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Three finite-difference algorithms are proposed to solve a low-Mach num-

ber approximation for the Navier-Stokes equations. These algorithms ex-

hibit fourth-order spatial and second-order temporal accuracy. They are

dissipation-free, and thus well suited for DNS and LES of turbulent flows.

The key ingredient common to each of the methods presented is a Poisson

equation with variable coefficient that is solved for the hydrodynamic pres-

sure. This feature ensures that the velocity field is constrainted correctly.

It is shown that this approach is needed to avoid violation of the conser-

vation of kinetic energy in the inviscid limit which would otherwise arise

through the pressure term in the momentum equation. An existing set of

finite-difference formulae for incompressible flow is generalized to handle ar-

bitrary large density fluctuations with no violation of conservation through

the non-linear convective terms. An algorithm which conserves mass, mo-

mentum and kinetic energy fully is obtained when an approximate equation

of state is used instead of the exact one. Results from a model problem are

used to show both spatial and temporal convergence rates and several test

cases are presented to illustrate the performance of the algorithms.
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1 Introduction

Large Eddy Simulation (LES) and/or Direct Numerical Simulation (DNS)

can provide detailed information about turbulent flows that may be diffi-

cult to obtain experimentally. However, for the particular class of flow with

low Mach number M and strong density variation, the classical compress-

ible Navier-Stokes equations are not well suited for computation. The small

time step limitation dictated by numerical stability requirements of explicit

methods would require excessive computing times to solve practical flow

problems. Indeed the sound waves move much faster than entropy or vortic-

ity waves when M << 1. At the same time, in flows where the dominating

mechanism is free, forced or mixed convection, the acoustical mode of energy

carries only a small fraction of the energy present in the fluctuating part of

the flow. These observations led several authors [1, 2, 3, 4] to propose a set

of low-Mach number equations which do not contain acoustic waves but can

still describe the entropy and vorticity modes as well as compressibility due

to exothermicity of chemical reactions. A fractional-step method is used

most often, the pressure field being obtained by solving a Poisson equation

with the time derivative of the density field as part of the source term [3, 5].

The projection step was found to be the most destabilizing part of the algo-

rithm [6]. Even-ordered finite difference approximations to this derivative

were found to be more stable but density ratios larger than 3 are difficult to

compute. Sandoval (reported in [6]) found that by decreasing the Reynolds

number, larger variations in density could be achieved. Larger density ratios

seem computable by using a predictor-corrector time-stepping algorithm in

which the predictor uses a second-order Adams-Bashforth time integration

4



scheme and the corrector relies on a quasi-Crank-Nicolson integration with

the inversion of a pressure Poisson equation at each step [7, 8].

As far as incompressible Navier-Stokes equations are concerned, experi-

ence has shown that the kinetic energy must be conserved if a stable and

dissipation-free numerical method is sought. Indeed, such property ensures

that the sum of the square of the velocities cannot grow, even through non-

linear interactions between modes. As a consequence, a numerical scheme

which conserves kinetic energy cannot be unstable. Moreover, it makes

unnecessary the use of numerical stabilization through up-winding which is

known to introduce too much artificial damping in DNS/LES computations.

Morinishi et al. [9] developed a set of fully conservative (mass, momentum

and kinetic energy) high order schemes for incompressible flow. However,

none of the numerical studies on low-Mach number flows cited above ad-

dressed this issue. In the present study it is shown that the global conserva-

tion of kinetic energy is a common feature of incompressible and low-Mach

number flows in the inviscid limit. A nearly conservative fourth-order finite

difference scheme is proposed in which one solves a Poisson equation with

variable coefficient for pressure. Also, this algorithm makes use of a gen-

eralization of the Morinishi’s finite difference formulae for variable density

flow. These two ingredients lead to algorithms which are well suited for LES

and/or DNS computations. In particular:

• no numerical dissipation from the spatial discretization is used to sta-

bilize the computation; and,

• they can handle density ratios much larger than 3.
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The low Mach number approximation and the numerical method are dis-

cussed in sections 2 and 3. An error analysis is conducted in section 4 and

some numerical experiments are discussed in section 5 to show the potential

of the algorithm.

2 Low Mach number approximation

In compressible flows, a natural parameter to measure the effects of com-

pressibility is the ratio of the dynamic to the thermodynamic pressure, viz.

γM2. To derive the low Mach number equations, one expands the depen-

dent variables as a power series in ǫ = γM2, which is a small parameter (see

[1, 3, 6] for details on the derivation of the low Mach number equations).

Substituting these expansions into the compressible Navier-Stokes equations

and collecting the lowest order terms in ǫ yields:

∂ρ

∂t
+
∂ρuj

∂xj
= 0 (1)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= − ∂P

∂xi
+

1

Re

∂τij
∂xj

(2)

ρCp
∂T

∂t
+ ρCpuj

∂T

∂xj
=

1

RePr

∂qj
∂xj

+
γ − 1

γ

dPo

dt
(3)

As body forces have no impact on the numerical methods presented in

section 3, they have not been included in Eq. (2). All the variables are nor-

malized using the reference state ρref , uref , T ref = P ref
o /ρref , Cref

p = C∗
p(T ref),

µref = µ∗(T ref) and kref = k∗(T ref) where the superscript ∗ represent dimen-

sional quantities. Also Re = ρrefurefLref/µref and Pr = µrefCref
p /kref are the
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Reynolds and the Prandtl number while γ is the ratio of specific heats at

the reference state. ui, ρ, T , k, µ and Cp stand for the non-dimensionalized

velocity vector, density, temperature, thermal conductivity, dynamic vis-

cosity and specific heat. τij = µ
(

∂ui

∂xj
+

∂uj

∂xi
− 2

3δij
∂uk

∂xk

)

and qj = k ∂T
∂xj

are

the viscous stress tensor and the heat flux vector respectively. Moreover, P

may be interpreted as the hydrodynamic pressure. In the low-Mach number

approximation, the thermodynamic pressure Po only depends on time and

must be computed if it is not constant. The equation of state is simply:

Po = ρT (4)

Since density is uniquely determined by the temperature (and the ther-

modynamic pressure which is constant in space), the energy equation acts

as a constraint which is enforced by the hydrodynamic pressure. Combining

the equations (1), (3) and (4), this constraint is:

∂ui

∂xi
=

1

Po(t)Cp

[

1

RePr

∂

∂xj

(

k
∂T

∂xj

)

+

(

γ − 1

γ
− Cp

)

dPo

dt

]

(5)

Integrating over the flow domain V leads to the following ODE for the

thermodynamic pressure in a closed system:

dPo

dt
=

1
∫

V

(

γ−1
γ − Cp

)

dV

[

1

RePr

∫

V

∂

∂xj

(

k
∂T

∂xj

)

dV

+Po(t)

∫

V
ui
∂Cp

∂xi
dV

]

(6)

Since
∫

V
∂

∂xj

(

k ∂T
∂xj

)

dV =
∫

S k
∂T
∂xj

dSj, this relation expresses how the rate of

change of the mean pressure is affected by the heat flux through the surface

S of the domain V and the gradients of heat capacity of the gas. In many

practical applications such as piston engines and internal ballistics the fluid
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may be considered as a calorifically perfect gas so that CP = 1 and the time

derivative of Po is simply:

dPo

dt
=
γ

V

1

RePr

∫

V

∂

∂xj

(

k
∂T

∂xj

)

dV =
1

V

1

RePr

∫

S
k
∂T

∂xj
dSj (7)

Thus the constraint on the velocity field becomes:

∂ui

∂xi
=

1

Po(t)RePr

[

∂

∂xj

(

k
∂T

∂xj

)

− 1

V

∫

V

∂

∂xj

(

k
∂T

∂xj

)

dV

]

(8)

Note that the numerical methods presented in section 3 remains usable even

if the fluid is not considered as being a calorifically perfect gas. If the system

considered is open, then the thermodynamic pressure is set by atmospheric

conditions. If it is closed then the amount of mass in it, M0, is constant over

time so that by integrating the equation of state over the whole domain one

obtains the following expression for the thermodynamic pressure:

Po(t) =
M0

∫

V
1
T dV

(9)

Note that in the limit of an inviscid flow of a calorifically perfect gas the

thermodymanic pressure remains constant over time (from Eq. (7)) and the

velocity field is divergence-free (from Eq. (8)).

The solution (ρ, ui, T , P , Po) is completely described by Eqs. (1)-(4)

and (7). The constraint Eq. (8) should also be satisfied since it is a linear

combination of Eqs. (1), (3) and (4).

3 Numerical method

The numerical method chosen for solving the variable density momentum

and temperature equations is a generalization of a fully conservative fourth

order spatial scheme developed for incompressible flows on staggered grids
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by Morinishi et al. [9]. A scheme to solve the momentum equations in non-

conservative form is described in the following subsection 3.1. A scheme

with ‘good’ conservative properties is discussed in section 3.2. Both of these

algorithms involve a variable coefficient Poisson equation for the pressure.

For completeness, section 3.3 presents an alternative formulation in which

the pressure is obtained, as proposed in most of the previous studies, through

a Poisson equation with constant coefficient and approximate source term.

3.1 Scheme in non-conservative form: AdvSC

For a uniform mesh, the advective term in the momentum equation, Eq.

(2), is discretized as:

ρuj
∂ui

∂xj
≡ 9

8

(

9

8
ρ(4j)uj

1xi − 1

8
ρ(4j)uj

3xi

)

δ1ui

δ1xj

1xj

−1

8

(

9

8
ρ(4j)uj

1xi − 1

8
ρ(4j)uj

3xi

)

δ3ui

δ3xj

3xj

(10)

where the finite-difference operator with stencil n acting on φ with respect

to xi is defined as

δnφ

δnxi
=
φ(xi + nhi/2) − φ(xi − nhi/2)

nhi
(11)

and the interpolation operator with stencil n acting on φ in the xi direction

is

φ
nxi =

φ(xi + nhi/2) + φ(xi − nhi/2)

2
. (12)

ρ(4j) is a fourth order interpolation of ρ in the xj direction:

ρ(4j) =
9

8
ρ1xj − 1

8
ρ3xj (13)
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When the density is constant, Eq. (10) reduces to the advective form (Adv.-

S4) in Morinishi et al. [9]. The pressure term in Eq. (2) in discretized by:

∂P

∂xi
≡ (Pres.)i = (∇dP )i =

9

8

δ1P

δ1xi
− 1

8

δ3P

δ3xi
(14)

and the discrete divergence operator is defined consistently:

∂ui

∂xi
≡ ∇d · (ui) =

9

8

δ1ui

δ1xi
− 1

8

δ3ui

δ3xi
(15)

The viscous terms in Eq. (2) are written using the following generic form:

∂

∂xj

(

µ
∂ui

∂xj

)

≡ 9

8

δ1
δ1xj

[

µ(4i),(4j)

(

9

8

δ1ui

δ1xj
− 1

8

δ3ui

δ3xj

)]

−1

8

δ3
δ3xj

[

µ(4i),(4j)

(

9

8

δ1ui

δ1xj
− 1

8

δ3ui

δ3xj

)]

(16)

Note that µ is successively interpolated in the i and j-direction (applying

Eq. (13) to µ once in i, once in j) to give the fourth-order interpolation

µ(4i),(4j). The advective term for the temperature is discretized as:

ρuj
∂T

∂xj
≡ 9

8
ρ(4j)uj

δ1T

δ1xj

1xj

− 1

8
ρ(4j)uj

δ3T

δ3xj

3xj

(17)

A semi-implicit time marching algorithm is used in which the diffusion

terms in the wall normal direction are treated implicitly with a Crank-

Nicolson scheme, while a third order Runge-Kutta or second order Adams-

Bashforth scheme is used for all other terms. The temperature equation is

advanced first so that ρn+1 is known via the state equation ρ = Po/T , where

Po is first assessed using Eq. (9) written at time n + 1. Then a fractional

step method is used to solve the momentum equation.

ρ(4i),n+1u
n+1
i − un

i

∆t
= ρ(4i),n+1u

n+1
i − ûi

∆t
+ρ(4i),n+1 ûi − un

i

∆t
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Sub-step βk γk ζk

RK-CN k=1 4
15

8
15 0

RK-CN k=2 1
15

5
12

−17
60

RK-CN k=3 1
6

3
4

−5
12

AB-CN k=1,3 1
2

3
2 −1

2

Table 1: Numerical parameters for time stepping RK-CN and AB-CN.

= βk

(

In+1 + In
)

+γkE
n+ζkE

n−1−2βk∇dP
n−2βk∇dδP

n+1 (18)

where I and E represent all the spatial implicit and explicit terms ex-

cept for the pressure at n and the pressure update δPn+1 = Pn+1 − Pn.

The parameters βk, γk and ζk (k = 1, 3) can be chosen so that the mixed

Runge-Kutta/Crank-Nicolson (RK-CN) time stepping is recovered after the

third sub-step (see Spalart [10]). One can also choose their values so that

the mixed Adams-Bashforth/Crank-Nicolson (AB-CN) time stepping is ob-

tained at each sub-step. The values for the coefficients βk, γk and ζk are

given in table 1.

Equation (18) is then split into a decoupled set which is a second-order

approximation in time to the original equation:

ρ(4i),n+1 ûi − un
i

∆t
= βk

(

In+1 + In
)

+ γkE
n + ζkE

n−1 − 2βk∇dP
n (19)

ρ(4i),n+1u
n+1
i − ûi

∆t
= −2βk∇dδP

n+1 (20)

Equation (19) is solved for ûi by using the discretizations (10), (14) and

(16). Then (20) is divided by ρ(4i),n+1 before its discrete divergence is taken
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to obtain:

∇d ·
(

1

ρ(4i),n+1
∇dδP

)

=
1

2βk∆t

(

∇d · ûi −∇d · un+1
i

)

(21)

A similar Poisson equation with variable coefficient was solved in Bell &

Marcus [11] to impose the divergence-free constraint for variable-density

flows -see also [12, 13].

Since the transport equation for T has been advanced prior to the mo-

mentum equation, the last term in the equation for the pressure variation is

known from Eq. (8), written at time n+ 1. The variable coefficient Poisson

equation Eq. (21) for the pressure is solved using the (pre-conditioned) con-

jugate gradient algorithm. In the case where homogeneous directions exist,

it is worth pre-conditioning Eq. (21) by the elliptic operator:

∇d ·
(

1
〈

ρ(4i),n+1
〉∇d

)

(22)

where <> denote a spatial averaging in the homogeneous directions. In this

case one can make use of FFT-based Fast Poisson Solver at each iteration

of the conjugate gradient algorithm. In the more general case it is worth

solving for the modified unknown δP/
√
ρ [14]. The advantage of solving

Eq. (21) to update the pressure is that the divergence-free constraint is

recovered in the inviscid limit, as it has to be from Eq. (8). This is not the

case when a backward approximation of ∂ρ
∂t is used to compute the source

term of a linear Poisson equation for δP as proposed earlier [3], [6] (see

also section 3.3). The other advantage is that the pressure terms remain

energy conserving in the high-Re number limit, as discussed in the following

subsection.
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3.2 Fully conservative scheme: DivSC, DivSCapprox

Although the previous scheme was found to be accurate, it only conserves

momentum and kinetic energy to its own order of accuracy. Experience has

shown that the latter quantity must be conserved exactly if a stable and

dissipation-free numerical method is sought. Morinishi et al. [9] developed

a set of fully conservative (mass, momentum and kinetic energy) high order

schemes for incompressible flow. In the general case of the Navier-Stokes

equations without body force, the transport equation for the kinetic energy

ρk per unit volume reads:

∂ρk

∂t
+
∂ρujk

∂xj
= PSjj −

∂Puj

∂xj
+
∂τijui

∂xj
− τijSij (23)

Let us consider a periodic (or infinite) domain so that, after Eq. (23) is

integrated over the domain, the flux terms
∂ρujk
∂xj

and
∂Puj

∂xj
make no contri-

bution. Due to the dissipation term τijSij, the question of conservation of

the kinetic energy is only relevant in the inviscid limit where τij = 0. We

know from Eq. (8) that in this limit, the velocity field is divergence-free,

that is Sjj = 0. Thus global conservation of kinetic energy is a common

feature of incompressible and low Mach number flows. The purpose of this

section is to investigate how this property can be extended in discrete space.

Let us define the following discrete approximations of the possible forms

for the non-linear term in the momentum equation:

(Adv.)i =
9

8

(

9

8
ρ(4j)uj

1xi − 1

8
ρ(4j)uj

3xi

)

δ1ui

δ1xj

1xj

−1

8

(

9

8
ρ(4j)uj

1xi − 1

8
ρ(4j)uj

3xi

)

δ3ui

δ3xj

3xj

(24)
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(Div.)i =
9

8

δ1
δ1xj

[(

9

8
ρ(4j)uj

1xi − 1

8
ρ(4j)uj

3xi

)

ui
1xj

]

−1

8

δ3
δ3xj

[(

9

8
ρ(4j)uj

1xi − 1

8
ρ(4j)uj

3xi

)

ui
3xj

]

(25)

(Skew.)i =
1

2
((Adv.)i + (Div.)i) (26)

The forms (Adv.)i, (Div.)i and (Skew.)i are the discrete equivalent to the

advective ρuj
∂ui

∂xj
, conservative

∂ρuiuj

∂xj
and skew-symmetric 1

2

(

ρuj
∂ui

∂xj
+

∂ρuiuj

∂xj

)

form of the convective term. Note that the discrete operator in Eq. (24) is

the same as that in Eq. (10). The following relations holds between these

three discrete forms:

(Div.)i = (Adv.)i + ui

(

9

8
(Cont.)

1xi − 1

8
(Cont.)

3xi

)

(27)

(Skew.)i = (Adv.)i +
1

2
ui

(

9

8
(Cont.)

1xi − 1

8
(Cont.)

3xi

)

(28)

(Skew.)i = (Div.)i −
1

2
ui

(

9

8
(Cont.)

1xi − 1

8
(Cont.)

3xi

)

(29)

where

(Cont.) =
9

8

δ1ρ
(4j)uj

δ1xj
− 1

8

δ3ρ
(4j)uj

δ3xj
(30)

is the discrete form of the divergence of the momentum vector
∂ρuj

∂xj
.

A key assumption in the semi-discrete analysis proposed in Morinishi et

al. [9] for incompressible flow is that the operator (Cont.) is identically zero

so that the three forms (Div.)i, (Adv.)i and (Skew.)i are equivalent. Since

(Div.)i is conservative a priori for the momentum equation and (Skew.)i

is conservative a priori in the kinetic energy equation, a fully conservative
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scheme is obtained as soon as the velocity constraint
∂uj

∂xj
= 0 is imposed

properly through the pressure correction step. In the present case where the

density is not constant, the velocity constraint
∂uj

∂xj
= 0 (in the high-Re limit)

does not imply that
∂ρuj

∂xj
is zero. Thus the discrete operators (Div.)i, (Adv.)i

and (Skew.)i are not equivalent in the low Mach number case, meaning

that a fully discrete analysis (including the time discretization) must be

conducted to achieve conservation of kinetic energy.

A conservative scheme for the momentum can be derived by considering

the momentum equation in its divergence form. The first guess for the

velocity is obtained by solving:

ρ̂(4i)ûi − ρ(4i),nun
i

∆t
= −γk(Div.)

n
i − ζk(Div.)

n−1
i − 2βk(Pres.)ni (31)

where ρ̂ can be either ρn or ρn+1 or any intermediate value. Then the

projection step is written as:

un+1
i =

ρ̂(4i)

ρ(4i),n+1
ûi − 2βk

1

ρ(4i),n+1
∇dδP∆t (32)

where the Poisson equation for δP must be:

∇d ·
(

1

ρ(4i),n+1
∇dδP

)

=
1

2βk∆t

(

∇d ·
(

ρ̂(4i)

ρ(4i),n+1
ûi

)

−∇d · un+1
i

)

(33)

Obviously, Eqs. (31), (32) and (33) constitute a scheme which is momen-

tum conserving. To investigate whether it also conserves kinetic energy, let

us multiply Eq. (31) by ûi + un
i and integrate over the whole domain. The

overall contribution of the pressure term involving un
i in the kinetic energy

equation behaves like:

∫

V
un

i (Pres.)ni dV =

∫

V

(

9

8
un

i

δ1P

δ1xi

1xi

− 1

8
un

i

δ3P

δ3xi

3xi
)

dV (34)
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where

9

8
un

i

δ1P

δ1xi

1xi

− 1

8
un

i

δ3P

δ3xi

3xi

=
9

8

δ1u
n
i P

1xi

δ1xi
− 1

8

δ3u
n
i P

3xi

δ3xi

−P
(

9

8

δ1u
n
i

δ1xi
− 1

8

δ3u
n
i

δ3xi

)

(35)

The first two terms of the RHS of Eq. (35) do not contribute because

they are in divergence form. The last one is identically zero because the

variable coefficient Poisson equation, Eq. (33), is solved with ∇d · un+1
i =

9
8

δ1un+1

i

δ1xi
− 1

8
δ3un+1

i

δ3xi
= 0 imposed in the source term (i.e. the projection

step Eq. (32) imposes the divergence-free constraint exactly). The other

pressure term is ûi(Pres.)
n
i and its overall contribution is of order ∆t because

ûi = un
i +O(∆t) and the integral of un

i (Pres.)ni is zero.

Using Eq. (26), the overall contribution of the convective terms in the

RHS of Eq. (31) may be written as

∫

V
(ûi + un

i )
(

−γk(Skew.)
n
i − ζk(Skew.)

n−1
i

)

dV

− γk

∫

V

ûi + un
i

2
un

i

(

9

8
(Cont.)n

1xi − 1

8
(Cont.)n

3xi

)

dV

− ζk

∫

V

ûi + un
i

2
un−1

i

(

9

8
(Cont.)n−1

1xi − 1

8
(Cont.)n−1

3xi

)

dV (36)

The first integral in Eq. (36) contributes to the order ∆t because (Skew.)i

is kinetic energy conserving in nature and because ûi, u
n
i and un−1

i are equal

to the order ∆t. Thus an approximation to the order ∆t of the overall

contribution of the full RHS of Eq. (31) is:

− γk

∫

V

ûi + un
i

2
un

i

(

9

8
(Cont.)n

1xi − 1

8
(Cont.)n

3xi

)

dV

− ζk

∫

V

ûi + un
i

2
un−1

i

(

9

8
(Cont.)n−11xi − 1

8
(Cont.)n−13xi

)

dV (37)
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On the other hand, the contribution of the LHS of Eq. (31) may be

written:

∫

V

ρ̂(4i) (ûi)
2 − ρ(4i),n (un

i )2

∆t
dV +

∫

V
un

i ûi
ρ̂(4i) − ρ(4i),n

∆t
dV (38)

Comparing Eqs. (37) and (38) it appears that the discrete rate of change

of the kinetic energy (the first integral in Eq. (38)) is at most of order ∆t if

one defines the intermediate density as:

ρ̂− ρn

∆t
= −γk(Cont.)

n − ζk(Cont.)
n−1 (39)

In the context of a second order scheme, the same definition of ρ̂ was adopted

(C. Pierce, private communication) to achieve approximate conservation of

kinetic energy.

Multiplying the projection step Eq. (32) by ûi+u
n+1
i and integrating over

the whole domain, the following expression can be derived:

∫

V

ρ(4i),n+1
(

un+1
i

)2
− ρ̂(4i) (ûi)

2

∆t
dV =

∫

V
ûiu

n+1
i

ρ̂(4i) − ρ(4i),n+1

∆t
dV +O(∆t)

(40)

This shows that the global rate of change of the kinetic energy is of order

∆t only if ρ̂(4i) − ρ(4i),n+1 = O(∆tn), n ≥ 2. Unfortunately, n is only 1 in

the most general case.

A conservative scheme (DivSCapprox) is obtained if one accepts that the

state equation, Eq. (4), is verified to the order ∆t only, viz:

ρn+1 = ρ̂ =
Po

T n+1
+O(∆t) (41)

In this case, the error in the global kinetic energy conservation is at most

of order ∆t for each sub-step. If one accounts for the cancellation of error in
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the full third-order Runge-Kutta procedure, it can be shown that the error

is actually of order ∆t3. The same order was achieved for incompressible

flows in Morinishi et al. [9]. The Adams-Bashforth time integration is not

considered here since it is unstable for inviscid flows (see section 4).

3.3 Scheme with approximate Poisson equation: DivSCρ

The third algorithm is similar to the one in section 3.2 except for the Poisson

equation for the pressure. It is briefly described in this section for complete-

ness. One keeps the same scheme, Eq. (31), for the first guess of the velocity.

The projection step is now written as:

ρ(4i),n+1un+1
i = ρ̂(4i)ûi − 2βk∇dδP∆t (42)

where the Poisson equation for δP must be:

∇d · ∇dδP =
1

2βk∆t

(

∇d ·
(

ρ̂(4i)ûi

)

−∇d ·
(

ρ(4i),n+1un+1
i

))

(43)

The divergence of momentum at time level n + 1 is unknown but it can

be assessed by using the continuity equation:

∇d ·
(

ρ(4i),n+1un+1
i

)

= −δρ
δt

n+1

(44)

Since the temperature field is advanced first, the equation of state, Eq.

(4), can be used to compute the density at level n + 1. Then a backward

discretization for the time derivative of density can be used to assess the

source term in Eq. (43). Since δP is of order ∆t, the source term in

the Poisson equation is of order ∆t too. Since in this source term the time

derivative of density is divided by the time step (see Eq. (43)), the backward
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discretization must be at least second-order accurate for consistency. A

possible choice is:

δρ

δt

n+1

=

[

(∆tn + ∆tn−1)
2 − ∆t2n

]

ρn+1 − (∆tn + ∆tn−1)
2 ρn + ∆t2nρ

n−1

∆tn∆tn−1 (∆tn + ∆tn−1)
(45)

Obviously, Eqs. (31), (42) and (43) constitute a scheme which is momen-

tum conserving. However it is not kinetic energy conserving because the

divergence-free constraint is not recovered in the inviscid limit. Thus the

overall contribution of the pressure term does not vanish as in section 3.2.

The test cases in section 5 show that this algorithm is less stable and accu-

rate than DivSC and AdvSC. However, the Poisson equation, Eq. (43), is

with constant coefficient and can be solved very efficiently. Subsequently, it

seems that this approach was used in all the previous studies dealing with

low-Mach number flows [1, 2, 3, 4, 5, 6, 7, 8]. The approach involving a Pois-

son equation with variable coefficient as in sections 3.1 and 3.2 was preferred

in [11, 12, 13].

The conservative properties of the schemes described in section 3 are sum-

marized in table 2. Recall that AdvSC, DivSC and DivSCρ stand for the

schemes discussed in sections 3.1, 3.2 and 3.3 respectively. DivSCapprox de-

notes the case where the state equation Eq. (4) is not enforced exactly -see

section 3.2. The particular conservation properties of each of the schemes

considered are denoted by cross. The columns ‘convective’, ‘pressure’ and

‘projection’ refer to kinetic energy conservation with respect to the convec-

tion and pressure terms (in the momentum equation) and the projection

step respectively. The table also specifies whether or not the exact state

equation (4) is enforced.
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mass momentum convective pressure projection state

AdvSC x x x

DivSC x x x x x

DivSCapprox x x x x x

DivSCρ x x x x

Table 2: Properties of the different algorithms. A scheme has a given prop-

erty if the entry is checked.

From the channel flow computations performed in the course of this study,

(see section 5.5), the CPU time required per iteration for DivSC is between

1.2 and 2 times higher than what needed forDivSCρ, the higher the temper-

ature ratio, the higher the cost. The cost difference arises mainly through

the resolution of the variable coefficient Poisson equation (33). This differ-

ence is expected to decrease in cases with complex geometry which require

the use of an iterative method for Eq. (43) of algorithm DivSCρ. Recall

that a FFT-based Fast Poisson Solver has been used in the present study.

The cost for algorithm AdvSC is slightly smaller than for DivSC since the

continuity equation is not advanced in time.

4 Error Analysis

In order to investigate the stability limit of the previous algorithms in the 1D

linear case, a Fourier analysis was performed which is presented in section

4.1. Convergence tests are then described in sections 4.2 and 4.3 to show

both time and space accuracy of the methods developed in this paper.
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4.1 Stability

A Von Newmann analysis of the linear 1D convection-diffusion equation

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
(46)

was performed to assess the stability of the first step of the algorithms

described in the previous section. Note that in this simple case the forms

(Adv.)i and (Div.)i in Eqs. (24) and (25) reduce to (convection velocity c

omitted):
∂u

∂x
≡ 27 (ui+1 − ui−1) − (ui+3 − ui−3)

48 h
(47)

Also, in the case of constant viscosity, the spatial differencing Eq. 16 for the

diffusion term is proportional to:

∂2u

∂x2
≡ −1460 ui + 783 (ui+1 + ui−1) − 54 (ui+2 + ui−2) + (ui+3 + ui−3)

576 h2

(48)

Denoting the semi-discrete operator A4 such that ∂u/∂t = A4u
n
i , it is

straightforward to demonstrate using Eqs. (47) and (48) that its Fourier

transform Â4(ω) may be expressed as:

∆t Â4 = −j CFL
24

(27 sin (ωh) − sin (3ωh))

+
Fo

288
(−730 + 783 cos (ωh) − 54 cos (2ωh) + cos (3ωh)) (49)

where CFL = c ∆t/h and Fo = ν ∆t/h2 denote the Courant and the

Fourier numbers respectively while j2 = −1. For the full discretization

to be stable, it is necessary that ∆tÂ4(ω) be contained in the stability

region of the time differencing for all values of ω. The locus of ∆tÂ4(ω)

is shown for different values of CFL and Fo together with the stability

region of the Adams-Bashforth algorithm in figure 1b. Figure 1a shows
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the same quantities for the classical second-order semi-discretization where

∆tÂ2 = −jCFL sin (ωh)+2Fo(cos (ωh)−1). As expected, the fourth-order

scheme appears to be less stable than the second-order one. Since both semi-

discretizations Â2 and Â4 are anti-symmetric in the convection part, the

Adams-Bashforth time differencing is always unstable for Fo = 0. For finite

viscosity, both spatial schemes are stable, although the domain of stability

is smaller for the present formulation. For pure diffusion, viz. CFL =

0, the critical Fourier number for Â2 is 0.25 whereas for Â4 it is 0.197.

The same analysis was performed for the third-order Runge-Kunta time

differencing (not shown). In the absence of viscosity (Fo = 0), the critical

CFL number is 1.54, compared to the equivalent value for the classical

second-order scheme which is 1.8.

4.2 Time accuracy

Time accuracy of the numerical methods described in section 3 was as-

sessed through a numerical experiment in the 2D periodic domain [0, 2π] ×
[0, 2π]. The initial condition was set to u(x, y, t = 0) = ∂ψ/∂y + sin (x) ×
cos (y)/(RePr), v(x, y, t = 0) = −∂ψ/∂x+cos (x)×sin (y)/(RePr), P (x, y, t =

0) = 0 and T (x, y, t = 0) = 1 − cos (x) × cos (y) so that the constraint on

the velocity field, Eq. 8, is satisfied initially (assuming constant viscosity).

The stream function is equal to ψ = cos (x) × cos (y). Several simulations

were performed with Re = 2000 and Pr = 1 and using a uniform 16x16

grid. The number of time-steps (Adams-Bashforth time integration) used

to cover a given time interval was increased from 4 to 32, corresponding to

Courant numbers in the range [0.011,0.088]. One more computation was

performed for which 256 iterations were necessary in order to generate a
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highly accurate reference solution. The error in the solutions obtained at

larger ∆t was computed as the L2-norm of the difference in the solution

for a given time increment when compared with the reference solution. Re-

garding the u-velocity, second-order accuracy is demonstrated in figure 2 for

all the considered algorithms. The same convergence rate was obtained for

the v-velocity and for the temperature. An interesting point to note is that

the convergence rate for the pressure is only unity. This is not related to

the density variations considered here since the same phenomenon is true

for the incompressible Morinishi’s algorithm [9]. As discussed by Perot [15],

the order of accuracy of the pressure update does not affect the order of

accuracy of the velocity field.

4.3 Spatial accuracy

Other numerical experiments were conducted to study the spatial accuracy

of the algorithms. Only the results for AdvSC and DicSC are discussed

in this section since the spatial differencing for all the previous algorithms

reduces to one or the other of these two approaches. The initial condition

was the same as that used in section 4.2 and four different uniform grids

were considered, namely ones containing 162, 482, 1442 and 4322 cells. The

solutions obtained after a given integration time are denoted S16, S48, S144

and S432 respectively (S may denote either one of the velocity components,

the pressure or the temperature). This grid sampling was chosen so that

all the velocity and pressure nodes of the 162 staggered grid are common

to all the grids. The L2-norm of the difference between two solutions can

be computed on the coarser mesh without further interpolation. It is be-

lieved that in doing so one obtains a more reliable estimation of the spatial
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convergence rate. For all the computations the Courant number was kept

to a small value (CFL ≈ 5 × 10−3) so that the errors associated with the

time differencing are small with respect to the spatial differentiation. The

number of iterations was 16 for the coarsest grid, 432 for the finest one. The

convergence rate σ was computed in two different ways. First the solution

obtained with the finest grid (S432) was interpreted as the ‘exact’ solution.

Then assuming a spatial error of the form C.hσ , the convergence rate was

estimated by:

σ ≈ ln [L2(Sn − S432)] − ln [L2(Sm − S432)]

ln 3
(50)

where (n,m) is either (16,48) or (48,144). The other way of computing σ

does not require knowledge of the exact solution [11] and assumes that the

L2-norm of the difference between two successive grid levels is proportional

to the grid spacing in the coarser mesh. It is then straightforward to show

that:

σ ≈ ln [L2(Sn − Sm)] − ln [L2(Sm − Sk)]

ln 3
(51)

where (n,m,k) is either (16,48,144) or (48,144,432). Both estimate Eqs.

(50) and (51) were applied to the velocity components, the pressure and

the temperature fields. The results are shown in table 3. The fourth-order

accuracy of the methods presented in section 3 is demonstrated.

5 Numerical tests

A few test cases were designed to illustrate the performance of the numerical

methods described in the previous section, including the computation of a

1D high-amplitude pulse of density in an inviscid flow, a 1D small amplitude
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u v P T

AdvSC 3.89 ; 4.19 3.89 ; 4.19 4.06 ; 4.35 3.87 ; 3.92

3.89 ; 4.18 3.89 ; 4.18 4.04 ; 4.36 3.87 ; 3.90

DivSC 3.88 ; 3.60 3.88 ; 3.60 4.06 ; 3.58 3.87 ; 3.99

3.87 ; 3.59 3.87 ; 3.59 4.03 ; 3.59 3.87 ; 3.98

Table 3: Spatial convergence rates for AdvSC and DivSC. For each entry,

the first two values are determined from Eq. (50) with (n,m)=(16,48) and

(n,m)=(48,144) while the third and fourth values are from Eq. (51) with

(n,m,k)=(16,48,144) and (n,m,k)=(48,144,432).

pulse of density in a viscous flow, 2D random fluctuations of velocity and

temperature, 2D small amplitude fluctuations in a channel, and 3D large

amplitude fluctuations in a channel. A brief description of the different test

cases is provided in figure 3 which also summarize the assumptions and the

objectives for each test case. The time integration must be RK-CN for the

inviscid test cases while either RK-CN or AB-CN can be used for the viscous

ones. RK-CN has been used for the test cases in sections 5.1, 5.3 and 5.4.

The time integration is AB-CN in sections 5.2 and 5.5. The results obtained

are discussed in more detail in the following subsections.

5.1 1D Euler convection

If the Peclet number is infinite, the velocity field must be divergence-free,

that is u must be constant in 1D. Also, the pressure should remain constant.

To test the ability of the different formulations to reproduce this feature of

Eqs. (1)-(3), consider the domain 0 ≤ x ≤ 1, periodic in x. The initial

condition is u = u0 = 1, P = 0 and T = 1 +A exp
[

−
(x−x0

a

)2
]

with A = 1,
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x0 = 0.5 and a = 0.05. When the grid contains Nx = 24 points, only 6 points

are used to describe a Gaussian perturbation. Figure 4 shows Prms/ρ0u
2
0 as

a function of the grid spacing (this quantity is also the error in Prms since

the exact solution is Prms = 0). Three grid levels were considered: 24, 48

and 96 points in x. The rms of pressure is assessed for the time t = 20a/u0.

The CFL number is of order 0.5 in all cases. Since AdvSC renders the

exact solution for this particular test case, the corresponding results are

not included in the figure. The divergence is zero for DivSC because it is

explicitly enforced through the Poisson equation, Eq. (33). On the other

hand, the divergence-free constraint is not enforced in the algorithm DivSCρ

and the velocity does not remain constant. Since the error in the backward

difference equation, Eq. (45), is proportional to a high-order time derivative

of density, one expects the error in the source term of the Poisson equation,

Eq. (43), to increase with the amplitude of the density perturbation. In

other words, the error in the divergence of velocity should be proportional

to the amplitude A of the initial temperature perturbation, at least for small

values of A. This is illustrated in figure 5.

5.2 Small 1D perturbations

In the case where the Reynolds number is finite but where the perturbation

in temperature is small (A << 1), the analytical resolution of the equa-

tions (1)-(3) can be conducted and the structure of the perturbation which

propagates is given by:

ρ′ = −ρ0

T0
T ′ (52)
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u′ =
1

RePr

∂T ′

∂x
(53)

p′ =
4

3R2
eP

2
r

∂2T ′

∂x2

(

Pr −
3

4

)

(54)

An interesting feature is that the pressure fluctuation should vanish in the

limit Pr = 3
4 . Figure 6 shows the error in Eq. (54) in the case Nx = 24,

a = 0.05, A = 0.01 and Re = 50. The initial condition is uniform for u

and P and the physical time simulated is large enough (t ≈ 160a/u0) so

that the values reported in the figure are asymptotic values. Both DivSC

and AdvSC are in complete agreement with the theory. In order to derive

the analytical relationship Eq. (54) between p′ and T ′, one makes use of

the constraint on the divergence of the velocity field which reduces to Eq.

(53) in the present case. Since this constraint is not properly imposed by

the algorithm DivSCρ, there is no reason to expect that this method gives

results in agreement with Eq. (54). Instead, the pressure fluctuation should

only depend on the initial temperature fluctuation (shape and amplitude).

Accordingly, figure 7 shows that the rms of pressure behaves like P 2
r when

scaled by 4
3R2

eP 2
r

(

∂2T ′

∂x2

)

rms
as in figure 6.

5.3 2D Random perturbations

To validate the results of section 3.2 with numerical tests, inviscid flow

simulations were performed on a 2D periodic domain. The analytical so-

lution dictates that the total momentum in each direction 〈ρui〉 and total

kinetic energy 〈K〉 = 1
2

〈

ρu2
i

〉

should be conserved in time. The domain is

0 ≤ x ≤ L, 0 ≤ y ≤ L and a 24x24 mesh is used. Solenoidal velocity fields are
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used as the initial condition together with random temperature fluctuations.

The initial mean kinetic energy is of order 1.5 while Trms ≈ 0.15 < T > at

t = 0. Figure 8 shows the relative error for the total kinetic energy 〈K0−K〉
〈K0〉

after an integration time of t = 0.125L/
√

〈K0〉. As expected from section

3.2, the error for the scheme DivSC does not behaves like ∆t3 because

of the violation in the conservation of kinetic energy related to the non-

linear equation of state Eq. (4). On the other hand, it appears that the

same scheme with the approximate equation of state (Eq. (41)) conserves

the global kinetic energy to the order ∆t3 as predicted in section 3.2. The

scheme DivSCρ violates the conservation of kinetic energy even if the ap-

proximate equation of state is used. This is because the divergence-free

constraint is not recovered in the inviscid limit when the Poisson equation,

Eq. (43), is used. Thus the pressure term is not kinetic energy conserving

for DivSCρ (see section 3.2, Eq. (35)) which was found unstable for the

present test case. The convective terms in the algorithm AdvSC violate the

conservation of kinetic energy.

5.4 Linear stability in a channel

To check the accuracy of the algorithm in the case where the physical prop-

erties vary in space and time through the temperature, the evolution of

low amplitude eigenmodes in laminar channel flow is simulated. The linear

stability problem in a channel flow between two isothermal walls with tem-

perature T1 = 1 − δT
2 and T2 = 1 + δT

2 was studied by Suslov & Paolucci

[16] under the low Mach number assumption. They found that the critical

Reynolds number increases with the parameter δT
2 . It is of order 40, 000

for δT
2 = 0.4, compared to 5, 772 in the isothermal case (δT = 0). In their
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analysis the dimensionless thermal conductivity and dynamic viscosity are

given by Sutherland’s law:

k(T ) = T 3/2 1 + Sk

T + Sk
µ(T ) = T 3/2 1 + Sµ

T + Sµ
(55)

where Sk = 0.648 and Sµ = 0.368 for air at Tref = 300K and normal

pressure. The molecular Prandtl number is 0.76. In the computation, the

length of the periodic domain in x is L = 2π/α, where α is the wave number

of the mode of interest. The initial condition consists of a small amplitude

(0.01%) random noise on u, v superimposed to the laminar solution of the

problem (Suslov & Paolucci [16]). A stretched grid is used in the normal

direction in order to capture the eigenvector accurately near the walls. The

wall normal velocity points are distributed according to a hyperbolic tangent

function (j = 0, 1, 2, ..., N):

yv(j) = yj+ 1

2

=
tanh

(

γ
(

2j
N − 1

))

tanh(γ)
(56)

A typical result is shown in figure 9. In this case the resolution is 24x100

with γ = 2 for the stretching parameter. The CFL number is fixed at 1.

The length of the domain is L = 2.4πh (α = 5
6

1
h) and the Reynolds number

is 45, 000, based on the maximum velocity and the channel half-height h.

The temperature ratio is T2

T1
= 2.33, i.e. δT

2 = 0.4. For these conditions,

the flow is linearly unstable (see Suslov & Paolucci [16]). The code predicts

a reasonable (5 % error) energy growth rate even if the number of grid

points is rather small in the direction normal to the wall. Note that a fairly

long time (10h/uτ ) is needed for the mode to settle in. Once the transition

phase is finished, the temperature and the two velocity component develop

with exactly the same rate, as dictated by linear stability theory. The four

29



schemes AdvSC, DivSC, DivSCapprox and DivSCρ give very similar results

(AdvSC shown). The success of DivSCρ in this test case is due to the

fact that only small temperature (density) perturbations are considered for

comparison with the linear theory. Thus the error in the time derivative of

density is negligible compared to the other space discretization errors (see

section 5.1) and the algorithm provides a reasonable answer.

The algorithms AdvSC and DivSC have been found to give consistent

results over a wide range of flow and numerical conditions (temperature ratio

from 1.01 to 2.33, grid size from 16x100 to 56x350). In order to establish the

qualitative nature of the algorithms, typical 2D plots of velocity, pressure

and temperature fluctuations are shown in figure 10 in which the complete

domain is shown. Figure 11 shows the iso-lines for u and T for the region

near the cold (bottom) wall of the channel. The conditions are the same as

for figure 9. The modal structure shown in figures 10 and 11 is in very good

agreement with previous theoretical findings [17].

5.5 Turbulent flow in a channel

Several computations of a turbulent flow in a channel with isothermal walls

have been performed. Results from DNS’s are presented first. Results from

coarse grid computations are then discussed in terms of stability.

5.5.1 Direct Numerical Simulations

Three Direct Numerical Simulations of a channel flow between two isother-

mal walls with temperatures T1 and T2 were performed. A few results are

shown in this section to illustrate the performance of the method proposed
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Case T2/T1 Rτ1 −Rτ2 Rb 103Cf1 103Cf2 Bq1 Bq2

A 1.01 182 − 185 2855 6.1 6.1 ≈ 0 ≈ 0

B 2 195 − 164 2810 7.0 5.0 −0.018 +0.016

C 4 211 − 151 2818 8.2 4.2 −0.041 +0.029

Table 4: Description of the DNS’s.

in sections 3.1 and 3.2. A more detailed analysis can be found in [18, 19].

The computations presented here were performed with AdvSC. Details of

the test cases adopted are given in table 4.

The indices ‘1’ and ‘2’ denote the cold and hot wall respectively. The

bulk Reynolds number Rb is based on the bulk velocity and the values

of density and dynamic viscosity corresponding to the bulk temperature.

The friction coefficients Cf are based on the mean density in the chan-

nel and the maximum velocity while the heat flux parameter is defined as

Bq = qw/ρwCpuτTw, where uτ is the friction velocity
√
τwρw, qw the heat

flux, Cp the constant-pressure specific heat and Tw the temperature at the

wall considered. The friction Reynolds number Rτ is based on the fric-

tion velocity. In Case A the temperature is almost uniform and the results

may be compared to a previous incompressible DNS performed by Kim et

al. [20, 21]. In Cases B-C one expects the temperature (density) varia-

tions to be large enough to modify the momentum balance through both

viscous and inviscid effects. In each case the domain size is (4πh,2h,4πh/3)

and the grid contains 120x100x120 cells. The mean flow is along the x-

direction. The statistics were obtained over a time period of order 10h/uτ ,

where uτ = uτ1+uτ2

2 is the mean friction velocity. The wall normal velocity

points are distributed according to a hyperbolic tangent function, Eq. (56).

31



The grid spacing is equivalent for all cases with ∆x+ ≈ 20, ∆y+
wall ≈ 0.3,

∆y+
max ≈ 9 and ∆z+ ≈ 6, where the superscript ‘+’ denotes the usual wall

scaling U+ = U/uτ and y+ = ρwuτy/µw. The molecular Prandtl number

is 0.76 and the dimensionless thermal conductivity and dynamic viscosity

are chosen to be proportional to 1/
√
T so that the Reynolds number near

the hot wall is not (too) small in comparison with its value near the cold

wall [18] -see table 4. It was shown in [19] that the ratio Gr/R
2
τ (Gr is the

Grashof number) is small compared to unity as long as the characteristic

length scale of the channel is of order 1 cm or less. This would be a rea-

sonable range for a true experiment with temperature differences typical of

a laboratory combustion chamber. Consequently, the buoyancy effects are

neglected in the present test cases.

Many experimental data support the validity of the Van Driest [22] trans-

formation for wall-bounded turbulent flows with variable density. This

transformation reads:

U+
V D =

∫ u+

o

(

ρ

ρw

)1/2

du+ =
1

κ
ln y+ + C (57)

Figure 12 shows that the present calculations also give support to the trans-

formation (57). When the classical incompressible coordinates are used in-

stead, a logarithmic region can hardly be observed. Note also that Case A

is in very good agreement with the law-of-the wall u+ = 2.5 ln y+ + 5.5,

as proposed in [20]. Regarding the velocity fluctuations and the Reynolds

stress −u′v′, this computation is also in very good agreement with the in-

compressible DNS data from Kim et al. [20] -see figure 13. Figure 14 shows a

very good qualitative agreement for the temperature fluctuations in Case A

when compared to a passive scalar calculation [21]. The slight quantitative
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difference is most likely due to the difference in Prandtl numbers (Pr = 0.76

for Case A, Pr = 0.71 in [21]). In each of the cases A-C, the streamwise

velocity-temperature correlation coefficient is very high near the walls (of

order 0.95, as in [21]). Subsequently the temperature field reveals the elon-

gated streaky structure of turbulence near the wall. This is illustrated for

Case A in figure 15 which shows iso-lines of u-velocity and temperature

fluctuations in a plane located approximately 5 wall units above the cold

wall. As already observed in previous studies, the temperature field is a

good marker for the bursting events, as shown in figure 16 for Case E. Of

interest also in this figure is the position of the iso-line T = (T1 + T2)/2.

It is clearly skewed towards the hot wall. Indeed, the Reynolds number in

the hot region being smaller than in the cold region -see table 4-, the lin-

ear sub-layer close to the top wall is thicker. As a consequence, the mean

temperature decreases faster near the top wall (y = +1) than it increases

near the bottom one (y = −1). The iso-lines of the w-velocity in figure 16

reveals the streamwise vortices responsible for the streaky structure shown

in figure 15.

5.5.2 Coarse grid computations

In algorithms of the type DivSCρ where a constant coefficient Poisson equa-

tion (43) is solved for the pressure field, the projection step was found to

be the most destabilizing part of the method and density ratios larger than

3 are difficult to compute [6]. In the present algorithms AdvSC, DivSC or

DivSCapprox, the exact constraint on the velocity field is enforced. Further

computations of the channel flow were performed to see whether the meth-

ods proposed are more stable. The numerical and physical parameters are

33



the same as before, except for the grid which is now 32x80x32. This mesh is

too coarse to reproduce all the scales that are dynamically important. How-

ever, its resolution makes it computationally inexpensive to use and it was

therefore considered suitable for investigating the stability characteristics of

the different algorithms. The temperature ratios considered were 1.01, 2, 4,

6, 8 and 10. The algorithm DivSCρ is found to be unstable for T2/T1 greater

than 4. However, the other algorithms AdvSC, DivSC and DivSCapprox

remain stable up to T2/T1 = 10. Larger temperature gradients were not con-

sidered since most of the low-Mach number flows have temperature ratio less

than 10 (piston engine, rocket engines, burners, etc ...). For cases T2/T1 ≥ 6,

the temperature field was clipped to values greater than the temperature im-

posed at the cold wall T1. Indeed, with this coarse grid, a large amount of

energy is present at the highest wave numbers (a common feature with more

realistic LES’s). For these scales the dispersion phenomenon is important

and may generate negative values of temperature if a non-positive scheme

is used. The clipping to values greater than the cold wall temperature is

justified since there is no physical mechanism which can decrease the tem-

perature below this point. It emulates a TVD or ENO scheme which should

be used for temperature. Since such techniques are well known but beyond

the scope of this study, we preferred to use the simple clipping approach

T > T1 when necessary. From the fine grid computations discussed earlier

in this section, the proposed algorithms are accurate enough to represent

the near wall complexity of turbulent flows with strong heat transfer. From

the coarse grid simulations, these algorithms can handle larger temperature

ratios than the methods used in most previous studies.
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6 Conclusion

Conservation of kinetic energy was specified as an analytical requirement for

a proper set of discrete equations in the zero-Mach number limit. The pro-

posed algorithms are fourth-order accurate in space and dissipation-free. A

key ingredient is a variable coefficient Poisson equation to solve for pressure.

This elliptic operator ensures that the proper constraint is applied to the ve-

locity field at each (sub-)step of the time integration procedure. Noticeably,

the divergence-free constraint is recovered in the inviscid limit as required

from the low-Mach number approximation to the Navier-Stokes equations.

It is shown that this feature is necessary to avoid violating conservation of

kinetic energy. A proper discretization of the non-linear terms is also pro-

posed that can handle any density variation and still remains conservative in

kinetic energy. The only violation in the kinetic energy conservation appears

in the projection step and is related to the non-linear state equation. A fully

conservative scheme is obtained if instead an approximate state equation is

used.
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: locus of ∆t Â. Upper half-planes: Fo = 0.1 and CFL varies (in-

crement 0.2). Bottom half-planes: CFL = 0.5 and Fo varies (increment

0.05).

43



1 10 100
Nit

10
−8

10
−6

10
−4

L 2(
S

N
it−

S
25

6)

−2

−1

PRESSURE

VELOCITY

Figure 2: L2-norm of the difference between the solution (u-velocity or pres-

sure) and the ‘exact’ solution as a function of the number of iterations per-

formed to compute the given time interval. ◦ : DivSC; • : DivSCapprox; :

AdvSC

44



Description Sketch Objectives

section 5.1

- 1D

- inviscid

- large fluctuations

T = T(x,t)

u uniform ?

P uniform ?

- constant pressure

section 5.2

- 1D

- viscous

- small fluctuations

T = T(x,t)

u = u(T) ?

P = P(T) ?

- 1D wave structure

- Prandtl number effect

section 5.3

- 2D

- inviscid

- non-linear

u, v, T chosen 
randomly at t=0

violation in
kinetic energy
conservation ?

periodic boundary

periodic boundary

p
e

ri
o

d
ic

 b
o

u
n

d
a

ry

p
e

ri
o

d
ic

 b
o

u
n

d
a

ry

- kinetic energy conser-

vation

section 5.4

- 2D

- viscous

- linear

u, v, T chosen 
randomly at t=0

kinetic energy
growth rate ?

(linear stability)

no−slip boundary − Temperature T1

p
e

ri
o

d
ic

 b
o

u
n

d
a

ry

p
e

ri
o

d
ic

 b
o

u
n

d
a

ry

no−slip boundary − Temperature T2

- most unstable mode

selection

- modal structure

- growth rate

section 5.5

- 3D

- viscous

- non-linear

&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&

CCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCC

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

T2 > T1

!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!

T1

- DNS capability

- higher density ratios

on coarse grid

Figure 3: Basic test cases for the low-Mach number algorithms.

45



10
−2

10
−1

Grid Spacing

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
rm

s /
 ρ

0u
02

Figure 4: Root-mean-square of pressure as a function of the grid spacing at

time t = 20a/u0. : Prms ∝ ∆x4; ◦ : DivSC; :AdvSC; △ :DivSCρ

46



10
−2

10
−1

10
0

Pulse Amplitude

10
−1

10
0

10
1

di
v(

u)
m

ax

Figure 5: Maximum of divergence du
dx as a function of the amplitude A of

the temperature perturbation. : du
dx ∝ A; △ :DivSCρ

47



−1.0 0.0 1.0 2.0
Pr − 3/4

0.0

0.5

1.0

1.5

2.0

P
rm

s /
 P

rm
s,

th
eo

re
tic

al

Figure 6: Root-mean-square of pressure as a function of the Prandtl number.

Prms is non-dimensionalized by its theoretical value as a function of T ′, viz.

4
3R2

eP 2
r

(

∂2T ′

∂x2

)

rms
. Note that the abscissa is Pr − 3/4. : exact solution

Eq. (54); ◦ :DivSC; :AdvSC

48



10
0

10
1

Pr

10
1

10
2

10
3

10
4

P
rm

s /
 P

rm
s,

th
eo

re
tic

al

Figure 7: Root-mean-square of pressure as a function of the Prandtl number.

Prms is non-dimensionalized by its theoretical value as a function of T ′, viz.

4
3R2

eP 2
r

(

∂2T ′

∂x2

)

rms
. The abscissa is Pr. :Prms ∝ P 2

r ; △ :DivSCρ

49



10
−2

10
−1

CFL

10
−5

10
−4

10
−3

10
−2

10
−1

<
K

0 
−

 K
>

 / 
<

K
0>

Figure 8: Kinetic energy conservation error (〈K0 −K〉 / 〈K0〉) as a function

of the Courant number. : ∆t3 behavior; : ∆t behavior; ◦ :

DivSC; • : DivSCapprox.

50



0 10 20 30 40
Time

10
−12

10
−10

10
−8

10
−6

10
−4

Figure 9: Time evolution of the global energy of the fluctuations in the

computational domain. : linear stability theory (Suslov & Paolucci);

◦ : < u′2 >; △ : < v′2 >; : < T ′2 >. Unit of time is h/uτ .

51



x

y

1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

x

y

1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

x

y

1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

x

y

1 2 3 4 5 6 7
-1

-0.5

0

0.5

1
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is from left to right. Top: Contours of u+-velocity fluctuations: the range

is [−2,+6], the increment is 1, dashed contours represent negative values.

Bottom: Contours of temperature fluctuations (non-dimensionalized by
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Figure 16: DNS of a channel flow with T2/T1 = 4 (Case C). Typical z − y
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is 0.4, dashed contours represent negative values. Bottom: Contours of

temperature (non-dimensionalized by T1): the range is [1,4], the increment

is 0.15, dashed contours represent values smaller that (T2 + T1)/2.
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