift part. Nevertheless, in general, no
expression of µ is available for practical use; moreover, the support of this measure is an infinite-
dimensional space.

The approximation of quantities like
∫

H φdµ for bounded test functions φ is therefore compli-
cated. The exponential convergence ensures that Eφ(X(t)) tends to

∫

H φdµ when t tends to infinity,
exponentially fast. However, using a Monte-Carlo method to compute Eφ(X(t)) would require the
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ability to simulate the H-valued random variable X(t), for a large value of t. Since it is not possible
to have an exact simulation, we introduce two approximations:

• a discretization in time, in order to get an approximation of the law of the random variables
X(t) for different, fixed values of t, using a finite number of calculations; it done here with
a semi-implicit Euler scheme;

• a discretization in space, in order to replace the H-valued random variables with finite-
dimensional ones. Here, it is performed with a finite element method.

The second approximation is specific to the case of SPDEs, while the first one has already been
studied a lot in the case of SDEs.

Different techniques to control the error are available in the litterature. A first one is found in
[27], where an estimate of the weak error introduced by the numerical scheme is proved, holding for
any value of the finite time T . The idea there is to expand the error thanks to the solution of the
Kolmogorov equation associated with the diffusion, and to prove bounds on the spatial derivatives
of this solution, with an exponential decrease with respect to the time variable.

This strategy has been generalized to SPDEs like (1) in [3], when a semi-implicit Euler scheme
is used. The main additional difficulty, when compared with the SDE case, is the need for tools
introduced in [11], for the estimate of the weak error at a fixed time T .

Using theses tools aims at proving that on a finite time interval the weak order of convergence
is twice the strong one: in other words, laws at fixed times are approximated more accurately than
the trajectories. These tools have also been used in [28] to treat the time-discretization in a slightly
more-general setting, and in [1] where discretization in space with a finite element method is studied.
Basically, the two ingredients are the following:

• improved estimates on the derivatives of the solution of the Kolmogorov equations, with
spatial regularization;

• an integration by parts formula issued from Malliavin calculus, in order to transform some
stochastic expressions with insufficient spatial regularity into more suitable ones.

These tools are fundamental to treat equations with nonlinear terms; they are used again in the
present work. Notice that for linear equations a specific idea simplifies the proof - so that the second
tool is not used - but can not be adapted for nonlinear parabolic equations like (1): see [13], and
[10] where a stochastic Schrödinger equation is discretized.

Here, we are interested in another method for the approximation of the invariant measure: we
want to follow the approach of [21]. There, the authors study the distance between time-averages
along the realization of the numerical scheme of a test function φ, ant its expected value with respect
to the invariant law µ. They introduce the solution Ψ of the Poisson equation LΨ = φ −

∫

φdµ,
where L is the infinitesimal generator of the SDE - the solvability of this elliptic or hypoelliptic PDE
is ensured by ergodic properties. Then they show how to expand the error for various numerical
methods, in a stochastic Taylor expansions fashion.

The use of a Poisson equation to prove convergence results of Law of Large Numbers type is
classical, as explained in [21]. In the context of SPDEs, it has been used in [2] and [6] for the study
of the averaging principle for systems evolving with two separate time-scales.

Such a technique gives an approximation result for µ, even if the numerical method is not ergodic,
having possibly several invariant laws. In the SDE case, the study of ergodicity for time-discretizated
processes has been the subject of [16]; there the author use general results on Markov chains, like
the Harris Theorem. Up to our knowledge, no such study has been completed for SPDEs so far.

Our main result is the adaptation of the approach of [21] for SPDEs, with time and space
approximation procedures: we essentially obtain the following result - a more precise statement is
Theorem 5.1: There exists a constant C > 0 such that for any C2

b (H) function φ, any parameters
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τ ∈ (0, 1) and h ∈ (0, 1), any time N ≥ 1 and any initial condition x ∈ H

∣

∣

∣

1

N

N−1
∑

m=0

(

Eφ(Xh
m)−

∫

H
φ(z)µ(dz)

)∣

∣

∣
≤ C

(

τ1/2 + h+
1

Nτ

)

.

The error is divided into three parts: the first (resp. the second) is due to the time (resp. space)
discretization, while the last one goes to 0 when time increases.

For the proof of this result, we need to study the Poisson equation associated with the SPDE
(1). More precisely, we work with Galerkin approximations, and show bounds that are independent
of dimension. Moreover, the strategy described above for the study of weak approximation for
infinite dimensional processes require some additional regularization properties for the solution of
the Kolmogorov equation. Here, we need similar properties for the solutions of Poisson equations.
When compared with [1], [3] or [11], many error terms look the same: the method with Poisson
equation does not really simplifies the proof, it just moves some technical problems to other places
along the proof.The main reason for studying only the additive noise case is the following. As soon
as the equation is discretized either in time - [11] - or in space - [1] - the possible diffusion coefficients
must satisfy very strict conditions: they should be decomposed as the sum of a continuous affine
function, and another function such that the second order derivative is controlled with respect to
a very weak norm - namely, the norm associated with a negative power of the linear operator.
Moreover, the treatment of such noise requires lengthier computations. We could do so here by
adding our argument with the ones in [1] and [11] but this would result only in hiding the main
ideas of our work.

The paper is organized as follows: in Section 2, we precise the assumptions made on the coefficients
of the equation, and we define the discretization method in Section 3. In Section 4, we study the
asymptotic behavior of the solutions of the continuous and discrete time processes. In Section 5, we
give the convergence results that we obtained. In Section 6 we show how the error is decomposed,
and we present two essential tools: the Poisson equation, and an integration by parts from Malliavin
calculus. Finally detailed proofs of the estimates are developed in Section 7.

2. Notations and assumptions

Let D ⊂ R be a bounded, open interval; without restriction in the sequel we assume D = (0, 1).
Let H = L2(D), with norm and inner product denoted by |.|H and 〈., .〉H or simply |.| and 〈., .〉.

We consider equations in the abstract form

(2)
dX(t, x) = (AX(t, x) + F (X(t, x)))dt+ dW (t)

X(0, x) = x.

In the next paragraphs, we state the assumptions made on the coefficients A and F in (1). We
also recall basic facts on the cylindrical Wiener process W , and on the mild solution of the SPDE.

2.1. Test functions. To quantify the weak approximation, we use test functions - called admissible
- φ in the space C2

b (H,R) of functions from H to R that are twice continuously differentiable,
bounded, with first and second order bounded derivatives.

Remark 2.1. In the sequel, we often identify the first derivative Dφ(x) ∈ L(H,R) with the gradient
in the Hilbert space H, and the second derivative D2φ(x) with a linear operator on H, via the
formulae:

〈Dφ(x), h〉 = Dφ(x).h for every h ∈ H

〈D2φ(x).h, k〉 = D2φ(x).(h, k) for every h, k ∈ H.

3



We then use the following notations, for an admissible test function φ:

‖φ‖∞ = sup
x∈H

|φ(x)|H

‖φ‖1 = sup
x∈H

|Dφ(x)|H ,

‖φ‖2 = sup
x∈H

|D2φ(x)|L(H).

2.2. Assumptions on the coefficients.

2.2.1. The linear operator. We denote by N = {0, 1, 2, . . .} the set of nonnegative integers.
We suppose that the following properties are satisfied:

Assumptions 2.2. (1) We assume that there exists a complete orthonormal system of elements
of H denoted by (ek)k∈N, and a non-decreasing sequence of real positive numbers (λk)k∈N
such that:

Aek = −λkek for all k ∈ N.

(2) The sequence (λk)k∈N goes to +∞ and

+∞
∑

k=0

1

λαk
< +∞ ⇔ α > 1/2.

The smallest eigenvalue of −A is then λ0.

Example 2.3. We can choose A = d2

dx2 , with the domain H2(0, 1) ∩ H1
0 (0, 1) ⊂ L2(0, 1) - corre-

sponding to homogeneous Dirichlet boundary conditions. In this case for any k ∈ N λk = π2(k+1)2,
and ek(ξ) =

√
2 sin((k + 1)πξ) - see [5].

In the following Definition, we introduce finite dimensional subspaces of H and associated or-
thogonal projections; both are based on the spectral decomposition of A.

Definition 2.4. For any M ∈ N, we define HM the subspace of H generated by e0, . . . , eM ,

HM = Span {ek; 0 ≤ k ≤M}
and PM ∈ L(H) the orthogonal projection onto HM : for any x =

∑+∞
k=0 xkek ∈ H,

PMx =
M
∑

k=0

xkek.

The domain D(A) of A is equal to D(A) =
{

x =
∑+∞

k=0 xkek ∈ H,
∑+∞

k=0(λk)
2|xk|2 < +∞

}

. More
generally, fractional powers of −A, are defined for α ∈ [0, 1]:

(−A)αx =

∞
∑

k=0

λαkxkek ∈ H,

with the domains

D(−A)α =

{

x =
+∞
∑

k=0

xkek ∈ H, |x|2α :=
+∞
∑

k=0

(λk)
2α|xk|2 < +∞

}

.

Example 2.5. In the case when A is the Laplace operator with homogeneous Dirichlet boundary
conditions on H = L2(D),

D((−A)1/2) = H1
0 (D) D(A) = H1

0 (D) ∩H2(D).
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When α ∈ [0, 1], it is also possible to define spaces D(−A)−α and operators (−A)−α, with norm
denoted by |.|−α; in particular when x =

∑+∞
k=0 xkek ∈ H, we have (−A)−αx =

∑+∞
k=0 λ

−α
k xkfk and

|x|2−α :=
∑+∞

k=0(λk)
−2α|xk|2.

The semi-group (etA)t≥0 can be defined by the Hille-Yosida Theorem - see [5]. We use the

following spectral formula: if x =
∑+∞

k=0 xkek ∈ H, then for any t ≥ 0

etAx =

+∞
∑

k=0

e−λktxkek.

For any t ≥ 0, etA is a continuous linear operator in H, with operator norm e−λ0t. The semi-group
(etA) is used to define the solution Z(t) = etAz of the linear Cauchy problem

dZ(t)

dt
= AZ(t) with Z(0) = z.

To define solutions of more general PDEs of parabolic type, we use mild formulation, and Duhamel
principle.

This semi-group enjoys some smoothing properties that we often use in this work. Here we recall
a few important ones, which are easily obtained from the spectral formula given above:

Proposition 2.6. Under Assumption 2.2, for any σ ∈ [0, 1], there exists Cσ > 0 such that we have:

(1) for any t > 0 and x ∈ H,

|etAx|σ ≤ Cσt
−σe−

λ0
2
t|x|H .

(2) for any 0 < s < t and x ∈ H,

|etAx− esAx|H ≤ Cσ
(t− s)σ

sσ
e−

λ0
2
s|x|H .

(3) for any 0 < s < t and x ∈ D(−A)σ,

|etAx− esAx|H ≤ Cσ(t− s)σe−
λ0
2
s|x|σ.

2.2.2. The nonlinear operator. The nonlinear operator F is assumed to satisfy some general as-
sumptions, like in [3]. In Example 2.10, we give the two main kind of operators that can be used in
our framework.

Assumptions 2.7. The function F : H → H is assumed to be bounded and Lipschitz continuous.
We denote by LF the Lipschitz constant of F

We also define for each M ≥ 0 a function FM : HM → HM , with FM (x) = PMF (x) for any
x ∈ HM . We assume that each FM is twice differentiable, and that we have the following bounds on
the derivatives, uniformly with respect to M :

• There exists a constant C1 such that for any M ≥ 0, x ∈ HM and h ∈ HM

|DFM (x).h|H ≤ C1|h|H .
• There exists η ∈ [0, 1[ and a constant C2 such that for any M ≥ 0, x ∈ HM and any
h, k ∈ HM we have

|(−A)−ηD2FM (x).(h, k)| ≤ C2|h|H |k|H .
• Moreover, there exists a constant C3 such that for any M ≥ 0, x ∈ HM and any h, k ∈ HM

|D2FM (x).(h, k)| ≤ C3|h|(−B)η |k|H .
Remark 2.8. Multiplicative noise with appropriate assumptions like in [1] can be considered; how-
ever proofs of the required estimates become much more technical.
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Since F is bounded, the following property is easily satisfied:

Proposition 2.9 (Dissipativity). There exist c > 0 and C > 0 such that for any x ∈ D(A)

(3) 〈Ax+ F (x), x〉 ≤ −c|x|2 + C.

We remark that we have uniform control with respect to the dimension M of the bounds on
FM := PM ◦ F and on its derivatives, and that (3) is also satisfied for FM , with constants c and C
independent from M .

Example 2.10. We give some fundamental examples of nonlinearities for which the previous as-
sumptions are satisfied:

• A function F : H → H of class C2, bounded and with bounded derivatives, fits in the
framework, with the choice η = 0.

• The function F can be a Nemytskii operator: let g : (0, 1) × R → R be a measurable,
bounded, function such that for almost every ξ ∈ (0, 1) g(ξ, .) is twice continuously differen-
tiable, with uniformly bounded derivatives. Then F (y) is defined for every y ∈ H = L2(0, 1)
by

F (x)(ξ) = g(ξ, x(ξ)).

In general, such functions are not Fréchet differentiable, but only Gâteaux differentiable, with
the following expressions:

[DF (x).h](ξ) =
∂g

∂x
(ξ, x(ξ))h(ξ)

[D2F (x).(h, k)](ξ) =
∂2g

∂x2
(ξ, x(ξ))h(ξ)k(ξ).

If h and k are only L2 functions, D2F (x).(h, k) may only be L1; however if h or k is L∞,
it is L2. The conditions in Assumption 2.7 are then satisfied as soon as there exists η < 1
such that D(−A)η is continuously embedded into L∞(0, 1) - it is the case for A given in
Example 2.3, with η > 1/4. Then the finite dimensional spaces HN are subspaces of L∞,
and differentiability can be shown.

2.3. The cylindrical Wiener process and stochastic integration in H. In this section, we
recall the definition of the cylindrical Wiener process and of stochastic integral on a separable
Hilbert space H with norm |.|H . For more details, see [8].

We first fix a filtered probability space (Ω,F , (Ft)t≥0,P). A cylindrical Wiener process on H is
defined with two elements:

• a complete orthonormal system of H, denoted by (qi)i∈I , where I is a subset of N;
• a family (βi)i∈I of independent real Wiener processes with respect to the filtration ((Ft)t≥0);

then W is defined by

(4) W (t) =
∑

i∈I
βi(t)qi.

When I is a finite set, we recover the usual definition of Wiener processes in the finite dimensional
space R

|I|. However the subject here is the study of some Stochastic Partial Differential Equations,
so that in the sequel the underlying Hilbert space H is infinite dimensional; for instance when
H = L2(0, 1), an example of complete orthonormal system is (qk) = (

√
2 sin(kπ.))k≥1 - see Example

2.3.
A fundamental remark is that the series in (4) does not converge in H; but if a linear operator

Ψ : H → K is Hilbert-Schmidt, then ΨW (t) converges in L2(Ω, H) for any t ≥ 0.
Moreover, the resulting process does not depend on the choice of the complete orthonormal system

(qi)i∈I .
6



We recall that a bounded linear operator Ψ : H → K is said to be Hilbert-Schmidt when

|Ψ|2L2(H,K) :=

+∞
∑

k=0

|Ψ(qk)|2K < +∞,

where the definition is independent of the choice of the orthonormal basis (qk) of H. The space of
Hilbert-Schmidt operators from H to K is denoted L2(H,K); endowed with the norm |.|L2(H,K) it
is an Hilbert space.

The stochastic integral
∫ t
0 Ψ(s)dW (s) is defined in K for predictible processes Ψ with values in

L2(H,K) such that
∫ t
0 |Ψ(s)|2L2(H,K)ds < +∞ a.s; moreover when Ψ ∈ L2(Ω× [0, t];L2(H,K)), the

following two properties hold:

E|
∫ t

0
Ψ(s)dW (s)|2K = E

∫ t

0
|Ψ(s)|2L2(H,K)ds (Itô isometry),

E

∫ t

0
Ψ(s)dW (s) = 0.

A generalization of Itô formula also holds - see [8].
For instance, if v =

∑

k∈N vkqk ∈ H, we can define

〈W (t), v〉 =
∫ t

0
〈v, dW (s)〉 =

∑

k∈N
βk(t)vk;

we then have the following space-time white noise property

E〈W (t), v1〉〈W (s), v2〉 = t ∧ s〈v1, v2〉.
Therefore to be able to integrate a process with respect to W requires some strong properties

on the integrand; in our SPDE setting, the Hilbert-Schmidt properties follow from the assumptions
made on the linear coefficients of the equations.

Thanks to Assumption 2.2, it is easy to show that the following stochastic integral is well-defined
in H, for any t ≥ 0:

(5) WA(t) =

∫ t

0
e(t−s)AdW (s).

It is called a stochastic convolution, and it is the unique mild solution of

dZ(t) = AZ(t)dt+ dW (t) with Z(0) = 0.

Under the second condition of Assumption 2.2, there exists δ > 0 such that for any t > 0 we

have
∫ t
0

1
sδ
|esA|2L2(H)ds < +∞; it can then be proved that WA has continuous trajectories - via the

factorization method, see [8] - and that for any 1 ≤ p < +∞
(6) E sup

t≥0
|WA(t)|pH < +∞.

We can now define solutions to equation (1), thanks to the assumptions made on the coefficients:
the following result is classical - see [8]:

Proposition 2.11. For every T > 0, x ∈ H, the equation (1) admits a unique mild solution
X ∈ L2(Ω, C([0, T ], H)):

(7) X(t) = etAx+

∫ t

0
e(t−s)AF (X(s))ds+

∫ t

0
e(t−s)AdW (s).
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3. Definition of the discretization schemes

We will consider approximations in time and in space of the process X. In this Section, we
introduce the corresponding schemes: a finite element approximation for discretization in space,
and a semi-implicit Euler scheme for discretization in time. We also discuss the discretization in
space using the spectral decomposition of the operator A.

3.1. Discretization in space : finite element approximation. We use the same framework as
in [1] and [13]. For precise general references on Finite Element Methods, see for instance [7] and
[15].

Let (Vh)h∈(0,1) be a family of spaces of continuous piecewise linear functions corresponding to

a finite set of nodes (possibly not uniformly distributed) in D = (0, 1) such that Vh ⊂ H1
0 (D) =

D((−A)1/2) - in other words, 0 and 1 should be included as nodes in the partition of [0, 1]. The
parameter h denotes the mesh size, which is the length of the largest subinterval in the partition.

Let Ph : H → Vh denote the orthogonal projection onto the finite dimensional space Ph. Accord-
ing to the context, we also consider Ph as a linear operator in L(H), since Vh ∈ H.

We finally define the approximation of the operator A: it is a linear operator Ah ∈ L(Vh).

Definition 3.1. The linear operator Ah : Vh → Vh is defined such that the following variational
equality holds: for any xh ∈ Vh and yh ∈ Vh

〈Ahxh, yh〉 = 〈Axh, yh〉

We recall a few important properties of the operator Vh:

Proposition 3.2. For any h ∈ (0, 1), Ah is symmetric, such that −Ah is positive definite.

If Nh is the dimension of Vh, we denote by (ehi )
Nh−1
i=0 ⊂ Vh an orthonormal eigenbasis correspond-

ing to −Ah with eigenvalues 0 < λh0 ≤ λh1 ≤ ... ≤ λhNh−1.

Then for any h ∈ (0, 1), we have λh0 ≥ λ0.

Indeed, we have

λ0 = inf
v,u∈H

〈−Au, v〉 ≤ inf
u,v∈Vh

〈−Au, v〉 = inf
u,v∈Vh

〈−Ahu, v〉 = λh0 .

For any h ∈ (0, 1), Ah generates a semi-group on Vh, which is denoted (etAh)t∈R+ . It is also not

difficult to define fractional powers (−Ah)
α of −Ah, for any α ∈ [−1, 1]: for any xh =

∑Nh−1
i=0 xhi e

h
i ∈

Vh, we have

etAhxh =

Nh−1
∑

i=0

e−λh
i txhi e

h
i ; (−Ah)

αxh =

Nh−1
∑

i=0

(λhi )
αxhi e

h
i .

The regularization estimates of Proposition 2.6 are then easily generalized to these semi-groups;
moreover bounds are uniform with respect to the mesh size h ∈ (0, 1).

We focus now on the approximations of PDEs - seen as equations in the Hilbert space H - with
equations in finite dimensional spaces Vh.

We consider the spatially semi discrete approximation of (1): (Xh(t))t∈R+ , is a process taking
values in Vh, such that

(8) dXh(t) = AhX
h(t)dt+ F h(Xh(t))dt+ PhdW (t), Xh(0) = Phx = PhX0,

where the non-linear coefficient F h : Vh → Vh satisfies F h(x) = Ph(F (x)) for any x ∈ Vh.
We remark that the regularity properties of Assumption 2.7 and the dissipativity inequality (3)

are satisfied if we replace A (resp. F ) with Ah (resp. F h).
8



This equation admits a unique mild solution, such that for any 0 ≤ t ≤ T

(9) Xh(t) = etAhPhx+

∫ t

0
e(t−s)AhF h(Xh(s))ds+

∫ t

0
e(t−s)AhPhdW (s).

Notice that the stochastic integral is always well-defined, since for any h ∈ (0, 1) the linear
operator Ph has finite rank; on Vh, the noise process PhW is a standard Nh-dimensional Wiener
process - as is easily seen by expanding W in a complete orthonormal system (qi)i∈N with qi = ehi
for 0 ≤ i ≤ Nh − 1.

To be able to state a convergence result of Xh to X, and to give an order of convergence, we now
express some important results - see [1] for more details:

Proposition 3.3. (i) We have an equivalence of norms: there exist two constants c, C ∈ (0,+∞),
such that for any h ∈ (0, 1), any α ∈ [−1/2, 1/2] and any xh ∈ Vh,

(10) c|(−Ah)
αxh| ≤ |(−A)αxh| ≤ C|(−Ah)

αxh|.
Moreover, we have for any h ∈ (0, 1), α ∈ [−1/2, 1/2], and x ∈ H,

(11) |(−Ah)
αPhx| ≤ C|(−A)αx|.

(ii) Let us denote by Rh the so-called Ritz projector, defined as the orthogonal projection onto Vh
in D((−A)1/2). We have the identity Rh = (−Ah)

−1Ph(−A) on D(A), and

(12)
∣

∣(−A)s/2(I −Rh)(−A)−r/2
∣

∣

L(H)
≤ Cr,sh

r−s ∀0 ≤ s ≤ 1 ≤ r ≤ 2

(iii) For Ph, we have the following error estimate:

(13)
∣

∣(−A)s/2(I − Ph)(−A)−r/2
∣

∣

L(H)
≤ Cr,sh

r−s ∀0 ≤ s ≤ 1 and 0 ≤ s ≤ r ≤ 2.

As a consequence, we get the following important result:

Proposition 3.4. For any κ > 0, the linear operator on H Ph(−Ah)
−1/2−κPh is continuous, self-

adjoint and semi-definite positive. Moreover,

sup
0<h<1

Tr
(

Ph(−Ah)
−1/2−κPh

)

< +∞.

The symmetry and the positivity are very important properties for our purpose: indeed, they
allow to use inequalities like

|Tr(MN)| ≤ |M |L(H)Tr(N),

for M,N ∈ L(H) such that L is symmetric and semi-definite positive.

Proof The operator is well-defined on H, and self-adjointness is clear, since (−Ah)
−1/2−κ ∈ L(Vh)

is symmetric.
Now from point (i) of Proposition 3.3, the following linear operators are defined and continuous on

H: (−A)κ(−Ah)
−κPh, and (−A)1/2Ph(−Ah)

−1/2Ph; their norm is uniformly bounded with respect
to h.

By duality, the operator Ph(−Ah)
−1/2Ph(−A)1/2 is well-defined on H - by unique continuous ex-

tension from the dense subspace D((−A)1/2) - and it has the same norm as (−A)1/2Ph(−Ah)
−1/2Ph.

Finally, we write that for any 0 < h < 1

Tr
(

Ph(−Ah)
−1/2−κPh

)

= Tr
(

(Ph(−Ah)
−1/2Ph(−A)1/2)(−A)−1/2−κ((−A)κ(−Ah)

−κPh)
)

≤
∣

∣Ph(−Ah)
−1/2Ph(−A)1/2

∣

∣

L(H)
Tr
(

(−A)−1/2−κ
)∣

∣(−A)κ(−Ah)
−κPh

∣

∣

L(H)

≤ CTr
(

(−A)−1/2−κ
)

.

�

We now recall a few convergence results, valid on time-intervals of finite length [0, T ]:
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• in the deterministic case, the order of convergence is 2;
• in the stochastic case, the strong order of convergence is 1/2 - see for instance [18], [29]:

∀0 < r < 1/2, ∃CT,r ∈ (0,+∞), ∀h ∈ (0, 1), we have E|Xh(T )−X(T )| ≤ CT,rh
1/2−r;

• in the stochastic case, the weak order of convergence is 1 - see [1]: for any admissible test
function φ,

∀0 < r < 1, ∃CT,r ∈ (0,+∞), ∀h ∈ (0, 1), we have |Eφ(Xh(T ))−Eφ(X(T ))| ≤ CT,rh
1−r.

To conclude this part, we introduce a notation which is useful to give some of the results in a
compact way.

Definition 3.5. For h = 0, we set X0 = X, as well as V0 = H, A0 = A, P0 = IdH .

3.2. Another discretization in space: spectral Galerkin projection. A tool in our proof
will be an additional finite dimensional projection onto the subspaces HM . This approximation
allows to justify rigorously the required computations; even if the process Xh takes values in a finite
dimensional subspace of H, it is easier to prove some estimates with a process taking values in finite
dimensional subspaces which are left invariant by the action of A and of the noise. We define here
the corresponding approximating processes, and give a few important convergence properties.

Let M ∈ N. According to Definition 2.4, we can consider an approximate equation in the finite-
dimensional subspace HM :

(14) dX(M)(t) = AX(M)(t)dt+ FM (X(M)(t))dt+ PMdW (t), X(M)(0) = PMx,

where FM = PM ◦ F - see also Assumption 2.7. The process W (M) := PMW takes values in HM ,
it is a standard Wiener process.

For any final time T ∈ (0,+∞), it admits a unique mild solution, taking values in HM ⊂ H - we
recall that HM is stable by A:

X(M)(t) = etAPMx+

∫ t

0
e(t−s)AFM (X(M)(s))ds+

∫ t

0
e(t−s)APMdW (s).

To study the convergence of X(M) to X, the following inequality is useful:

(15) |(I − PM )A−r|L(H) ≤ Crλ
−r
M+1, 0 ≤ r ≤ 1.

We then have the following convergence results, for any T ∈ (0,+∞), in the stochastic case:

• the strong order of convergence is 1/4:

∀0 < r < 1/2, ∃CT,r ∈ (0,+∞), ∀M ∈ N, we have E|X(M)(T )−X(T )| ≤ CT,r

λ
1/4−r
M+1

;

• the weak order of convergence is 1/2: for any admissible test function φ,

∀0 < r < 1, ∃CT,r ∈ (0,+∞), ∀M ∈ N, we have |Eφ(X(M)(T ))− Eφ(X(T ))| ≤ CT,r

λ
1/2−r
M+1

.

Those estimates can be proved with direct computations and the appropriate techniques from [1]
and [11]. Another possibility is to check that the projectors PN satisfy the estimates of Proposition

3.3 with h = λ
−1/2
N+1 , see Example 3.4 in [18]. Once again, we define a value for M = ∞:

Definition 3.6. For M = ∞, we set X(∞) = X, as well as H∞ = H and P∞ = IdH .

3.3. Discretization in time. For each fixed mesh size h ∈ (0, 1), and for h = 0, we now define a
time approximation of the process Xh: denoting by τ > 0 a time step, we use a semi-implicit Euler
scheme to define, for k ∈ N,

Xh
k+1(τ, x) = Xh

k (τ, x) + τAhX
h
k+1(τ, x) + τPhF (X

h
k (τ, x)) +

√
τPhχk+1

Xh
0 (τ, x) = x,

where χk+1 =
1√
τ
(W ((k + 1)τ)−W (kτ)).

10



To simplify the equations, most of the time we omit the dependence of Xh
k on the time-step τ

and on the initial condition x.
The previous equation can be replaced by

(16) Xh
k+1 = Sτ,hX

h
k + τSτ,hPhF (X

h
k ) +

√
τSτ,hPhχk+1,

where Sτ,h is defined by

(17) Sτ,h = (I − τAh)
−1.

When h = 0, the process is well-defined in H, since it is easily checked that Sτ,0 is a Hilbert-Schmidt
operator on H. When h > 0, it is well-defined in the finite-dimensional space Vh.

For the analysis of the convergence of the scheme, we need the following technical estimates on

the discrete-time semi-group (Sj
τ,h)j∈N for τ > 0 and h ≥ 0:

Lemma 3.7. For any 0 ≤ κ ≤ 1, h ∈ [0, 1) and j ≥ 1

|(−Ah)
1−κSj

τ,hPh|L(H) ≤
1

(jτ)1−κ

1

(1 + λ0τ)jκ
.

Moreover, for any β ≥ 1 and j ≥ β

|(−Ah)
βSj

τ,hPh|L(H) ≤
ββ

(jτ)β
,

and for any 0 ≤ β ≤ 1
|(−Ah)

−β(Sτ,h − I)Ph|L(H) ≤ 2τβ .

Proof Using the notations of Proposition 3.2, we have, for any z ∈ H,

|(−Ah)
1−κSj

τ,hPhz|2H =

Nh
∑

i=0

(λhi )
2(1−κ) 1

(1 + λhi τ)
2j
〈z, fhi 〉2

=
1

(jτ)2(1−κ)

Nh
∑

i=0

〈z, fhi 〉2(λhi )2(1−κ)(jτ)2(1−κ) 1

(1 + λhi τ)
2j(1−κ)

1

(1 + λhi τ)
2jκ

≤ 1

(jτ)2(1−κ)

Nh
∑

i=0

(

λhi jτ

1 + λhi jτ

)2(1−κ)
1

(1 + λh0τ)
2jκ

〈z, fhi 〉2

≤ c|Phz|2H
1

(jτ)2(1−κ)

1

(1 + λh0τ)
2jκ

≤ c|z|2H
1

(jτ)2(1−κ)

1

(1 + λh0τ)
2jκ

.

Above we have used the notation N0 = +∞. To conclude, we use that for any h ∈ [0, 1), λ0 ≤ λh0 .
The proofs of the two other inequalities are similar - see [3] for the second one. �

Remark 3.8. Later, we often use the following expression for Xh
k :

(18) Xh
k = Sk

τ,hPhx+ τ

k−1
∑

l=0

Sk−l
τ,h PhF (X

h
l ) +

√
τ

k−1
∑

l=0

Sk−l
τ,h Phχl+1.

The following expression is also useful:

(19)
√
τ

k−1
∑

l=0

Sk−l
τ,h Phχl+1 =

∫ tk

0
Sk−ls
τ,h PhdW (s),

where ls = ⌊ s
τ ⌋ - with the notation ⌊.⌋ for the integer part.

11



For h ∈ (0, 1), we finally introduce the following processes: for 0 ≤ k ≤ m− 1 and tk ≤ t ≤ tk+1

(20) X̃h(t) = Xh
k +

∫ t

tk

[AhSτ,hX
h
k + Sτ,hPhF (X

h
k )]ds+

∫ t

tk

Sτ,hPhdW (s).

The process (X̃h(t))t∈R+ is a natural interpolation in time of the numerical solution (Xh
k )k∈N

defined by (16): X̃h(tk) = Xh
k .

3.4. A priori bounds on moments. We give a few results on the processes (X(t))t≥0, (X
h(t))t∈R+

and (Xh
k )k∈N.

All the appearing constants are uniform with respect to h ∈ (0, 1).

Lemma 3.9. For any p ≥ 1, there exists a constant Cp > 0 such that for every h ∈ (0, 1), t ≥ 0
and x ∈ H

E|Xh(t, x)|p ≤ Cp(1 + |x|p).

Lemma 3.10. For any p ≥ 1, τ0 > 0, there exists a constant C > 0 such that for every h ∈ (0, 1),
0 < τ ≤ τ0, k ∈ N, t ≥ 0 and x ∈ H

E|Xh
k |p ≤ C(1 + |x|p) and for h ∈ (0, 1) we have E|X̃h(t)|p ≤ C(1 + |x|p).

Proof of Lemmas 3.9 and 3.10 The case h = 0 is treated in [3]. We thus only treat the case
h ∈ (0, 1), with similar methods.

Using the mild formulation, in the continuous-time situation we need to control three terms:

|etAhPhx| ≤ e−λh
0
t|Phx| ≤ e−λ0t|x|,

since λh0 ≥ λ0 thanks to Proposition 3.2;

|
∫ t

0
e(t−s)AhPhF (Xh(s))ds| ≤ C

∫ t

0
e−λh

0
(t−s)ds ≤ C

λh0
≤ C

λ0
,

thanks to the boundedness of F ;

E[|
∫ t

0
e(t−s)AhPhdW (s)|p] ≤ CpE[|

∫ t

0
e(t−s)AhPhdW (s)|2]p/2

≤ Cp

(

∫ t

0
Tr(e(t−s)AhPhe

(t−s)Ah)ds
)p/2

≤ Cp

(

∫ t

0
Tr(PhA

−1/2−κ
h Ph)|A1/2+κ

h e2(t−s)AhPh|L(H)ds
)p/2

≤ Cp

(

∫ t

0

1

(t− s)1/2+κ
e−λh

0
(t−s)ds

)p/2 ≤ Cp,

where we have reduced the estimate to the case p = 2 since the stochastic integral is a Gaussian
random variable, and then we have used Itö’s isometry formula, Proposition 2.6 and Proposition
3.4, with any κ > 0.

The proof of the first estimate of Lemma 3.10 goes along the same way, using the discrete-time
mild formulation (18), with also three quantities to control:

|Sk
τ,hPhx| ≤

1

(1 + λ0τ)k
|x|,

12



thanks to the first estimate of Lemma 3.7 and the boundedness of F ;

|τ
k−1
∑

l=0

Sk−l
τ,h PhF (X

h
l )| ≤ Cτ

k−1
∑

l=0

1

(1 + λ0τ)k−l

≤ C
τ

(1/(1 + λ0τ))− 1
≤ C;

finally as before we only need to study the case p = 2, and we use (19) to get

E|
√
τ

k−1
∑

l=0

Sk−l
τ,h Phχl+1|2 =

k−1
∑

l=0

τTr(Sk−l
τ,h PhS

k−l
τ,h )

≤ Tr(PhA
−1/2−κ
h Ph)τ

k−1
∑

l=0

|S2(k−l)
τ,h A

1/2+κ
h |L(H)

≤ Cτ

k−1
∑

l=0

1

((k − l)τ)1/2+κ
exp

(

− (1/2− κ)
log(1 + λ0τ)

τ
(k − l)τ

)

≤ C

∫ +∞

0

1

t1/2+κ
exp(−ct)dt,

for some c > 0.
The proof of the second estimate of Lemma 3.10 using (20) is then straightforward. �

4. Asymptotic behavior of the processes and invariant laws

First, we focus on the existence of invariant measures for the continuous and discrete time pro-
cesses. We use the well-known Krylov-Bogoliubov criterion - see [9]. Tightness comes from two facts:
D(−A)γ is compactly embedded in H when γ > 0, and when γ < 1/4 we can control moments with
the same techniques as for proving the Lemmas 3.9 and 3.10:

Lemma 4.1. For any 0 < γ < 1/4, τ > 0 and any x ∈ H, there exists C(γ, τ, x), C(γ, x) > 0 such
that for every h ∈ (0, 1), m ≥ 1 and t ≥ 1

E|Xh
m(τ, x)|2γ ≤ C(γ, τ, x) and E|Xh(t, x)|2γ ≤ C(γ, x).

For h ∈ [0, 1), uniqueness of the invariant probability measure for the continuous time process
(Xh(t))t∈R+ can be deduced from the well-known Doob Theorem - see [9]. Indeed, since in equation
(1) noise is additive and non-degenerate, the Strong Feller property and irreducibility can be easily
proved. In the proof of the main Theorem 5.1, we also need speed of convergence, and thanks to a
coupling argument we get the following exponential convergence result :

Proposition 4.2. There exist c > 0, C > 0 such that for any bounded test function φ : H → R,
any t ≥ 0, any h ∈ [0, 1) and any x1, x2 ∈ Vh

(21) |Eφ(Xh(t, x1))− Eφ(Xh(t, x2))| ≤ C‖φ‖∞(1 + |x1|2 + |x2|2)e−ct.

Remark 4.3. A proof of this result can be found in Section 6.1 in [12]. In this proof it is obvious
that c and C are independent of h.

The idea of coupling relies on the following formula: if ν1 and ν2 are two probability measures
on a state space S, their total variation distance satisfies

dTV (ν1, ν2) = inf {P(X1 6= X2)} ,
which is an infimum over random variables (X1, X2) defined on a same probability space, and such
that X1 ∼ ν1 and X2 ∼ ν2.
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Roughly speaking, the principle is to define a coupling (Z1(t, x1, x2), Z2(t, x1, x2))t≥0 for the
processes (X(t, x1))t≥0 and X((t, x2))t≥0 such that the coupling time T of Z1 and Z2 - i.e. the first
time the processes are equal - has an exponentially decreasing tail.

This technique was first used in the study of the asymptotic behavior of Markov chains - see [4],
[14], [19], [22] - and was later adapted for SDEs and more recently for SPDEs - see for instance [17],
[20], [23].

Corollary 4.4. For any h ∈ [0, 1), the process Xh admits a unique invariant probability measure
µh, such that for any bounded test function φ : H → R, t ≥ 0 and x ∈ Vh we have

(22) |Eφ(Xh(t, x))−
∫

Vh

φdµh| ≤ C‖φ‖∞(1 + |x|2)e−ct.

We use the notation µ = µ0, when h = 0: it is the invariant law of the non-discretized process, for
which we show an approximation result.

However, the situation is more complex for the discrete time approximations: given a time-step
τ > 0, we do not know whether uniqueness also holds for the numerical approximation (Xh

k )k∈N.
In the following Remark 4.5 below, we describe a strict dissipativity assumption on the non-linear
coefficient which ensures ergodicity by a straightforward argument. Without this assumption, it is
not clear whether ergodicity holds for small time-steps 0 < τ ≤ τergo, where τergo can be chosen
indepently of h ∈ [0, 1); the answer to this question will be the subject of future works.

Remark 4.5. Let h ∈ [0, 1) be fixed. A sufficient condition for the uniqueness of the invariant
probability measure of the discrete time process (Xh

k )k∈N is the strict dissipativity assumption

LF < λ0,

where we recall that LF denotes the Lipschitz constant of F .
Then trajectories of the processes (Xh

t )t∈R+ and (Xh
k )k∈N issued from different initial conditions

x1 and x2 and driven by the same noise process are exponentially close when time increases: for
any τ0 > 0, there exists c > 0 such that for any 0 < τ ≤ τ0, h ∈ [0, 1), k ≥ 0 and t ≥ 0 we have
almost surely

|Xh(t, x1)−Xh(t, x2)| ≤ e−(λ0−LF )t|x1 − x2|
|Xh

k (τ, x1)−Xh
k (τ, x2)| ≤ e−ckτ |x1 − x2|.

The proof of the uniqueness of the invariant law is now easy, and in particular we do not use
Proposition 4.2.

Results are the same when we consider the spectral Galerkin discretization:

Proposition 4.6. There exist c > 0, C > 0 such that for any bounded test function φ : H → R,
any t ≥ 0, any M ∈ N ∪ {∞} and any x1, x2 ∈ HM

(23) |Eφ(X(M)(t, x1))− Eφ(X(M)(t, x2))| ≤ C‖φ‖∞(1 + |x1|2 + |x2|2)e−ct.

Moreover, for any M ∈ N ∪ {∞}, the process X(M) admits a unique invariant probability measure

µ(M), such that for any bounded test function φ : H → R, t ≥ 0 and x ∈ HM we have

(24) |Eφ(X(M)(t, x))−
∫

HM

φdµ(M)| ≤ C‖φ‖∞(1 + |x|2)e−ct.

With the notations of Definitions 3.5 and 3.6, we have µ(∞) = µ = µ0.
As consequence of Proposition 4.6, we obtain the following Lemma:
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Lemma 4.7. For any bounded test function φ ∈ C(H), we have

φM :=

∫

HM

φ(z)dµ(M)(z) −→
M→∞

∫

H
φdµ =: φ.

Proof of Lemma 4.7: For any t ≥ 0 and any fixed initial condition x ∈ H, we have
∫

HM

φ(z)dµ(M)(z)−
∫

H
φ(z)dµ(z) =

∫

HM

φ(z)dµ(M)(z)− Eφ(X(M)(t)))

+ Eφ(X(M)(t))− Eφ(X(t))

+ Eφ(X(t))−
∫

H
φ(z)dµ(z).

We thus get that for any t > 0

lim sup
M→+∞

|
∫

HM

φ(z)dµ(M)(z)−
∫

H
φ(z)dµ(z)| ≤ C exp(−ct),

and it remains to take t→ +∞. Notice that the constant c does not depend on dimension M . �

The speed of convergence in Lemma 4.7 will be given below in Remark 5.3.

5. The convergence results

We now state our main result, as well as a few important consequences.
For an admissible test function φ we define ‖ φ ‖2,∞= sup0≤j≤2(‖ Djφ ‖∞).

Theorem 5.1. For any 0 < κ < 1/2, τ0, there exists a constant C > 0 such that for any C2
b (H)

function φ, h ∈ (0, 1), N ≥ 1, x ∈ H and 0 < τ ≤ τ0

∣

∣

∣

1

N

N−1
∑

m=0

(

Eφ(Xh
m)− φ

)∣

∣

∣
≤ C ‖ φ ‖2,∞ (1 + |x|3)

(

1 + (Nτ)−1+κ + (Nτ)−1
)(

τ1/2−κ + h1−κ +
1

Nτ

)

,

where φ =
∫

H φ(z)µ(dz).

This result can be interpreted with a statistical point of view: 1
N

∑N−1
m=0 Eφ(X

h
m) is an estimator

of the average φ =
∫

H φ(z)µ(dz) of the admissible test function φ with respect to the invariant law
µ of the SPDE. The Theorem 5.1 gives an error bound on its bias.

Of the two factors in parenthesis in the Theorem, only the second one is important - the presence
of the first one is for technical estimates which degenerate at time 0 whereas we are interested at
the asymptotic behavior of the quantity. The main observation is that the orders of convergence
with respect to τ and h are given by the corresponding weak orders 1/2 and 1 in the approximation
of X(T ) for a fixed value of the final time T < +∞ - given in [11] and [1]. The aim of this paper
is to show how the corresponding error bounds are preserved asymptotically - under appropriate
conditions.

An interesting supplementary result would concern the study of the statistical error. In [21], two
more error bounds are proved: first in the mean-square sense, and then in an almost sure statement
- thanks to an argument of Borel-Cantelli type. We have not been able to treat our problem in
a similar way. We claim that it is for the following reason. The right order of convergence with
respect to τ in Theorem 5.1 is obtained thanks to an appropriate integration by parts formula - as
explained in the Introduction; the study of the mean-square error - now in a stronger sense - implies
that the use of such a technique seems impossible. To generalize the results of [21] in the infinite
dimensional setting, new arguments should be found.

The additional term 1
Nτ corresponds to the bias introduced between the average in time and its

limit when time increases.
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From Theorem 5.1, it is easy to obtain approximation results when only one type of discretization
is applied.

Results on distance between invariant laws of the various processes can now be given. As explained
in Section 4, without the time-discretization ergodicity holds for the spatially discretized, time-
continuous process Xh for any h ∈ (0, 1), while as soon as discretization in time is applied it is not
clear whether it holds for small enough time-steps, uniformly with respect to h.

However, as a consequence of Theorem 5.1 we obtain error bounds controlling the distance be-
tween the average of admissible test functions with respect to the possibly non unique ergodic
invariant laws of the discretized process and the invariant law of the SPDE.

Proposition 5.2. For any 0 < κ < 1/2, τ0 > 0, there exists a constant C > 0 such that the
following holds:

for any 0 < τ < τ0 and h ∈ (0, 1), assume that µτ,h is an ergodic invariant law of (Y h
k )k∈N; then

for any admissible test function φ, we have

|
∫

H
φ(z)dµ(z)−

∫

Vh

φ(z)dµτ,h(z)| ≤ C ‖ φ ‖2,∞
(

τ1/2−κ + h1−κ
)

.

The proof of this result is easy - we let go N to ∞ in the estimate of Theorem 5.1, and the
convergence of the time-average for µτ,h a.e. initial condition, see also [3].

The above result also holds for invariant laws having a finite third order moment.

Remark 5.3. It is also possible to derive the error estimates as in Theorem 5.1 and Proposition
5.2 when discretization in space is done with the spectral approximation in dimension M instead of
using a finite element method with mesh-size h. For instance, we precise the speed of convergence
in : for any 0 < κ < 1/2 and φ ∈ C2

b (H), there exists a constant Cκ such that

|
∫

H
φdµ−

∫

HM

φMdµ
(M)| ≤ Cκ

1

λ
1/2−κ
M+1

.

The strategy - developed in Section 6 - remains the same, where we use an auxiliary dimension
variable, say L, going to ∞ for the ambient space where the Poisson equation is used, while M is
fixed.

6. Description of the proof

We fix the time step τ , as well as N ∈ N; we then introduce the notation T = Nτ . We also
define, for k ∈ N, tk = kτ . κ > 0 is a parameter, which is be supposed to be small enough. We also
control τ : for some τ0 > 0, τ ≤ τ0.

6.1. Strategy. The three key ingredients to prove Theorem 5.1 are the use of an additional finite
dimensional projection onto the subspaces HM , the use of the solution of the Poisson equation as
in [21] (see Sub-section 6.2) and an integration by parts formula issued from Malliavin calculus as
in [3, 11] (see Sub-Section 6.3).

We will use the Poisson equation in finite dimension, then we will use the following decomposition:

1

N

N−1
∑

m=0

Eφ(Xh
m)− φ =

1

N

N−1
∑

m=0

Eφ(PMX
h
m)− φM

+ φM − φ+
1

N

N−1
∑

m=0

(

Eφ(Xh
m)− Eφ(PMX

h
m)
)

,

where we recall that PM is the orthogonal projection of H into HM and φM is define at the end of
Section 4.
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It is obvious the the last term converge to 0 when M → +∞. The convergence to 0 of the second
term is not difficult, it has been proved in Section 4. The proof of the estimate of the first term is
very technical, so for pedagogy, in Sub-Section 6.4 we introduce the decomposition of the error and
identify the three terms which we control later in Sub-Section 7.1, Sub-Section 7.2 and Sub-Section
7.3.

6.2. Some results on the Poisson equation in finite dimension. Let M ∈ {1, 2, . . .}. Let

φ ∈ C2
b (H). We define Ψ(M) : HM → R by the unique solution of the Poisson equation

(25) L(M)Ψ(M) = φPM − φM and

∫

HM

Ψ(M)dµ(M) = 0,

where L(M) is the infinitesimal generator of the SPDE (14) defined for functions of class C2 ψ :
H → R and for any x ∈ H by

L(M)ψ(x) = 〈APMx+ PMF (x), Dψ(x)〉+
1

2
Tr(PMD

2ψ(x)).

In the following, we will need to control the first and the second derivatives of Ψ. The Proposition
below is the essential result that we need. It is the same kind of estimation used in [3, 11] to obtain
weak order of convergence 1/2.

Proposition 6.1. Let M ∈ {1, 2, . . .}. Let φ ∈ C2
b (H). The function Ψ(M) defined for any x ∈ HM

by

Ψ(M)(x) =

∫ +∞

0
E

(

φ(X(M)(t, x))− φM

)

dt

is of class C2 and the unique solution of (25). Moreover, we have the estimates below: for 0 ≤
β, γ < 1/2 and x ∈ HM

|Ψ(M)(x)| ≤ C(1 + |x|2) ‖ φ ‖∞,

(26) |DΨ(M)(x)|β ≤ Cβ(1 + |x|2) ‖ φ ‖1,∞
and

(27) |(−A)βD2Ψ(M)(x)(−A)γ |L(HM ) ≤ Cβ,γ(1 + |x|2) ‖ φ ‖2,∞,
where ‖ φ ‖i,∞= sup0≤j≤i(‖ Djφ ‖∞).

Remark 6.2. In fact, the result on DΨ is also true for β < 1 and the result on D2Ψ is also true for
β < 1, γ < 1 and β+γ < 1. Moreover, all the constants are uniform with respect to M ∈ {1, 2, . . .}.

A proof of this result can be found in the Appendix.

6.3. A Malliavin integration by parts formula. Let h ∈ (0, 1) be fixed - the case h = 0 is not
required in the calculations.

As explained in the Introduction, one of the key tools to obtain the right weak order is a trans-
formation of some spatially irregular terms involving the stochastic integral with respect to the
cylindrical Wiener process, into more suitable, deterministic ones, thanks to an integration by parts
formula, issued from Malliavin calculus - see [24], [26].

The notations here are the same as in [11], where the following useful integration by parts formula
is given - see Lemma 2.1 therein:

Lemma 6.3. For any F ∈ D
1,2(Vh), u ∈ C2

b (Vh) and Ψ ∈ L2(Ω× [0, T ],L2(Vh)) an adapted process,

(28) E[Du(F ).

∫ T

0
Ψ(s)dW (h)(s)] = E[

∫ T

0
Tr(Ψ(s)∗D2u(F )DsF )ds],
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where DsF : ℓ ∈ H 7→ Dℓ
sF ∈ Vh stands for the Malliavin derivative of F , and D

1,2(Vh) is the
set of H-valued random variables F =

∑

i∈N,i≤Nh
Fifi, with Fi ∈ D

1,2 the domain of the Malliavin
derivative for R-valued random variables for any i.

Remark 6.4. This Lemma remains valid if u is not assumed to be bounded but only u ∈ C2(Vh)
provided the expectations and the integral above are well defined. This is easily seen by approximation
of u by bounded functions.

Some care must be taken when controlling the Malliavin derivative of X̃h: in general it is not
possible to obtain uniform estimates with respect to time - unless for instance a strict dissipativity
condition is satisfied, as in Remark 4.5.

In the proof of technical estimates below, we circumvent this problem by using these derivatives
only at times tk = kτ and s such that tk−ls ≤ 1. The Lemma 6.5 gives though the most general
estimate.

Lemma 6.5. For any 0 ≤ β < 1 and τ0 > 0, there exists a constant C > 0 such that for every
h ∈ (0, 1), k ≥ 1, 0 < τ ≤ τ0 and s ∈ [0, tk]

|(−Ah)
βD.

sX
h
k |L(Vh) ≤ C(1 + LF τ)

k−ls(1 +
1

(1 + λ0τ)(1−β)(k−ls)tβk−ls

).

Moreover, if tk ≤ t < tk+1, we have

|(−Ah)
βDℓ

sX̃
h(t)|L(Vh) ≤ C|(−Ah)

βDℓ
sX

h
k |L(Vh).

We want to emphasize that the constant in Lemma 6.5 is uniform with respect to h ∈ (0, 1).

Proof According to the definition of DsF as a linear operator in Vh, we need to control |(−Ah)
βDℓ

sX̃
h(t)|

and |(−Ah)
βDℓ

sX
h
k |, uniformly with respect to x ∈ Vh with |ℓ| ≤ 1.

The second inequality is a consequence of the following equality for s ≤ tk ≤ t < tk+1, thanks to
(20):

Dℓ
sX̃

h(t) = Dℓ
sX

h
k + (t− tm)(τAhSτ,hDℓ

sX
h
k +RτPhF (X

h
k )Dℓ

sX
h
k ),

and the conclusion follows since

sup
h∈(0,1)

|τAhSτ,h|L(Vh) < +∞.

Now we prove the first estimate, and we fix h ∈ (0, 1). For any k ≥ 1, ℓ ∈ Vh and s ∈ [0, tk],
using the chain rule for Malliavin calculus and expressions (18) and (19), we have

Dℓ
sX

h
k = Sk−ls

τ,h ℓ+ τ
k−1
∑

i=ls+1

Sk−i
τ,h D(PhF )(X

h
i ).Dℓ

sX
h
i .

We recall that ls denotes the integer part of s
τ , so that when i ≤ ls we have Dℓ

sX
h
i = 0.

As a consequence, the discrete Gronwall Lemma ensures that for k ≥ ls + 1

|Dℓ
sX

h
k | ≤ (1 + LF τ)

k−ls |ℓ|.
Now using Lemma 3.7, we have

|(−Ah)
βDℓ

sX
h
k | ≤

1

(1 + λ0τ)(1−β)(k−ls)tβk−ls

|ℓ|+ LF τ

k−1
∑

i=ls+1

(1 + LF τ)
l−ls

(1 + λ0τ)(1−β)(k−i)tβk−i

|ℓ|.

To conclude, we see that when 0 < τ ≤ τ0

τ

k−1
∑

i=ls+1

1

(1 + λ0τ)(1−β)(k−i)tβk−i

≤ C

∫ +∞

0
t−β 1

(1 + λ0τ)
(1−β) t

τ

dt ≤ C < +∞.

�
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6.4. Strategy for the estimate of limM→∞
1
N

∑N−1
m=0 Eφ(PMX

h
m)− φM . Let M ∈ {1, 2, . . .}, we

define the function Ψ̃(M) for x ∈ H by

Ψ̃(M)(x) = Ψ(M)(PMx),

where Ψ(M) is the solution of the Poisson equation (25). Using the identifications introduced in
Remark 2.1 we have for any x ∈ H

DΨ̃(M)(x) = PMDΨ(M)(PMx),

D2Ψ̃(M)(x) = PMD
2Ψ(M)(PMx)PM ,

then it is easy to show that Ψ̃(M) and Ψ(M) verify the same estimates (see Proposition 6.1).

The main idea is to give an expansion of EΨ̃(M)(Xh
m+1)−EΨ̃(M)(Xh

m) to sum it form = 1, ..., N−1

and divide by Nτ . The function Ψ̃(M) is defined for x ∈ H by

Ψ̃(M)(x) = Ψ(M)(PMx),

where Ψ(M) is the solution of the Poisson equation (25). It is easy to show that Ψ̃(M) and Ψ(M)

verify the same estimates (see Proposition 6.1).

We need the continuous time interpolation of the numerical process X̃h defined by (20). For all

m ∈ N, we can associate to X̃h on [tm, tm+1] the generator Lτ,m,h defined for x ∈ Vh and φ ∈ L(H)
by

(29) Lτ,m,hφ(x) = 〈Sτ,hAhX
h
m + Sτ,hPhF (X

h
m), Dφ(x) > +

1

2
Tr(Sτ,hS

∗
τ,hPhD

2φ(x)).

Thanks to the Itô formula and Proposition 6.1, we have for any integer m

EΨ̃(M)(Xh
m+1)− EΨ̃(M)(Xh

m) =

∫ tm+1

tm

ELτ,m,hΨ̃(M)(X̃h(s))ds.

We also need the markov generator Lh of the finite element solution Xh to decompose this term.
The generator Lh is given for x ∈ Vh by

Lhφ(x) = 〈Ahx+ PhF (x), Dxφ(x)〉+
1

2
Tr(PhD

2
xxφ(x)).

We have the following decomposition:

EΨ̃(M)(Xh
m+1)− EΨ̃(M)(Xh

m) =

∫ tm+1

tm

E

(

Lτ,m,h − Lh
)

Ψ̃(M)(X̃h(s))ds

+

∫ tm+1

tm

E

(

Lh − L(M)
)

Ψ̃(M)(X̃h(s))ds

+

∫ tm+1

tm

EL(M)Ψ̃(M)(X̃h(s))ds.

Using the following equality for x ∈ H

L(M)Ψ̃(M)(x) = L(M)Ψ(M)(PMx) + 〈PMF (x)− PMF (PMx), DΨ(M)(PMx)〉
19



and the definition of Ψ(M), we get

EΨ̃(M)(Xh
m+1)− EΨ̃(M)(Xh

m) =

∫ tm+1

tm

E

(

Lτ,m,h − Lh
)

Ψ̃(M)(X̃h(s))ds

+

∫ tm+1

tm

E

(

Lh − L(M)
)

Ψ̃(M)(X̃h(s))ds

+

∫ tm+1

tm

E(φ(PMX̃
h(s))− φM )ds

+

∫ tm+1

tm

E〈PM

(

F (X̃h(s))− F (PMX̃
h(s))

)

, DΨ(M)(PMX̃
h(s))〉ds

=

∫ tm+1

tm

E

(

Lτ,m,h − Lh
)

Ψ̃(M)(X̃h(s))ds

+

∫ tm+1

tm

E

(

Lh − L(M)
)

Ψ̃(M)(X̃h(s))ds

+ τ
(

Eφ(PMX
h
m)− φM

)

+

∫ tm+1

tm

E

(

φ(PMX̃
h(s))

)

− E

(

φ(PMX
h
m)
)

ds

+

∫ tm+1

tm

E〈PM

(

F (X̃h(s))− F (PMX̃
h(s))

)

, DΨ(M)(PMX̃
h(s))〉ds

Then if we sum for m = 1, . . . , N − 1 and divide by Nτ , we obtain

(30)

1

N

N−1
∑

m=0

(

Eφ(PMX
h
m)−φM

)

=
1

Nτ

(

EΨ(M)(PMX
h
N )− EΨ(M)(PMX

h
1 )
)

+
1

N

(

φ(PMx)− φM
)

+
1

Nτ

N−1
∑

m=1

∫ tm+1

tm

E

(

L(M) − Lh
)

Ψ̃(M)(X̃h(s))ds

+
1

Nτ

N−1
∑

m=1

∫ tm+1

tm

E

(

Lh − Lτ,m,h
)

Ψ̃(M)(X̃h(s))ds

− 1

Nτ

N−1
∑

m=1

∫ tm+1

tm

(

Eφ(PMX̃
h(s))− Eφ(PMX

h
m)
)

ds

− 1

Nτ

N−1
∑

m=1

∫ tm+1

tm

E〈PM

(

F (X̃h(s))− F (PMX̃
h(s))

)

, DΨ(M)(PMX̃
h(s))〉ds

:= I1 + I2 + I3 + I4 + I5 + I6.

The two first terms and the last term are easy to control. Indeed, using Proposition 6.1 and Lemma
3.10, we get for 0 < τ < τ0,

|I1 + I2| ≤ C(1 + |x|2) 1

Nτ
,
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where τ0 is any fixed positive real number. Using the fact that F is lipschitz, Proposition 6.1 and
Lemma 3.10, we get

lim
M→∞

I6 → 0.

The control of of the three other terms will be the subject of three following Subsections. First,
in Subsection 7.1, the following estimate of I3 is shown:

Lemma 6.6 (Space-discretization error). For any 0 < κ < 1/2 and τ0, there exists a constant
C > 0 such that for any φ ∈ C2

b (H), x ∈ H and 0 < τ ≤ τ0

lim sup
M→∞

1

Nτ

N−1
∑

m=1

∫ tm+1

tm

E

(

L(M) − Lh
)

Ψ̃(M)(X̃h(s))ds ≤ C(1 + |x|3) ‖ φ ‖2,∞ h1−κ(1 + (Nτ)−1).

In Subsection 7.3, we will show the following estimate of I4:

Lemma 6.7 (Time-discretization error). For any 0 < κ < 1/2 and τ0, there exists a constant C > 0
such that for any φ ∈ C2

b (H), M ∈ {1, 2, . . .}, y ∈ H and 0 < τ ≤ τ0

| 1

Nτ

N−1
∑

m=1

∫ tm+1

tm

E

(

Lh−Lτ,m,h
)

Ψ̃(M)(X̃h(t))dt| ≤ C ‖ φ ‖2,∞ (1+|x|3)τ1/2−κ(1+(Nτ)−1+κ+(Nτ)−1).

Finally, the proof of the following estimate of I5 is detailed in Subsection 7.2:

Lemma 6.8 (Additional time-discretization error). For any 0 < κ < 1/4 and τ0, there exists a
constant C > 0 such that for any φ ∈ C2

b (H), M ∈ {1, 2, . . .}, y ∈ H and 0 < τ ≤ τ0

| 1

Nτ

N−1
∑

m=1

∫ tm+1

tm

(

Eφ(PMX̃
h(t))− Eφ(PMX

h
m)
)

dt| ≤ C ‖ φ ‖2,∞ τ1/2−2κ
(

1 +
|x|

(Nτ)1−κ

)

.

The order of the respective proofs may not seem natural. We have made the choice to put the
proof of the Lemma 6.7 on the time-discretization error at the end since it essentially uses the
same arguments as in [3], while the others require new estimates, appearing for the first time in
this context of approximations of invariant laws. We thus begin with the proof of Lemma 6.6 on
the space discretization error, and go on with the proof of Lemma 6.8 concerning the additional
time-discretization error induced by the use of the Poisson equation - instead of the the generators,
we have the process alone.

7. Detailed proof of the estimates

We warn the reader that constants may vary from line to line during the proofs, and that in order
to use lighter notations we usually forget to mention dependence on the parameters. We use the
generic notation C for such constants. All constants will depend on a parameter κ > 0, which can
be chosen as small as necessary.

To simplify the expressions, we have not mentioned the dependence of the error with respect to
the test function φ. However, thanks to Proposition 6.1 it is straightforward to give this precision.

7.1. Control of the space dicretization error 1
Nτ

∑N−1
m=1

∫ tm+1

tm
E

(

L(M) − Lh
)

Ψ̃(M)(X̃h(t))dt.

In this Subsection, we prove the estimate of the Lemma 6.6.
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7.1.1. Strategy. To control this term, we will mix ideas describes in [1] and in [3]. In [1], to prove
weak convergence, the authors use estimation on u the solution of the Kolmogorov equation associ-
ated to the SPDE. We can use the same ideas because, for each M ∈ {1, 2, . . .}, Ψ(M), the solution
of the Poisson equation, and its derivatives verify the same kind of estimations than u.

Let M ∈ {1, 2, . . .} be fixed. First, we will decompose L(M) − Lh in three terms. We have for
any x ∈ H

(

L(M) − Lh
)

Ψ̃(M)(x) =〈
(

AM −Ah

)

x,DΨ̃(M)(x)〉

+ 〈
(

PM − Ph

)

F (x), DΨ̃(M)(x)〉

+
1

2
Tr
(

(

PM − Ph

)

D2Ψ̃(M)(x)
)

and we obtain

1

Nτ

N−1
∑

m=1

∫ tm+1

tm

E

(

L(M) − Lh
)

Ψ̃(M)(X̃h(t))dt =
1

Nτ

N−1
∑

m=1

(am + bm + cm),

where for 1 ≤ m ≤ N − 1

am = E

∫ tm+1

tm

〈(AM −Ah)X̃
h(t), DΨ̃(M)(X̃h(t))〉dt

bm = E

∫ tm+1

tm

〈(PM − Ph)F (X̃
h(t)), DΨ̃(M)(X̃h(t))〉dt

cm =
1

2
E

∫ tm+1

tm

Tr
(

(PM − Ph)D
2Ψ̃(M)(X̃h(t))

)

dt.

7.1.2. Estimate of am. The Ritz projection Rh can be expressed in the form Rh = A−1
h PhA. Using

this we can write

〈(AM −Ah)X̃
h(t), DΨ̃(M)(X̃h(t))〉 = 〈(AMPh −AhPh)X̃

h(t), DΨ̃(M)(X̃h(t))〉
=〈X̃h(t), (PhAM −AhPh)DΨ̃(M)(X̃h(t))〉 = 〈X̃h(t), AhPh(RhPM − I)DΨ̃(M)(X̃h(t))〉
=〈X̃h(t), AhPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉+ 〈X̃h(t), AhPh(PM − I)DΨ̃(M)(X̃h(t))〉.

The idea of this decomposition is to apply the error estimates (12) and (15) for Rh and PM respec-

tively. We now use formula (20) on X̃h(t). We then need to estimate the following five terms.

am =E

∫ tm+1

tm

〈Xh
m, AhPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉dt

+ E

∫ tm+1

tm

(t− tm)〈AhSτ,hX
h
m, AhPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉dt

+ E

∫ tm+1

tm

(t− tm)〈Sτ,hPhF (X
h
m), AhPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉dt

+ E

∫ tm+1

tm

〈
∫ t

tm

Sτ,hPhdW (s), AhPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉dt

+ E

∫ tm+1

tm

〈AhX
h
m, (PM − I)DΨ̃(M)(X̃h(t))〉dt

=:am,h
1 + am,h

2 + am,h
3 + am,h

4 + am,M
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(1) Estimate of am,h
1 : We use expressions (18) of Xh

m and (19) to decompose am,h
1 :

am,h
1 =E

∫ tm+1

tm

〈Sm
τ,hPhx,AhPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉dt

+ E

∫ tm+1

tm

τ

k−1
∑

ℓ=0

〈Sm−ℓ
τ,h PhF (X

h
ℓ ), AhPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉dt

+ E

∫ tm+1

tm

〈
∫ tm

0
Sm−ls
τ,h PhdW (s), AhPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉dt

=:am,h
1,1 + am,h

1,2 + am,h
1,3 .

• Estimate of am,h
1,1 : The ideas are to "share" (−Ah) between different factors and to

use regularization properties of the semi-group (Sk
τ,h)k∈N. Thanks to Proposition 3.3,

Proposition 6.1 for β = 1
2 , Lemma 3.10 and Lemma 3.7, we get, for any small enough

parameter 0 < κ < 1/2,

|am,h
1,1 | =|E

∫ tm+1

tm

〈(−Ah)
1−κSm

τ,hPhx, (−Ah)
κPh(Rh − I)(−A)−1/2PM (−A)1/2DΨ̃(M)(X̃h(t))〉dt|

≤E

∫ tm+1

tm

|(−Ah)
1−κSm

τ,hPh|L(H)|x||(−Ah)
κPh(Rh − I)(−A)−1/2|L(H)

|PM |L(H)|(−A)1/2DΨ̃(M)(X̃h(t))|dt

≤C 1

(mτ)1−κ

1

(1 + λ0τ)mκ
|x||(−A)κ(Rh − I)(−A)−1/2|L(H)

∫ tm+1

tm

E(1 + |X̃h(t)|2)dt

≤Cτ 1

(mτ)1−κ

1

(1 + λ0τ)mκ
(1 + |x|3)h1−2κ.

We will now use the following useful inequality: for τ ≤ τ0 and any N ≥ 1

(31) τ
N
∑

l=1

1

(lτ)1−κ

1

(1 + λ0τ)lκ
≤ Cκ.

Indeed,

τ
N
∑

l=1

1

(lτ)1−κ

1

(1 + λ0τ)lκ
≤ C

∫ tN

0

1

t1−κ

1

(1 + λ0τ)
κ t

τ

dt

≤
∫ ∞

0

1

t1−κ
e−tκ

τ
log(1+λ0τ)dt

≤
∫ ∞

0

1

s1−κ
e−sds

(

τ

κ log(1 + λ0τ)

)κ

≤ Cκ.

Then, using (31), we get

(32)
1

Nτ

N−1
∑

m=1

|am,h
1,1 | ≤ C

1

T
h1−2κ(1 + |x|3).
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• Estimate of am,h
1,2 : Using the same ideas than to estimate am,h

1,1 , we have

|am,h
1,2 | ≤ CτE

∫ tm+1

tm

m−1
∑

l=0

|(−Ah)
1−κSm−l

τ,h PhF (X
h
l )||(−Ah)

κPh(Rh − I)(−A)−1/2|L(H)

× |(−A)1/2DΨ̃(M)(X̃h(t))|dt.

Since F is supposed to be bounded, the estimate (31) yields

|τ(−Ah)
1−κ

m−1
∑

l=0

Sm−l
τ,h F (Xh

l )| ≤ C‖F‖∞τ
m
∑

l=1

1

(lτ)1−κ

1

(1 + λ0τ)lκ
≤ Cκ.

With Lemma 3.3, Lemma 3.10 and Proposition 6.1 for β = 1
2 , we can now write

|am,h
1,2 | ≤ C(1 + |x|2)h1−2κτ,

and we get

(33)
1

Nτ

N−1
∑

m=0

|am,h
1,2 | ≤ C(1 + |x|2)h1−2κ.

• Estimate of am,h
1,3 : The analysis of this term is more complicated. We refer the reader

to [3] for a discussion on the problem, and for detailed explications on the strategy of
the proof - following the original idea of [11].
We recall that the problem lies in the regularity in space of the process, due to whiteness

in space of the driving noise. The strategy used to control am,h
1,1 and am,h

2,1 above would

only give an order of convergence 1/4, while we expect 1/2 - our constants need to be
uniform with respect to the mesh size h!

We decompose am,h
1,3 into two parts, corresponding to different intervals for the stochastic

integration. On one of these parts, we can work directly. On the other, a Malliavin
integration by parts is performed: it allows to use appropriate regularization properties,
and to obtain the correct order of convergence 1/2. We emphasize on the length of the
interval where this integration by parts is applied: its maximal size is independent of τ
and h, so that the possible exponential divergence when time increases of the Malliavin
derivatives implies no trouble.
By using (19), we make the decomposition

am,h
1,3 = E

∫ tm+1

tm

〈
∫ tm

0
Sm−ls
τ,h PhdW (s), (−Ah)Ph(Rh − I)PMDΨ̃(M)(X̃h(t))〉dt

= E

∫ tm+1

tm

〈
∫ (tm−3τ0)∨0

0
(−Ah)

1−κSm−ls
τ,h PhdW (s), (−Ah)

κPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉dt

+ E

∫ tm+1

tm

〈
∫ tm

(tm−3τ0)∨0
PM (Rh − I)Ph(−Ah)S

m−ls
τ,h PhdW (s), DΨ̃(M)(X̃h(t))〉dt.
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For the first term - which is equal to 0 when tm < 3τ0 - we use the Cauchy-Schwarz
inequality and we directly get

|E〈
∫ (tm−3τ0)∨0

0
(−Ah)

1−κSm−ls
τ,h PHdW (s), (−Ah)

κPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉|

≤ (E|(−Ah)
κPh(Rh − I)(−A)−1/2PM (−A)1/2DΨ̃(M)(X̃h(t))|2)1/2

× (E|
∫ (tm−3τ0)∨0

0
(−Ah)

1−κSm−ls
τ,h PhdW (s)|2)1/2.

We have the following inequality - we remark that in the integral below tm−ls ≥ 1:

E|
∫ (tm−3τ0)∨0

0
(−Ah)

1−κSm−ls
τ,h PhdW (s)|2 =

∫ (tm−3τ0)∨0

0
|(−(Ah)

1−κSm−ls
τ,h Ph|2L2(H)ds

=

∫ (tm−3τ0)∨0

0
Tr((−Ah)

2−2κS
2(m−ls)
τ,h Ph)ds

≤
∫ (tm−3τ0)∨0

0
|S(m−ls)

τ,h Ph|L(H)|(−Ah)
2+1/2+κS

(m−ls)
τ,h Ph|L(H)ds

× Tr(Ph(−Ah)
−1/2−κPh)

≤C
∫ (tm−3τ0)∨0

0

1

(1 + λ0τ)m−lst
2+1/2−κ
m−ls

ds

≤C
∫ (tm−3τ0)∨0

0

1

(1 + λ0τ)m−ls
ds

≤C
∫ +∞

0

1

(1 + λ0τ)s/τ
ds

≤C,

when τ ≤ τ0 and thanks to Proposition 3.4 and Lemma 3.7 . Then, thanks to Propo-
sition 3.3, Proposition 6.1 for β = 1

2 and Lemma 3.10, we get

|E
∫ tm+1

tm

〈
∫ (tm−3τ0)∨0

0
(−Ah)

1−κSm−ls
τ,h PhdW (s), (−Ah)

κPh(Rh − I)PMDΨ̃(M)(X̃h(t))〉dt|

≤ C(1 + |x|2)τh1−2κ.

For the second term, we use the Malliavin integration by parts formula (Lemma 6.3)
to get

E

∫ tm+1

tm

〈
∫ tm

(tm−3τ0)∨0
PM (Rh − I)Ph(−Ah)S

m−ls
τ,h PhdW (s), DΨ̃(M)(X̃h(t))〉dt

= E

∫ tm+1

tm

∫ tm

(tm−3τ0)∨0
Tr
(

Sm−ls
τ,h (−Ah)Ph(Rh − I)PMD

2Ψ̃(M)(X̃h(t))DsX̃
h(t)

)

dsdt.

Thanks to both estimates of Lemma 6.5, we have for (tm−3τ0)∨0 ≤ s ≤ tm ≤ t < tm+1

|(−A)αDℓ
sX̃

h(t)| ≤ C(1 + LF τ)
m−ls(1 +

1

(1 + λ0τ)(1−α)(m−ls)tαm−ls

),

and we see that (1 + LF τ)
m−ls is bounded by a constant.
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We can then control the second term of am,h
3,1 with

E

∫ tm+1

tm

∫ tm

(tm−3τ0)∨0
|(−Ah)

1−3κ
2 Sm−ls

τ,h |L(H)|(−Ah)
3κ
2Ph(Rh − I)(−A)−1/2|L(H)

× |(−A)1/2D2Ψ̃(M)(X̃h(t))(−A)1/2−κ/2|L(H)Tr((−A)−1/2−κ/2)|(−A)κDsX̃
h(t)|L(H)dsdt

≤ C

∫ tm

(tm−3τ0)∨0
t
−1+3κ

2

m−ls

1

(1 + λ0τ)
(m−ls)3

κ
2

(

1 + t−κ
m−ls

1

(1 + λ0τ)(m−ls)(1−κ)

)

ds

× τh1−3κ(1 + |x|2),
using Proposition 6.1, Lemmas 6.5 and 3.7.
We have

∫ tm

(tm−3τ0)∨0
t
−1+3κ

2

m−ls

1

(1 + λ0τ)
(m−ls)3

κ
2

ds ≤
∫ tm

0

1

s1−3κ
2

1

(1 + λ0τ)
3κ
2
s/τ

ds ≤ C < +∞,

for τ ≤ τ0, thanks to (31).
Therefore

(34)
1

Nτ

N−1
∑

m=1

|am,h
1,3 | ≤ C(1 + |x|2)h1−3κ.

Using (32), (33) and (34), we have

(35)
1

Nτ

N−1
∑

m=1

|am,h
1 | ≤ C(1 +

1

T
)h1−3κ(1 + |x|3).

(2) Estimate of am,h
2 : Since (t − tm)|(−Ah)Sτ,h|L(H) ≤ C, am,h

2 is bounded by the same

expression as am,h
1 : by (35), we have

(36)
1

Nτ

N−1
∑

m=1

|am,h
2 | ≤ C(1 +

1

T
)h1−3κ(1 + |x|3).

(3) Estimate of am,h
3 : We have

|am,h
3 | ≤ E

∫ tm+1

tm

(t− tm)|(−Ah)
1−κSτ,hPh|L(H)|F (Xh

m)|

|(−Ah)
κPh(Rh − I)(−A)−1/2PM (−A)1/2DΨ̃(M)(X̃h(t))|dt

Since F and (t−tm)|(−Ah)
1−κSτ,hPh|L(H) are bounded, using the same idea than to estimate

am,h
1,1 , we get

(37)
1

Nτ

N−1
∑

m=1

|am,h
3 | ≤ C

T
h1−2κ(1 + |x|3).

(4) Estimate of am,h
4 : We again use the integration by parts formula to rewrite am,h

4 :

am,h
4 = −E

∫ tm+1

tm

〈
∫ t

tm

Sτ,hPhdW (s), (−Ah)Ph(Rh − I)DΨ̃(M)(X̃h(t))〉dt

= −E

∫ tm+1

tm

∫ t

tm

Tr(Sτ,hPh(−Ah)Ph(Rh − I)Ψ̃(M)(X̃h(t))DsX̃
h(t))dsdt.
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From (20), for tm ≤ s ≤ t ≤ tm+1 we have Dℓ
sX̃

h(t) = Sτ,hPhℓ; as a consequence, the

situation is much simpler and we do not need to use the same trick as in the control of am,h
1,3 .

Then, as previously, we have

|am,h
4 | ≤E

∫ tm+1

tm

(t− tm)Tr((−Ah)
1−κSτ,hPh(−Ah)

κPh(Rh − I)(−A)−1/2PM

× (−A)1/2D2Ψ̃(M)(X̃h(t))(−A)1/2−κ/2(−A)−1/2−κ/2(−A)κSτ,h)dt
≤c|(−Ah)

1−κSτ,hPh|L(H)Tr((−A)−1/2−κ/2)|(−Ah)
κPh(Rh − I)(−A)−1/2|L(H)

× E

∫ tm+1

tm

|(−A)1/2D2Ψ̃(M)(X̃h(t))(−A)1/2−κ/2|L(H)|(−A)κSτ,hPh|L(H)dt

≤c(1 + |x|2)τh1−2κ.

Therefore

(38)
1

Nτ

N−1
∑

m=1

|am,h
4 | ≤ C(1 + |x|2)h1−2κ.

(5) Estimate of am,M : Using Proposition 6.1, Lemma 3.10 and estimate (15), we have

|am,M | ≤
∫ tm+1

tm

E

(

|(−Ah)Ph|L(H)|X̃h(t)||(PM − I)(−A)−1/2+κ||(−A)1/2+κDΨ̃(M)(X̃h(t))|
)

dt

≤ Ch ‖ φ ‖1,∞ λ
−1/2+κ
M

∫ tm+1

tm

E

(

|X̃h(t)|(1 + |X̃h(t)|2)
)

dt

≤ Ch ‖ φ ‖1,∞ λ
−1/2+κ
M τ(1 + |x|3)

Then, we get

lim
M→∞

1

Nτ

N−1
∑

m=1

|am,M | = 0

With the previous estimates, we get

(39) lim sup
M→+∞

1

Nτ

N−1
∑

m=1

|am| ≤ C ‖ φ ‖1,∞ (1 + |x|3)(1 + T−1)h1−3κ.

7.1.3. Estimate of bm. Writing PM − Ph = (PM − I) + (I − Ph), we get the natural decomposition

bm =E

∫ tm+1

tm

〈(PM − I)F (PMX̃
h(t)), DΨ̃(M)(X̃h(t))〉dt

+ E

∫ tm+1

tm

〈(I − Ph)F (PMX̃
h(t)), DΨ̃(M)(X̃h(t))〉dt

=:bm,M + bm,h.

Using the fact that F is bounded, Proposition 6.1 and Lemma 3.9, we have

|bm,i| =|E
∫ tm+1

tm

〈F (PMX̃
h(t)), (Pi − I)(−A)−1/2+κ(−A)1/2−κDΨ̃(M)(X̃h(t))〉dt|

≤
∫ tm+1

tm

‖ F ‖∞ |(Pi − I)(−A)−1/2+κ|L(H)E|(−A)1/2−κDΨ̃(M)(X̃h(t))|dt

≤Cτ(1 + |x|2)|(Pi − I)(−A)−1/2+κ|L(H).
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Using (13) and (15), we get

|bm,h| ≤ Cτ(1 + |x|2)h1−2κ

and
|bm,M | ≤ Cτ(1 + |x|2)λ−1/2+κ

M .

Finally, we have

1

Nτ

N−1
∑

m=1

|bm| ≤ C(1 + |x|2)(h1−2κ + λ
−1/2+κ
M )

and

lim sup
M→+∞

1

Nτ

N−1
∑

m=1

|bm| ≤ C(1 + |x|2)h1−2κ.

7.1.4. Estimate of cm. We use the same natural decomposition than for bm: cm = cm,h + cm,M ,
where for i ∈ {h,M}

2|cm,i| = |E
∫ tm+1

tm

Tr
(

(−A)2κ(Pi−I)(−A)−1/2+κ(−A)1/2−κD2Ψ̃(M)(X̃h(t))(−A)1/2−κ(−A)−1/2−κ
)

dt|

≤ Tr((−A)−1/2−κ)|(−A)2κ(Pi − I)(−A)−1/2+κ|L(H)

×
∫ tm+1

tm

E|(−A)1/2−κD2Ψ̃(M)(X̃h(t))(−A)1/2−κ|dt.

Using Assumptions 2.2, Proposition 6.1, Lemma 3.9, commutativity of A and PM and estimates
(15) and (13), we get

2|cm,h| ≤ Cτ(1 + |x|2)λ−1/2+3κ
M

and
2|cm,M | ≤ Cτ(1 + |x|2)h1−6κ.

Then, we have

1

Nτ

N−1
∑

m=1

|cm| ≤ C(1 + |x|2)(h1−6κ + λ
−1/2+3κ
M )

and

lim sup
M→+∞

1

Nτ

N−1
∑

m=1

|cm| ≤ C(1 + |x|2)h1−6κ.

7.1.5. Conclusion. With the above estimation, we get

(40) lim sup
M→∞

1

Nτ

N−1
∑

m=1

∫ tm+1

tm

E

(

L(M) − Lh
)

Ψ̃(M)(X̃h(s))ds ≤ C(1 + |x|3)h1−κ(1 + T−1).

7.2. Control of the additional time-discretization error Eφ(PMX̃(t))−Eφ(PMX
h
m), if tm ≤

t < tm+1.

In this Subsection, we prove the estimate of Lemma 6.8.
This part of the error is due to the replacement of the continuous-time process X̃ with the

discrete-time process from which it is built by interpolation.
If we compare with the other parts of the error, we observe that instead of Ψ the expression

involves the test function φ. Since φ is only assumed to be of class C2
b , its derivatives do not

satisfy estimates with a regularization in space like for Ψ. However, we are still able to distribute
appropriately the powers of the operator −Ah, thus obtaining the good rate of convergence.
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We define an auxiliary function φ̃M : H → R with φ̃M = φ ◦ PM . It is of class C2
b and using the

identifications introduced in Remark 2.1 we have for any x ∈ H

Dφ̃M (x) = PMDφ(PMx),

D2φ̃M (x) = PMD
2φ(PMx)PM .

Thanks to the Itô’s formula, from (20) we get for tm ≤ t < tm+1

Eφ(PMX̃
h(t))− Eφ(PMX

h
m) = Eφ̃M (X̃h(t))− Eφ̃M (X̃(tm))

= E

∫ t

tm

〈Sτ,hAhX
h
m, Dφ̃M (X̃h(s))〉ds

+ E

∫ t

tm

〈Sτ,hPhF (X
h
m), Dφ̃M (X̃h(s))〉ds

+ E

∫ t

tm

1

2
Tr((Sτ,hPh)(Sτ,hPh)

∗D2φ̃M (X̃h(s))ds.

=: E1(t) + E2(t) + E3(t).

The error is naturally divided into three terms. We first treat the easiest ones: E2 and E3.
Using boundedness of the linear operator Sτ,h, of the nonlinear coefficient F , of the orthogonal

projectors PM and Ph and of the first-order derivative of φ, we easily obtain that for tm ≤ t < tm+1

|E2(t)| = |E
∫ t

tm

〈Sτ,hPhF (X
h
m), Dφ̃M (X̃h(s))〉ds| ≤ Cτ.

We now control E3(t). Using the boundedness of the second-order derivative of φ̃M , uniformly
with respect to M , we have

|E3(t)| ≤ C(t− tm)Tr
(

(Sτ,hPh)(Sτ,hPh)
∗)

≤ CτTr
[

((−Ah)
1/2+κS2

τ,hPh)Ph(−Ah)
−1/2−κPh

]

≤ Cτ |(−Ah)
1/2+κS2

τ,hPh|L(H)Tr
(

Ph(−Ah)
−1/2−κPh

)

≤ Cτ1/2−κ,

where κ ∈ (0, 1/2) is a small parameter, thanks to the first inequality of Lemma 3.7 and to Propo-
sition 3.4.

The treatment of the E1 is the most complicated amongst the three terms, due to the presence
of the unbounded operator Ah. We recall that Xh

m is controlled in the norm of (−Ah)
α, uniformly

in h, only for α < 1/4; to obtain the correct weak order of convergence 1/2 with respect to τ , we
need a careful control. One of the ingredients is the Malliavin integration by parts.

Thanks to (18) and (19), E1 is divided into three parts: E1(t) = E1,1(t) +E1,2(t) +E1,3(t), with
for tm ≤ t < tm+1

E1,1(t) = E

∫ t

tm

〈Sm+1
τ,h AhPhx,Dφ̃M (X̃h(s))〉ds

E1,2(t) = E

∫ t

tm

〈τAhSτ,h

m−1
∑

k=0

Sm−k
τ,h PhF (X

h
m), Dφ̃M (X̃h(s))〉ds

E1,3(t) = E

∫ t

tm

〈AhSτ,h

∫ tm

0
Sm−lr
τ,h PhdW (r), Dφ̃M (X̃h(s))〉ds.

We have isolated the stochastic part in Xh
m; then only the treatment of E1,3(t) is difficult.
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First, using Lemma 3.7, we have if m ≥ 1

|AhS
m+1
τ,h Phx| ≤ |(−Ah)

κSτ,hPh|L(H)|(−Ah)
1−κSm

τ,hPh|L(H)|x|H
≤ C|x|Hτ−κt−1+κ

m .

As a consequence, for tm ≤ t < tm+1

|E1,1(t)| ≤ C|x|τ
1−κ

t1−κ
m

.

The treatment of E1,2 is similar: we have when m ≥ 1

|τAhSτ,h

m−1
∑

k=0

Sm−k
τ,h PhF (X

h
k )| ≤ Cτ |(−Ah)

κSτ,hPh|L(H)

m−1
∑

k=0

|(−Ah)
1−κSm−k

τ,h Ph|L(H)|F (Xh
k )|H

≤ Cτ−κτ
m−1
∑

k=0

|(−Ah)
1−κSm−k

τ,h Ph|L(H),

F being bounded. Now using Lemma 3.7 and inequality (31) we obtain for m ≥ 1 and tm ≤ t < tm+1

|E1,2(t)| ≤ Cτ−κ(t− tm) ≤ Cτ1−κ.

It remains to control E1,3(t), which contains the stochastic term, with low regularity properties.
We need to use a Malliavin integration by parts formula; however due to the weak dissipativity
condition the behavior of the Malliavin derivatives is bad with respect to time. The solution is to
split the stochastic integral factor into two parts: for any tm ≤ s ≤ t < tm+1

E〈AhSτ,h

∫ tm

0
Sm−lr
τ,h dW (r), Dφ̃M (X̃h(s))〉 = E〈AhSτ,h

∫ (tm−3τ0)∨0

0
Sm−lr
τ,h PhdW (r), Dφ̃M (X̃h(s))〉

+ E〈AhSτ,h

∫ tm

(tm−3τ0)∨0
Sm−lr
τ,h PhdW (r), Dφ̃M (X̃h(s))〉

=: E1,3,1(s, t) + E1,3,2(s, t).

For the first error term, we directly use the Cauchy-Schwarz inequality and we have (see term

am,h
1,3 of Sub-Section 7.1 for more details)

|E1,3,1(s, t)|2 ≤ C(E|
∫ (tm−3τ0)∨0

0
Sτ,hAhS

m−lr
τ,h PhdW (r)|2)(E|Dφ̃M (X̃h(s))|2)

≤ C

∫ (tm−3τ0)∨0

0
Tr
(

PhAhS
(m−lr)+1
τ,h S

(m−lr)+1
τ,h AhPh

)

dr

≤ C

∫ (tm−3τ0)∨0

0
Tr(Ph(−Ah)

−1/2−κPh)|(−Ah)
5/2+κS

2(m−lr)+1
τ,h Ph|L(H)dr

≤ C.

For the second error term, using the Malliavin integration by parts formula, we get for any
tm ≤ s ≤ t < tm+1

E〈AhSτ,h

∫ tm

(tm−3τ0)∨0
Sm−lr
τ,h PhdW (r), Dφ̃M (X̃h(s))〉

= E

∫ tm

(tm−3τ0)∨0
Tr(Sm−lr

τ,h AhSτ,hPhD
2φ̃M (X̃h(s))DrX̃

h(s))dr.
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We then write that

|E
∫ tm

(tm−3τ0)∨0
Tr(Sm−lr

τ,h AhSτ,hPhD
2φ̃M (X̃h(s)))DrX̃

h(s)dr|

≤
∫ tm

(tm−3τ0)∨0
Tr((−Ah)

κSm−lr
τ,h Sh,τPh)E[|(−Ah)

1−κDrX̃
h(s)|L(H)|D2φ̃M (X̃h(s))|]dr.

Since

Tr((−Ah)
κSm−lr

τ,h Sh,τPh) ≤ Tr(Ph(−Ah)
−1/2−2κPh)|Sm−lr

τ,h

(

(−Ah)
1/2+2κSh,τPh

)

|L(H),

we have (see term am,h
1,3 of Sub-Section 7.1 for more details)

|E
∫ tm

(tm−3τ0)∨0
Tr(Sm−lr

τ,h AhSτ,hPhDrX̃
h(s)D2φ̃M (X̃h(s)))dr|

≤ Cτ−1/2−2κ

∫ tm

(tm−3τ0)∨0

1

(1 + λ0τ)m−lr
(1 + LF τ)

m−lr(1 +
1

(1 + λ0τ)κ(m−lr)t1−κ
m−lr

)dr.

Using that (1 + LF τ)
m−lr ≤ C for the range of r used to compute the integral, we see that

|E1,3,2(s, t)| ≤ Cτ−1/2−2κ.

After integration with respect to s, we obtain

|E1,3(t)| ≤
∫ t

tm

(|E1,3,1(s, t)|+ |E1,3,2(s, t)|)ds ≤ C(τ + τ1/2−2κ),

and

|E1(t)| ≤ C(τ1/2−2κ + |x|τ
1−κ

t1−κ
m

+ τ1−κ).

Using the bounds on E2 and E3, we therefore obtain that when m ≥ 1 and tm ≤ t ≤ tm+1

|Eφ(PMX̃
h(t))− Eφ(PMX

h
m)| ≤ Cτ1/2−2κ(1 +

|x|
(mτ)1−κ

).

As a consequence, we obtain

| 1

Nτ

N−1
∑

m=1

∫ tm+1

tm

(

Eφ(PMX̃
h(t))− Eφ(PMX

h
m)
)

dt|

≤ Cτ1/2−2κ(1 + |x| 1

Nτ

∫ Nτ

0

1

t1−κ
dt)

≤ Cτ1/2−2κ(1 +
|x|

(Nτ)1−κ
).(41)

7.3. Control of the time-discretization error 1
Nτ

∑N−1
m=1

∫ tm+1

tm
E

(

Lh − Lτ,m,h
)

Ψ̃(M)(X̃h(t))dt.

To control this term, we will use ideas described in [3, 11] and in Sub-Section 7.1.We decompose
the error into five terms:

1

Nτ

N−1
∑

m=1

∫ tm+1

tm

E

(

Lh − Lτ,m,h
)

Ψ̃(M)(X̃h(s))ds =
1

Nτ

N−1
∑

m=1

(am + bm + cm + dm + em),
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where for 1 ≤ m ≤ N − 1

(42)

am = E

∫ tm+1

tm

〈(I − Sτ,h)AhX
h
m, DΨ̃(M)(X̃h(t))〉dt,

bm = E

∫ tm+1

tm

〈Ah(X̃
h(t)−Xh

m), DΨ̃(M)(X̃h(t))〉dt,

cm = E

∫ tm+1

tm

〈(I − Sτ,h)PhF (X
h
m), DΨ̃(M)(X̃h(t))〉dt,

dm = E

∫ tm+1

tm

〈F h(X̃h(t))− F h(Xh
m), DΨ̃(M)(X̃h(t))〉dt,

em =
1

2
E

∫ tm+1

tm

Tr
(

(PhP
∗
h − (Sτ,hPh)(Sτ,hPh)

∗)D2Ψ̃(M)(X̃h(t))
)

dt.

The estimates are:

Lemma 7.1.

1

τN

N−1
∑

m=1

|am| ≤ C(1 + |x|3)(1 + (Nτ)−1)τ1/2−2κ,

1

Nτ

N−1
∑

m=1

|bm| ≤ C(1 + |x|3)(1 + T−1)τ1/2−2κ,

1

Nτ

N−1
∑

m=1

|cm| ≤ C(1 + |x|2)τ1/2−κ,

1

Nτ

N−1
∑

m=1

|dm| ≤ Cτ1/2−2κ(1 + |x|3)(1 + T−1+κ),

1

τN

N−1
∑

m=1

|em| ≤ C(1 + |x|2)τ1/2−3κ.

7.3.1. Estimate of am. We have the equality of linear operators in L(Vh): (I−Sτ,h)Ah = −τSτ,hA2
h.

Then, using (18), we decompose the error into three terms: am = a1m + a2m + a3m, with

a1m = −τE
∫ tm+1

tm

〈Sτ,hA2
hS

m
τ,hPhx, PhDΨ̃(M)(X̃h(t))〉dt

a2m = −τE
∫ tm+1

tm

〈Sτ,hA2
hτ

m−1
∑

l=0

Sm−l
τ,h F h(Xh

l ), PhDΨ̃(M)(X̃h(t))〉dt

a3m = −τE
∫ tm+1

tm

〈Sτ,hA2
h

√
τ
m−1
∑

l=0

Sm−l
τ,h Phχl+1, PhDΨ̃(M)(X̃h(t))〉dt;

The replacement of DΨ̃(M)(X̃h(t)) ∈ H with its orthogonal projection PhDΨ̃(M)(X̃h(t)) is valid
since the other factor in the scalar product belongs to Vh.

The main task is to control the operator A2
h, using the benefits of the regularization properties of

the semi-group (Sk
τ,h)k∈N and of the derivatives of Ψ̃(M). The main difficulties appear in the control

of a3m, where a Malliavin integration by parts is required in order to obtain the correct weak order
of convergence. The control of the other terms a1m and a2m is technical but much easier.
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(1) Estimate of a1m
We write, for any small enough parameter 0 < κ < 1/2,

|a1m| ≤ τE

∫ tm+1

tm

|Sτ,h(−Ah)
1/2+2κPh|L(H)|(−Ah)

1−κSm
τ,hPh|L(H)|Phx|Vh

|(−Ah)
1/2−κPhDΨ̃(M)(X̃h(t))|Vh

dt

≤ C|x|Hττ−1/2−2κt−1+κ
m (1 + λ0τ)

−mκ

∫ tm+1

tm

E|(−A)1/2−κDΨ̃(M)(X̃h(t))|Hdt

≤ C(1 + |x|3)ττ−1/2−2κt−1+κ
m (1 + λ0τ)

−mκ,

thanks to Lemma 3.7, Lemma 3.10, Proposition 3.3 and Proposition 6.1.
Thanks to estimate (31), we get

(43)
1

Nτ

N−1
∑

m=1

|a1m| ≤ C(1 + |x|3)τ1/2−2κ(Nτ)−1.

(2) Estimate of a2m
First we write

|a2m| ≤ CτE

∫ tm+1

tm

|Sτ,h(−Ah)
1/2+2κ|L(Vh)|τ(−Ah)

1−κ
m−1
∑

l=0

Sm−l
τ,h PhF

h(Xh
l )||(−Ah)

1/2−κPhDΨ̃(M)(X̃h(t))|Vh
dt.

Since F is supposed to be bounded by ‖F‖∞, the estimate (31) yields

|τ(−Ah)
1−κ

m−1
∑

l=0

Sm−l
τ,h PhF (X

h
l )| ≤ C‖F‖∞τ

m
∑

l=1

1

(lτ)1−κ

1

(1 + λ0τ)lκ
≤ Cκ.

With Lemma 3.10 and Proposition 6.1, we easily obtain

(44)
1

Nτ

N−1
∑

m=0

|a2m| ≤ C(1 + |x|2)τ1/2−2κ.

(3) Estimate of a3m
This is where things become harder. The problem is the same than for estimate am,h

1,3 in

Sub-Section 7.1. As for am,h
1,3 , using (19), we decompose a3m = a3,1m + a3,2m , with

a3,1m = −τE
∫ tm+1

tm

〈
∫ (tm−5τ0)∨0

0
Sτ,hA

2
hS

m−ls
τ,h PhdW (s), PhDΨ̃(M)(X̃h(t))〉dt,

a3,2m = −τE
∫ tm+1

tm

〈
∫ tm

(tm−5τ0)∨0
Sτ,hA

2
hS

m−ls
τ,h PhdW (s), PhDΨ̃(M)(X̃h(t))〉dt.

We remark that a3,1m = 0 if tm < 5τ0. Thanks to the Cauchy-Schwarz inequality, to
Proposition 6.1 (for β = 0) and Lemma 3.10, we get

|E〈
∫ (tm−5τ0)∨0

0
Sτ,hA

2
hS

m−ls
τ,h PhdW (s), PhDΨ̃(M)(X̃h(t))〉|

≤ (E|
∫ (tm−5τ0)∨0

0
Sτ,hA

2
hS

m−ls
τ,h PhdW (s)|2H)1/2(E|PhDΨ̃(M)(X̃h(t))|2H)1/2

≤ C(1 + |x|2);
indeed we have the following inequality for 0 < τ ≤ τ0:

E|
∫ (tm−5τ0)∨0

0
RτA

2
hS

m−ls+1
τ,h PhdW (s)|2 ≤ C.
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The proof is easily adapted from the corresponding one in the estimate of am,h
1,3 in Sub-Section

7.1.
Then

1

Nτ

N−1
∑

m=0

|a3,1m | ≤ C(1 + |x|2)τ.

For a3,2m , we use the integration by parts formula of Lemma 6.3 to get

a3,2m = −τE
∫ tm+1

tm

〈
∫ tm

(tm−5τ0)∨0
Sτ,hA

2
hS

m−ls
τ,h PhdW (s), PhDΨ̃(M)(X̃h(t))〉dt

= −τE
∫ tm+1

tm

∫ tm

(tm−5τ0)∨0
Tr
(

Sm−ls
τ,h A2

hSτ,hPhD
2Ψ̃(M)(X̃h(t))DsX̃

h(t)
)

dsdt.

Thanks to both estimates of Lemma 6.5, we have for (tm − 5τ0)∨ 0 ≤ s ≤ tm ≤ t < tm+1

|(−Ah)
βDsX̃

h(t)| ≤ C(1 + LF τ)
m−ls(1 +

1

(1 + λ0τ)(1−β)(m−ls)tβm−ls

),

and we see that (1 + LF τ)
m−ls is bounded by a constant.

Seen in L(H), we have A
−1/2−κ
h Ph = A

−1/2
h Ph(−A)1/2(−A)−1/2−κ(−A)κ(−Ah)

−κPh; then

we use the fact that Tr((−A)−1/2−κ) < +∞, and the equivalence of norms of Proposition

3.3, so that sup0<h<1 Tr((−Ah)
−1/2−κPh) < +∞; then

|a3,2m | ≤ τE

∫ tm+1

tm

∫ tm

(tm−5τ0)∨0
|Sτ,h(−Ah)

1/2+2κ|L(Vh)|(−Ah)
1−3κ

2 Sm−ls
τ,h |L(Vh)Tr((−A)−1/2−κ

2 )

× |(−Ah)
1/2−κ/2PhD

2Ψ̃(M)(X̃h(t))(−A)1/2−κ/2|L(H)|(−A)κDsX̃
h(t)|L(H)dsdt

≤ Cτ1/2−2κ

∫ tm+1

tm

∫ tm

(tm−5τ0)∨0
t
−1+3κ

2

m−ls

1

(1 + λ0τ)
(m−ls)3

κ
2

(

1 + t−κ
m−ls

1

(1 + λ0τ)(m−ls)(1−κ)

)

dsdt(1 + |x|2)

≤ Cττ1/2−2κ(1 + |x|2),

using estimate (31), Assumption 2.2, Proposition 6.1, Lemmas 6.5 and 3.7.
We obtain

1

Nτ

N−1
∑

m=1

|a3,2m | ≤ C(1 + |x|2)τ1/2−2κ.

Therefore

(45)
1

Nτ

N−1
∑

m=1

|a3m| ≤ C(1 + |x|2)τ1/2−2κ.

With the previous estimates on a1, a2 and a3, we get

(46)
1

Nτ

N−1
∑

m=1

|am| ≤ C(1 + |x|3)(1 + T−1)τ1/2−2κ.
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7.3.2. Estimate of bm. We decompose the corresponding term into three parts: bm = b1m+ b2m+ b3m,
with

b1m = E

∫ tm+1

tm

(t− tm)〈Ah(I − Sτ,h)X
h
m, PhDΨ̃(M)(X̃h(t))〉dt

b2m = E

∫ tm+1

tm

(t− tm)〈AhSτ,hF (X
h
m), PhDΨ̃(M)(X̃h(t))〉dt

b3m = E

∫ tm+1

tm

〈
∫ t

tm

AhSτ,hPhdW (s), PhDΨ̃(M)(X̃h(t))〉dt;

(1) Estimate of b1m
b1m is bounded by the same expression as am: by (46) we have

(47)
1

Nτ

N−1
∑

m=1

|b1m| ≤ C(1 + |y|3)(1 + T−1)τ1/2−2κ.

(2) Estimate of b2m
We have

|b2m| ≤ τE

∫ tm+1

tm

|(−Ah)
1/2+κSτ,hPh|L(H)|PhF (X

h
m)||(−Ah)

1/2−κPhDΨ̃(M)(X̃h(t))|dt

≤ ‖F‖∞τ1/2−κτ(1 + |x|2).
We then have

(48)
1

Nτ

N−1
∑

m=1

|b2m| ≤ Cτ1/2−κ(1 + |x|2).

(3) Estimate of b3m
We again use the integration by parts formula to rewrite b3m:

b3m = E

∫ tm+1

tm

〈
∫ t

tm

AhSτ,hPhdW (s), PhDΨ̃(M)(X̃h(t))〉dt

= E

∫ tm+1

tm

∫ t

tm

Tr(Sτ,hAhPhD
2Ψ̃(M)(X̃h(t))DsX̃

h(t))dsdt.

From (20), for tm ≤ s ≤ t ≤ tm+1 we have Dℓ
sX̃

h(t) = Sτ,hPhℓ; as a consequence, the
situation is much simpler and we do not need to use the same trick as in the control of a3m.

Then we have

|b3m| ≤ E

∫ tm+1

tm

(t− tm)Tr(Sτ,hAhPhD
2Ψ̃(M)(X̃h(t))Sτ,hPh)dt

≤ Cτ

∫ tm+1

tm

|Sτ,h(−Ah)
1/2+κ/2Ph|L(H)Tr((−A)−1/2−κ/2)|(−A)κSτ,hPh|L(H)

|(−Ah)
1/2−κ/2PhD

2Ψ̃(M)(X̃h(t))(−A)1/2−κ/2|L(H)dt

≤ C(1 + |x|2)τ1/2−3κ/2τ.

Therefore

(49)
1

Nτ

N−1
∑

m=1

|b3m| ≤ C(1 + |x|2)τ1/2−3κ/2.
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With the previous estimates, we get

(50)
1

Nτ

N−1
∑

m=1

|bm| ≤ C(1 + |x|3)(1 + T−1)τ1/2−2κ.

7.3.3. Estimate of cm. This term is easy to treat: we have

|cm| ≤ E

∫ tm+1

tm

|(−Ah)
−1/2+κ(I − Sτ,h)|L(Vh)|PhF (X

h
m)||(−Ah)

1/2−κPhDΨ̃(M)(X̃h(t))|dt

≤ Cτ1/2−κτ(1 + |x|2),
where we have used Proposition 6.1, Assumption 2.7 and Lemma 3.7. Then we see that

(51)
1

Nτ

N−1
∑

m=1

|cm| ≤ Cτ1/2−κ(1 + |x|2).

7.3.4. Estimate of dm. The term dm contains the error between F h(X̃h(t)) and F h(Xh
m); we recall

that F h = Ph ◦ F . We perform an expansion with respect to an orthonormal basis (ehi )i∈N of H,

such that (ehi )
Nh−1
i=0 is the orthonormal basis of Vh introduced in Proposition 3.2 - the vectors ehi for

i ≥ Nh do not matter.
In this orthonormal system, the cylindrical Wiener process is expanded as

(52) W (t) =
∑

i∈N
βhi (t)e

h
i ,

with a family (βhi )i∈N of independent standard one-dimensional Wiener processes.
Let F h

i : H → R denote the function such that F h
i (x) = 〈F h(x), ehi 〉. We also denote, for any

i ∈ N, by ∂hi the operator such that ∂hi φ(x) = 〈Dφ(x), ehi 〉 ∈ R, for any x ∈ H, where φ : H → R is
of class C1. Then

〈F h(X̃h(t))− F h(Xh
m), DΨ̃(M)(X̃h(t))〉 =

Nh−1
∑

i=0

(F h
i (X̃

h(t))− F h
i (Xm))∂hi Ψ̃

(M)(X̃h(t)).

The Itô formula gives for tm ≤ t < tm+1 and 0 ≤ i ≤ Nh − 1

F h
i (X̃

h(t))− F h
i (X

h
m) =

1

2

∫ t

tm

Tr(Sτ,hS
∗
τ,hPhD

2F h
i (X̃

h(s)))ds

+

∫ t

tm

〈AhSτ,hX
h
m, DF

h
i (X̃

h(s))〉ds

+

∫ t

tm

〈Sτ,hF h(Xh
m), DF h

i (X̃
h(s))〉ds

+

∫ t

tm

〈DF h
i (X̃

h(s)), Sτ,hPhdW (s)〉.

Thanks to this, djm for j ∈ {1, 2, 3, 4} are naturally defined, and we now control each term.

(1) Estimate of d1m
By definition, we have

d1m =

∫ tm+1

tm

E
1

2

∫ t

tm

Nh−1
∑

i=0

Tr(Sτ,hS
∗
τ,hPhD

2F h
i (X̃

h(s)))ds∂hi Ψ̃
(M)(X̃h(t))dt.
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Expanding the trace thanks to the complete orthonormal system (ehi )i∈N,

Nh−1
∑

i=0

Tr(PhS
∗
τ,hPhD

2F h
i (X̃

h(s))Sτ,hPh)∂
h
i Ψ̃

(M)(X̃h(t))

=

Nh−1
∑

i=0

Nh−1
∑

j=0

〈D2F h
i (X̃

h(s))
1

(1 + λhj τ)
2
ehj , e

h
j 〉∂hi Ψ̃(M)(X̃h(t))

=

Nh−1
∑

i=0

Nh−1
∑

j=0

1

(1 + λhj τ)
2
D2F h

i (X̃
h(s)).(ehj , e

h
j )∂

h
i Ψ̃

(M)(X̃h(t)).

For any fixed 0 ≤ j ≤ Nh − 1, the Cauchy-Schwarz inequality yields

|
Nh−1
∑

i=0

D2F h
i (X̃

h(s)).(ehj , e
h
j )∂

h
i Ψ̃

(M)(X̃h(t))|

≤
(

Nh−1
∑

i=0

|D2F h
i (X̃

h(s)).(ehj , e
h
j )|2

(λhi )
2η

)1/2(Nh−1
∑

i=0

(λhi )
2η|∂hi Ψ̃(M)(X̃h(t))|2

)1/2

,

where η ≤ 1/2 is defined in Assumption 2.7.

The second factor is bounded from above by |(−Ah)
ηPhDΨ̃(M)(X̃h(t))| ≤ C|(−A)ηDΨ̃(M)(X̃h(t))|,

thanks to Proposition 3.3; the right-hand side is then controlled thanks to Proposition 6.1.
To control the first factor, thanks to Assumption 2.7 we get

(

Nh−1
∑

i=0

|D2F h
i (X̃

h(s)).(ehj , e
h
j )|2

(λhi )
2η

)1/2

= |(−Ah)
−ηPhD

2F (X̃h(s)).(ehj , e
h
j )|

≤ C|(−A)−ηD2F (X̃h(s)).(ehj , e
h
j )| ≤ C|ehj |H |ehj |H ≤ C,

since (ehj )j is an orthonormal system, and using Proposition 3.3.
Therefore we obtain

|
Nh−1
∑

i=0

Tr(Sτ,hS
∗
τ,hPhD

2F h
i (X̃

h(s)))∂hi DΨ̃(M)(X̃h(t))|

≤ C(1 + |x|2)
Nh−1
∑

j=0

1

(1 + λhj τ)
2

≤ C(1 + |x|2)τ−1/2−κ
Nh−1
∑

j=0

(λhj τ)
1/2+κ

(1 + λhj τ)
2

1

(λhj )
1/2+κ

≤ C(1 + |x|2)τ−1/2−κTr
(

Ph(−Ah)
−1/2−κPh).

Then thanks to Proposition 3.4, we have

|d1m| ≤ C(1 + |x|2)τ1/2−κτ,

and

(53)
1

Nτ

N−1
∑

m=1

|d1m| ≤ C(1 + |x|2)τ1/2−κ.
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(2) Estimate of d2m
Thanks to (18) and (19), we have

d2m =

∫ tm+1

tm

∫ t

tm

Nh−1
∑

i=0

〈AhSτ,hX
h
m, DF

h
i (X̃

h(s))〉∂hi Ψ̃(M)(X̃h(t))dsdt

= E

∫ tm+1

tm

∫ t

tm

∑

i

〈AhS
m+1
τ,h Phx+ τ

m−1
∑

l=0

AhS
m−l+1
τ,h F h(Xm

l ), DF h
i (X̃

h(s))〉∂hi Ψ̃(M)(X̃h(t))dsdt

+ E

∫ tm+1

tm

∫ t

tm

∑

i

〈Ah

∫ tm

0
Sm−lr+1
τ,h PhdW (r), DF h

i (X̃
h(s))〉∂hi Ψ̃(M)(X̃h(t))dsdt

:= d2,1m + d2,2m .

(i) For the first term, since F and DF are bounded on H and τ ≤ τ0, we have, using
(31),

|d2,1m | = |E
∫ tm+1

tm

∫ t

tm

〈DF h(X̃h(s)).(AhS
m+1
τ,h Phx+Ahτ

m−1
∑

l=0

Sm−l+1
τ,h F h(Xh

l )), DΨ(M)(X̃h(t))〉dsdt|

≤ E

∫ tm+1

tm

∫ t

tm

|(−Ah)
κSτ,hPh|L(H)

(

|(−Ah)
1−κSm

τ,hPhx|+ τ
m−1
∑

l=0

|(−Ah)
1−κSm−l

τ,h Ph|L(H)|PhF (X
h
l )|
)

× |DΨ(M)(X̃h(t))|dsdt

≤ Cτ1−κτ(1 + |x|2)
(

t−1+κ
m |x|+ τ

m−1
∑

l=0

t
−(1−κ)
m−l

1

(1 + λ0τ)(m−l)κ

)

≤ Cτ1−κ(1 + |x|3)τ( 1

t1−κ
m

+ 1).

Therefore

1

Nτ

N−1
∑

m=1

|d2,1m | ≤ Cτ1−κ(|x|3 + 1)
τ

T

N−1
∑

m=1

(
1

t1−κ
m

+ 1)

≤ Cτ1−κ(1 + |x|3)
( 1

T

∫ T

0

1

t1−κ
dt+ 1

)

≤ Cτ1−κ(1 + |x|3)
(

1 + T−1+κ

∫ 1

0

1

s1−κ
ds
)

≤ Cτ1−κ(1 + |x|3)
(

1 + T−1+κ
)

.(54)
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(ii) For the second term, we again use an integration by parts, after a decomposition of
the time interval - as in the estimates for a3m. First,

d2,2m = E

∫ tm+1

tm

∫ t

tm

Nh−1
∑

i=0

〈Ah

∫ tm

0
Sm−lr+1
τ,h PhdW (r), DF h

i (X̃
h(s))〉∂hi Ψ̃(M)(X̃h(t))dsdt

= E

∫ tm+1

tm

∫ t

tm

Nh−1
∑

i=0

〈Ah

∫ (tm−5τ0)∨0

0
Sm−lr+1
τ,h PhdW (r), DF h

i (X̃
h(s))〉∂hi Ψ̃(M)(X̃h(t))dsdt

+ E

∫ tm+1

tm

∫ t

tm

Nh−1
∑

i,j,m=0

〈Ah

∫ tm

(tm−5τ0)∨0
Sm−lr+1
τ,h ehm, e

h
j 〉dβhm(r)∂hj F

h
i (Ỹ (s))∂hi Ψ̃

(M)(X̃h(t))dsdt

=: d2,2,1m + d2,2,2m .

Recall that (ehi )0≤i≤Nh−1 is the orthonormal basis of Vh introduced in Proposition 3.2. See

also (52). For d2,2,1m , we can work directly as for the similar part in a3m and we see that

|d2,2,1m | ≤ |E
∫ tm+1

tm

∫ t

tm

Nh−1
∑

i=0

〈Ah

∫ (tm−5τ0)∨0

0
Sm−lr+1
τ,h PhdW (r), DF h

i (X̃
h(s))〉∂hi Ψ̃(M)(X̃h(t))dsdt|

≤
∫ tm+1

tm

∫ t

tm

E|〈DF h(X̃h(s)).AhSτ,h

∫ (tm−5τ0)∨0

0
Sm−lr
τ,h PhdW (r), DΨ̃(M)(X̃h(t))〉|dsdt

≤
∫ tm+1

tm

∫ t

tm

(E|AhSτ,h

∫ (tm−5τ0)∨0

0
Sm−lr
τ,h PhdW (r)|2)1/2(E|DΨ̃(M)(X̃h(t))|2)1/2dsdt

≤ Cτ2(1 + |x|2),

thanks to Lemmas 3.10, Proposition 6.1 and to the estimate proved in the control of a3m:

E|AhSτ,h

∫ (tm−5τ0)∨0

0
Sm−lr
τ,h PhdW (r)|2 ≤ E|A2

hSτ,h

∫ (tm−5τ0)∨0

0
Sm−lr
τ,h PhdW (r)|2 ≤ C.
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For d2,2,2m , we can write thanks to the Malliavin integration by parts (28) and with the
chain rule

d2,2,2m = E

∫ tm+1

tm

∫ t

tm

Nh−1
∑

i,j,m=0

〈Ah

∫ tm

(tm−5τ0)∨0
Sm−lr+1
τ,h ehm, e

h
j 〉dβhm(r)∂hj F

h
i (Ỹ (s))∂hi Ψ̃

(M)(X̃h(t))dsdt

= E

∫ tm+1

tm

∫ t

tm

∫ tm

(tm−5τ0)∨0

Nh−1
∑

i,j,m,n=0

〈AhS
m−lr+1
τ,h ehm, e

h
j 〉∂hj ∂hnF h

i (X̃
h(s))〈Dehm

r X̃h(s), ehn〉∂hi Ψ̃(M)(X̃h(t))drdsdt

+ E

∫ tm+1

tm

∫ t

tm

∫ tm

(tm−5τ0)∨0

Nh−1
∑

i,j,m,n=0

〈AhS
m−lr+1
τ,h ehm, e

h
j 〉∂hj F h

i (X̃
h(s))∂hn∂

h
i Ψ̃

(M)(X̃h(t))〈Dehm
r X̃h(t), ehn〉drdsdt

= E

∫ tm+1

tm

∫ t

tm

∫ tm

(tm−5τ0)∨0

Nh−1
∑

i,m=0

D2F h
i (X̃

h(s))(AhS
m−lr+1
τ,h ehm,Dehm

r X̃h(s))∂hi Ψ̃
(M)(X̃h(t))drdsdt

+ E

∫ tm+1

tm

∫ t

tm

∫ tm

(tm−5τ0)∨0

Nh−1
∑

i,m=0

〈Bi(s, t)AhS
m−lr+1
τ,h ehm,Dehm

r X̃h(t)〉drdsdt

= E

∫ tm+1

tm

∫ t

tm

∫ tm

(tm−5τ0)∨0

Nh−1
∑

i=0

Tr
(

Ph(DrX̃
h(s))∗D2F h

i (X̃
h(s))AhS

m−lr+1
τ,h Ph

)

∂hi Ψ̃
(M)(X̃h(t))drdsdt

+ E

∫ tm+1

tm

∫ t

tm

∫ tm

(tm−5τ0)∨0

Nh−1
∑

i=0

Tr
(

Ph(DrX̃
h(t)∗Bi(s, t)AhS

m−lr+1
τ,h Ph

)

drdsdt,

where we define, for each 0 ≤ i ≤ Nh − 1, a linear operator on Vh by

〈Bi(s, t)xh, yh〉 = 〈DF h
i (X̃

h(s)), xh〉
Nh−1
∑

n=0

∂hn∂
h
i Ψ̃

(M)(X̃h(t))〈yh, ehn〉

= 〈DF h
i (X̃

h(s)), xh〉〈D2Ψ̃(M)(X̃h(t)).ehi , yh〉.

We have, for any xh, yh ∈ Vh,
∑Nh−1

i=0 〈Bi(s, t)xh, yh〉 = D2Ψ̃(M)(X̃h(t)).(DF h(X̃h(s)).xh, yh)
and, using Proposition 6.1 and Assumption 2.7,

|
Nh−1
∑

i=0

Bi(s, t)|L(Vh) ≤ |DF (X̃h(s))|L(H)|D2Ψ̃(M)(X̃h(t))|L(H);

so we can write, for (tm − 5τ0) ∨ 0 ≤ r ≤ tm

|
Nh−1
∑

i=0

Tr
(

Ph(DrX̃
h(t)∗Bi(s, t)AhS

m−lr+1
τ,h Ph

)

|

≤ |DrX̃
h(t)|L(Vh)|

Nh−1
∑

i=0

Bi(s, t)|L(Vh)|(−Ah)
1−3κ/2Sm−lr

τ,h Ph|L(H)|Sτ,h(−Ah)
1/2+2κPh|L(H)Tr(Ph(−Ah)

−1/2−κ/2Ph)

≤ Cτ−1/2−2κt
−1+3κ/2
m−lr

1

(1 + λ0τ)(m−lr)3κ/2
,

using Lemma 6.5 - since (1 + LF τ)
m−lr ≤ C - and Lemma 3.7.

For the other term, we have to deal with the poor regularity of F at second order. We
proceed as in the control of d1m, and expand the trace with respect to the orthonormal basis
(ehi )i∈N of H.
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|
Nh−1
∑

i=0

Tr
(

Ph(DrX̃
h(s))∗D2F h

i (X̃
h(s))AhS

m−lr+1
τ,h Ph

)

∂hi Ψ̃
(M)(X̃h(t))|

≤ |DrX̃
h(s)|L(Vh)

Nh−1
∑

i,j=0

|D2F h
i (X̃

h(s)).(ehj , e
h
j )|

(λhi )
η

λhj

(1 + λhj τ)
1+m−lr

(λhi )
η|∂hi Ψ̃(M)(X̃h(t))|

≤ |DrX̃
h(s)|L(Vh)|(−Ah)

ηPhDΨ̃(M)(X̃h(t))|H
Nh−1
∑

j=0

|(−Ah)
−ηD2F h(X̃h(s)).(ehj , e

h
j )|

λhj

(1 + λhj τ)
1+m−lr

,

thanks to the Cauchy-Schwarz inequality.
By using the same analysis as in the estimation of d1m, we see that the above expression

is bounded by

C|DrX̃
h(s)|L(Vh)|(−Ah)

ηPhDΨ̃(M)(X̃h(t))|H
Nh−1
∑

j=0

λhj

(1 + λhj τ)
1+m−lr

;

but the last sum is equal to Tr(PhAhS
m−lr+1
τ,h ), so that we see that indeed the two expressions

in d2,2m are bounded by the same expression.
Therefore

|d2,2,2m |

≤ E

∫ tm+1

tm

∫ t

tm

∫ tm

(tm−5τ0)∨0
Cτ−1/2−2κt

−1+3κ/2
m−lr

1

(1 + λ0τ)(m−lr)3κ/2
(1 + |x|2)drdsdt

≤ C(1 + |x|2)τ1/2−2κτ

∫ tm

0
t
−1+3κ/2
m−lr

1

(1 + λ0τ)(m−lr)3κ/2
dr

≤ C(1 + |x|2)τ1/2−2κτ,

as already proved - see (31).

Now gathering estimates for d2,2,1m and d2,2,2m , we obtain

(55)
1

Nτ

N−1
∑

m=1

|d2,2m | ≤ C(1 + |x|2)τ1/2−2κ.

(3) Estimate of d3m We have

d3m = E

∫ tm+1

tm

∫ t

tm

Nh−1
∑

i=0

〈Sτ,hF h(Xh
m), DF h

i (X̃
h(s))〉∂hi Ψ̃(M)(X̃h(t))dsdt

= E

∫ tm+1

tm

∫ t

tm

〈PhDΨ̃(M)(X̃h(t)), DF h(X̃h(s)).(Sτ,hF
h(Xh

m))〉dsdt.

We have assumed F and DF to be bounded, so we easily get

|d3m| ≤ C(1 + |x|2)τ2

and

(56)
1

Nτ

N−1
∑

m=1

|d3m| ≤ C(1 + |x|2)τ.
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(4) Estimate of d4m
Finally, thanks to the integration by parts formula of Proposition 6.3, we have

d4m = E

∫ tm+1

tm

∫ t

tm

Nh−1
∑

i=0

〈DF h
i (X̃

h(s)), Sτ,hPhdW (s)〉∂hi Ψ̃(M)(X̃h(t))dt

= E

∫ tm+1

tm

∫ t

tm

Tr
(

(DsX̃
h(t))∗PhD

2Ψ̃(M)(X̃h(t))DF h(X̃h(s))Sτ,hPh

)

dsdt

= E

∫ tm+1

tm

∫ t

tm

Tr
(

Sτ,hPhD
2Ψ̃(M)(X̃h(t))DF h(X̃h(s))Sτ,h

)

dsdt;

indeed, we have Dℓ
sỸ (t) = Sτ,hℓ for all ℓ ∈ Vh, when tm ≤ s ≤ t ≤ tm+1 - see also the control

of b3m. Now,

|d4m| ≤ E

∫ tm+1

tm

∫ t

tm

|(Sτ,h(−Ah)
1/2+κ|L(Vh)|DF (X̃h(s))|L(H)|Sτ,h|L(Vh)

× |D2Ψ̃(M)(X̃h(t))|L(H)Tr(Ph(−Ah)
−1/2−κPh)dsdt

≤ C(1 + |x|2)τ1/2−κτ,

and

(57)
1

Nτ

N−1
∑

m=1

|d4m| ≤ C(1 + |x|2)τ1/2−κ.

(5) Estimate of dm: conclusion With (53), (54), (55), (56) and (57), we get

(58)
1

Nτ

N−1
∑

m=1

|dm| ≤ Cτ1/2−2κ(1 + |x|3)(1 + T−1+κ).

7.3.5. Estimate of em. Using the symmetry of the operators Ph ∈ L(H) and Sτ,h ∈ L(Vh), the
commutativity of Ph and Sτ,h and the fact that Ph is a projector, we have in L(H)

PhP
∗
h − (Sτ,hPh)(Sτ,hPh)

∗ = 2PhSτ,hPh(I − Sτ,h)Ph + Ph(I − Sτ,h)Ph(I − Sτ,h)Ph;

we then decompose em into two parts: em = e1m + e2m, with

e1m := E

∫ tm+1

tm

Tr
(

PhSτ,hPh(I − Sτ,h)PhD
2Ψ̃(M)(X̃h(t))

)

;

e2m :=
1

2
E

∫ tm+1

tm

Tr
(

Ph(I − Sτ,h)Ph(I − Sτ,h)PhD
2Ψ̃(M)(X̃h(t))

)

.

(1) Estimate of e1m

|e1m| ≤ E

∫ tm+1

tm

∣

∣Tr
(

(−A)−1/2−κ(−A)2κPhSτ,hPh(I − Sτ,h)PhD
2Ψ̃(M)(X̃h(t))(−A)1/2−κ

)∣

∣ds

≤ E

∫ tm+1

tm

Tr((−A)−1/2−κ)
∣

∣(−A)2κPhSτ,hPh(I − Sτ,h)(−Ah)
−1/2+κ

∣

∣

L(H)

×
∣

∣(−Ah)
1/2−κPhD

2Ψ̃(M)(X̃h(t))(−A)1/2−κ
∣

∣

L(H)
ds

≤ C(1 + |x|2)τ
∣

∣(−Ah)
2κSτ,hPh(I − Sτ,h)(−Ah)

−1/2+κ
∣

∣

L(Vh)

≤ C(1 + |x|2)ττ−2κτ1/2−κ = Cτ1+1/2−3κ.
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(2) Estimate of e2m

|e2m| =
∣

∣

1

2
E

∫ tm+1

tm

Tr
(

Ph(I − Sτ,h)Ph(I − Sτ,h)PhD
2Ψ̃(M)(X̃h(t))

)∣

∣

≤ 1

2
E

∫ tm+1

tm

∣

∣Tr
(

(−A)−1/2−κ(−A)2κPh(I − Sτ,h)Ph(I − Sτ,h)

× Ph(−Ah)
−1/2+κ(−Ah)

1/2−κD2Ψ̃(M)(X̃h(t))(−A)1/2−κ
)∣

∣ds

≤ C(1 + |x|2)τTr((−A)−1/2−κ)
∣

∣(−A)2κPh(I − Sτ,h)Ph(I − Sτ,h)Ph(−Ah)
−1/2+κ

∣

∣

L(H)

≤ C(1 + |x|2)τ
∣

∣(−Ah)
2κ(I − Sτ,h)Ph(I − Sτ,h)(−Ah)

−1/2+κ
∣

∣

L(H)

≤ C(1 + |x|2)ττ−2κτ1/2−κ = Cτ1+1/2−3κ.

(3) Estimate of em: conclusion

We thus have

(59)
1

τN

N−1
∑

m=1

|em| ≤ C(1 + |x|2)τ1/2−3κ.

7.3.6. Conclusion. With the above estimations, we get

(60) | 1

Nτ

N−1
∑

m=1

∫ tm+1

tm

E

(

Lh − Lτ,m,h
)

Ψ̃(M)(X̃h(t))dt| ≤ C(1 + |x|3)τ1/2−κ(1 + T−1+κ + T−1).

7.4. Conclusion. With (60), (40) and (41), we get

1

N

N−1
∑

m=0

(

φ(Xh
m)− φ

)

≤ C(1 + |x|3)τ1/2−κ(1 + T−1+κ + T−1)(1 + h1−κ),

where C does not depend of T , h and M .
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Appendix A. Study of the (finite-dimensional) Poisson equation

This Section is devoted to the proof of Proposition 6.1.

Let φ ∈ C2
b . For lighter notation, we will assume in this appendix that φ = 0. We define the

function u for any t > 0 and ∈ H by

(61) u(t, x) = E[φ(X(t, x))],

which is solution of a finite dimensional Kolmogorov equation associated with the Galerkin finite
dimensional approximation of (1):

du

dt
(t, x) = Lu(t, x) =

1

2
Tr
(

D2u(t, x)
)

+ 〈Ax+ F (x), Du(t, x)〉.

Since φ is of class C2, bounded and with bounded derivatives, we are able to prove that with respect
to y the function u is twice differentiable. Then, using the Itô formula, we can show that Ψ is
solution of (25).

To prove Proposition 6.1, we only need to show that u ∈ C2 and that u and its two first derivates
have estimates which are integrable with respect to t. In fact, we will show the result below:

Proposition A.1. Let φ ∈ C2
b such that φ = 0 and u defined by (61). There exist constants C, c

and µ̃ > 0 such that for any 0 ≤ β, γ < 1/2 there exist constants Cβ and Cβ,γ such that for any
t > 0 and y ∈ H

(62) |u(t, x)| ≤ C(1 + |x|2) ‖ φ ‖∞

(63) |Du(t, x)|β ≤ Cβ(1 +
1

tβ
)e−µ̃t(1 + |x|2) ‖ φ ‖1,∞ .

and

(64) |(−A)βD2u(t, x)(−A)γ |L(H) ≤ Cβ,γ(1 +
1

tη
+

1

tβ+γ
)e−µ̃t(1 + |x|2) ‖ φ ‖2,∞,

where η < 1 is defined in the Assumption 2.7

Remark A.2. In fact the estimation (63), is true for β < 1.

The proof of this result is similar to the proof done in [3].

Remark A.3. Since φ is of class C2, bounded and with bounded derivatives, we are able to prove
that with respect to y the function u is twice differentiable, and that the derivatives can be calculated
in the following way:

• For any h ∈ H, we have

(65) Du(t, x).h = E[Dφ(X(t, x)).ηh,x(t)],

where ηh,x is the solution of

dηh,x(t)

dt
= Aηh,x(t) +DF (X(t, x)).ηh,x(t),

ηh,y(0) = h.

• For any h, k ∈ H, we have

(66) D2u(t, x).(h, k) = E[D2φ(X(t, x)).(ηh,x(t), ηk,x(t)) +Dφ(X(t, x)).ζh,k,x(t)],
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where ζh,k,x is the solution of

dζh,k,x(t)

dt
= Aζh,k,x(t) +DF (X(t, x)).ζh,k,x(t) +D2F (X(t, x)).(ηh,x(t), ηk,x(t)),

ζh,k,x(0) = 0.

Morover, we already have the equation (62) (see (21)).

We will now show the equations (63) and (64). The singularity t−η in (64) is a consequence of
the regularity properties satisfied by F . The proofs require several steps. First in Lemma A.4 below
we prove estimates for a finite horizon and general 0 ≤ β, γ < 1/2; then in Lemma A.6 we study
the long-time behaviour in the particular case β = γ = 0; we finally conclude with the proofs of
Proposition A.1.

First, we prove estimates of these quantities for 0 < t ≤ 1 - see Lemmas 4.4 and 4.5 in [11], with
a difference coming from the assumptions made on the nonlinear coefficient F :

Lemma A.4. For any 0 ≤ β < 1/2, 0 ≤ γ < 1/2, there exist constants Cβ and Cβ,γ such that for
any y ∈ H and any 0 < t ≤ 1

|Du(t, x)|β ≤ Cβ

tβ
‖ Dφ ‖∞

|(−A)βD2u(t, x)(−A)γ |L(H) ≤ Cβ,γ(
1

tη
+

1

tβ+γ
)(‖ Dφ ‖∞ + ‖ D2φ ‖∞).

Remark A.5. If we take another time interval ]0, Tmax] instead of ]0, 1], the constants Cβ and Cβ,γ

are a priori exponentially increasing in Tmax.

Proof Owing to (65) and (66), we only need to prove the following almost sure estimates, for
some constants Cβ and Cβ,γ - which may vary from line to line below: for any 0 < t ≤ 1

(67)
|ηh,x(t)| ≤ Cβ

tβ
|h|−β

|ζh,k,x(t)| ≤ Cβ,γ min(
1

tη
,

1

tβ+γ
)|h|−β |k|−γ ,

where the parameter η is defined in Assumption 2.7.
We use mild formulations, and the regularization properties of the semi-group given in Proposition

2.6:

|ηh,x(t)| = |etAh+

∫ t

0
e(t−s)ADF (X(s, y)).ηh,x(s)ds|

≤ Cβ

tβ
|h|−β + C

∫ t

0
|ηh,x(s)|ds,

and by the Gronwall Lemma we get the result.
For the second-order derivative, we moreover use the properties of F in Assumption 2.7 to get

|ζh,k,x(t)| = |
∫ t

0
e(t−s)ADF (X(s, x)).ζh,k,x(s)ds

+

∫ t

0
e(t−s)AD2F (X(s, x)).(ηh,x(s), ηk,x(s))ds|

≤ C

∫ t

0
|ζh,k,x(s)|ds+

∫ t

0

Cβ,γ

(t− s)η
|ηh,y(s)||ηk,x(s)|ds

≤ C

∫ t

0
|ζh,k,x(s)|ds+ Cβ,γ |h|−β |k|−γt

1−η−β−γ

∫ 1

0

1

(1− s)ηsβ+γ
ds.
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To conclude, it remains to use the Gronwall Lemma, since for any 0 < t ≤ 1 we get t1−η−β−γ ≤ t−η,
thanks to the assumption β + γ < 1. �

Thanks to the dissipativity property expressed in Proposition 2.9, we can prove the result in the
case β = γ = 0. We notice that the proof would be straightforward under a strict dissipativity
assumption - since then ηh,x(t) and ζh,k,x(t) would decrease exponentially in t; in the general case
ηh,x(t) and ζh,k,x(t) are exponentially increasing in time so that we can not work directly. Here the
result comes from the estimate (21) of Proposition 4.2.

Lemma A.6. There exist constants C and c > 0 such that for any t ≥ 0 and any y ∈ H
(68)

|Du(t, x)| ≤ Ce−ct(1 + |x|2) ‖ φ ‖∞ and |D2u(t, x)|L(H) ≤ Ce−ct(1 +
1

tη
)(1 + |x|2) ‖ φ ‖∞ .

Proof The Bismut-Elworthy-Li formula states that if Φ : H → R is a function of class C2 with
bounded derivatives and with at most quadratic growth - i.e. there exists M(Φ) > 0 such that for
any y ∈ H we have |Φ(y)| ≤ M(Φ)(1 + |x|2) - then we can calculate the first and the second order
derivatives of (t, x) 7→ v(t, x) := EΦ(X(t, x)) with respect to y. First, we have for any y ∈ H and
h ∈ H

(69)

Dv(t, x).h =
1

t
E[

∫ t

0
〈ηh,x(s), dW (s)〉Φ(X(t, x))]

=
2

t
E[

∫ t/2

0
〈ηh,x(s), dW (s)〉v(t/2, X(t/2, x))];

the second equality is a consequence of the identity v(t, x) = Ev(t/2, X(t/2, y)) obtained with the
Markov property, and of the first equality applied with the function v(t/2, .).

Using the second formula of (69), we obtain a formula for the second order derivative: for any
y ∈ H and h, k ∈ H,

(70)

D2v(t, x).(h, k) =
2

t
E[

∫ t/2

0
〈ζh,k,x(s), dW (s)〉v(t/2, X(T/2, x))]

+
2

t
E[

∫ t/2

0
〈ηh,x(s), dW (s)〉Dv(t/2, X(t/2)).ηk,x(t/2)].

We then see, using Lemmas 3.9 and A.4 - with β = γ = 0 - that there exists C > 0 such that for
any 0〈t ≤ 1, x ∈ H, h, k ∈ H

(71)

|Dv(t, x).h| ≤ C√
t
M(Φ)(1 + |x|2)|h|,

|D2v(t, x).(h, k)| ≤ C

t
M(Φ)(1 + |x|2)|h||k|.

Now when t ≥ 1 the Markov property implies that u(t, x) = Eu(t−1, X(1, x)), and by (22) we have

|u(t− 1, x)−
∫

H
φdµ| ≤ Ce−c(t−1)(1 + |x|2) ‖ φ ‖∞ .

If we choose Φt(x) = u(t− 1, x)−
∫

H φdµ, we have u(t, x) = EΦt(X(1, x))+
∫

H φdµ, with M(Φt) ≤
Ce−c(t−1) ‖ φ ‖∞. With (71) at time 1, we obtain for t ≥ 1

|Du(t, x).h| ≤ C ‖ φ ‖∞ e−c(t−1)(1 + |x|2)|h|
|D2u(t, x).(h, k)| ≤ C ‖ φ ‖∞ e−c(t−1)(1 + |x|2)|h||k|.

Moreover by Lemma A.4 we have a control when 0 ≤ t ≤ 1, so that with a change of constants we
get the result. �
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We can finally prove the Proposition A.1. The key tool is the Markov property of the process X
which yields the following formula: for any t ≥ 1

(72) u(t, x) = E[u(t− 1, X1(x))].

To get the exponential decreasing, we use Lemma A.6 at time t − 1 when t ≥ 1, while |h|−β

appears from ηh,y(1), and with estimates coming from Lemma A.4.

Proof of Propositions A.1
Using equation (72) and Lemma A.6, for any t ≥ 1 we have

|Du(t, x).h| ≤ C ‖ φ ‖∞ e−c(t−1)
E[(1 + |X(1, x)|2)|ηh,x(1)|] ≤ C ‖ φ ‖∞ e−c(t−1)(1 + |x|2)|h|−β ,

where the last estimate comes from Lemmas 3.9 and A.4.
Combining this estimate with the result of Lemma A.4, which gives an estimate for t ≤ 1, we

obtain (63).
For the second order derivatives, Lemma A.4 gives an estimate for t ≤ 1, and for t ≥ 1 we use

(72) to see that

D2u(t, x).(h, k) = E[D2[u(t− 1, X(1, x))].(h, k)]

= ED2u(t− 1, X(1, x)).(ηh,x(1), ηk,x(1)) + EDu(t− 1, X(1, x)).ζh,k,x(1).

Using Lemma A.6, we get an exponential decreasing; thanks to Lemma 3.9 and to the estimates in
the proof of Lemma A.4 at time 1, we obtain

|D2u(t, x).(h, k)| ≤‖ φ ‖∞ e−c(t−1)(1 + |x|2)|h|−β |k|−γ .

Then (64) easily follows.
�

Appendix B. Proof of some estimates

We give the detailed proofs of some estimates on the processes (Xh(t))t∈R+ and (Xh
k )k∈N, given

in Section 3.4.
We omit the reference to the parameter of the spatial discretization h ∈ (0, 1), but it is clear from

the proofs that the constants are uniform with respect to h.
Proof of Lemma 3.9 If we define Z(t) = X(t)−WA(t), we have Z(0) = X(0) = x, and

dZ(t)

dt
= AZ(t) + F (X(t)),

and by Proposition 2.9

1

2

d|Z(t)|2
dt

= 〈AZ(t) + F (X(t)), Z(t)〉
= 〈AZ(t) + F (Z(t)), Z(t)〉+ 〈F (X(t))− F (Z(t)), Z(t)〉
≤ −c|Z(t)|2 + C + ‖F‖∞|Z(t)|
≤ −c′|Z(t)|2 + C ′,

for some new constants c′, C ′.
Then almost surely we have for any t ≥ 0

|Z(t)| ≤ C(1 + |x|).
Thanks to (6), the conclusion easily follows. �
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Proof of Lemma 3.10 As in the proof of Lemma 3.9 above, we introduce Zm = Xm − wm, where
the process (wm) is the numerical approximation of WA with the numerical scheme (16) - with
F = 0; it is defined by

wm+1 = Sτ,hwm +
√
τSτ,hχm+1.

Using Theorem 3.2 of [25], giving the strong order 1/4 for the numerical scheme - when the initial
condition is 0, with no nonlinear coefficient, with a constant diffusion term and under the assump-
tions made here - we obtain the following estimate: for any p ≥ 1, τ0 > 0 and 0 < r < 1/2 there
exists C > 0 such that for any 0 < τ ≤ τ0 and m ≥ 0

(73) E|wm −WA(mτ)|2p ≤ Cτ (1/2−r)p.

Thanks to (6) and (73), we get that for any τ0 > 0, there exists C > 0 such that for 0 < τ ≤ τ0 and
m ≥ 0

(74) E|wm|2 ≤ C.

Now Zm defined above satisfies Z0 = X0 = x and

Zm+1 = Sτ,hZm + τSτ,hF (Xm);

since, for h ∈ (0, 1), |Sτ,h|L(H) ≤ 1
1+λ0τ

, we obtain the almost sure estimates

|Zm+1| ≤
1

1 + λ0τ
|Zm|+ Cτ

and
|Zm| ≤ C(1 + |x|).

Thanks to (74), we therefore obtain the result. �
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