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Stefan Streif1, Didier Henrion2,3,4 and Rolf Findeisen1
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Abstract

Probabilistic and set-based methods are two approaches for model (in)validation,
parameter and state estimation. Both classes of methods use different types of data,
i.e. deterministic or probabilistic data, which allow different statements and appli-
cations. Ideally, however, all available data should be used in estimation and model
invalidation methods. This paper presents an estimation and model (in)validation
framework combining set-based and probabilistically uncertain data for polynomial
continuous-time systems. In particular, uncertain data on the moments and the sup-
port is used without the need to make explicit assumptions on the type of probability
densities. The paper derives pointwise-in-time outer approximations of the moments
of the probability densities associated with the states and parameters of the system.
These approximations can be interpreted as guaranteed confidence intervals for the
moment estimates. Furthermore, guaranteed bounds on the probability masses on
subsets are derived and allow an estimation of the unknown probability densities.
To calculate the estimates, the dynamics of the probability densities of the state tra-
jectories are found by occupation measures of the nonlinear dynamics. This allows
the construction of an infinite-dimensional linear program which incorporates the
set- and moment-based data. This linear program is relaxed by a hierarchy of LMI
problems providing, as shown elsewhere, an almost uniformly convergent sequence
of outer approximations of the estimated sets. The approach is demonstrated with
numerical examples.

1 Introduction

State and parameter estimation as well as model (in)validation are frequently used in many
applications with different requirements. Often different kind of data, i.e. probabilistic
or deterministic, are available providing different insights into the process. The determi-
nation of the set of all parameters consistent with measurements or proving nonexistence
of consistent parameters allows for guaranteed model invalidation e.g. in fault detection
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and isolation [21]. For processes such as crystallization [8, 16] or cell populations [29],
however, not only the estimation of consistent parameters, but also the estimation of
probability densities is important. Uncertain estimates of the moments of a probability
densities can often be determined based on samples e.g. from a number of similar ex-
periments (see references in [7]). Ideally, an estimation method should allow all available
information and associated uncertainties to be taken into account, i.e. both deterministic
and probabilistic uncertainties.

Set-based estimation approaches employing a bounded-error uncertainty description pro-
vide guaranteed yes/no answers on model invalidity and outer or inner approximations of
consistent parameter sets. Typically, probability densities and data are not used in set-
based estimation approaches and only the support of the uncertain variables is considered.
Probabilistic estimation methods take data on the moments of probability densities into
account and allow the estimation of probability densities and therefore probabilistic state-
ments on model validity.

This work presents initial steps toward a combination of set- and moment-based data into
a consistent framework for estimation and model (in)validation of nonlinear (polynomial),
continuous-time systems. To the best of our knowledge, the presented framework has not
been considered in this context before. However, numerous other methods addressing
similar problems exist in the literature and several of them will be reviewed briefly below.
Due to space limitations, an exhaustive literature review is beyond the scope of this paper.
Further references and a literature review on model invalidation methods and set-based
estimation methods can be found, e.g., in [25, 10].

Several methods for set-based estimation and model invalidation exist, such as set-member-
ship methods [17], relaxation based approaches [25, 4] (and references therein), robust
and H∞ control where model validation methods have been studied extensively assum-
ing structured norm-bounded uncertainty in a usually linear systems setting (see [28, 24]
and references therein). Funnels for consistent state trajectories (but not moments) were
proposed in [26]. Barrier certificates approaches using sum-of-squares restrictions [20] are
similar to the LMI approach proposed here; to the best of our knowledge, however, the
existence of barrier certificates is not guaranteed. The work by [5, 6] does not explicitly
consider dynamical systems, but it provide methods and randomized and deterministic al-
gorithms to use statistical assumptions within set-based estimation. By this, the set-based
estimates can be improved at the expense of an allowed probabilistic risk.

[23] consider the stochastic dynamics of the state variables and the state density is modeled
via its moments. In contrast, the initial setup considered in this paper is not stochastic in
the sense that the time evolution of the moments is modeled via the Liouville equation.
This equation reformulates nonlinear ordinary differential equation (ODE), with the help
of occupation measures, into a linear partial differential equation to describe the time
evolution of the density of the solution of the ODE. This does not lead to a moment
enclosure problem as in [23] and allows – due to the convex relaxations employed in this
work – deriving outer approximations of the moments.

Uncertainties in the data, including data on the moments, have been considered in robust
optimization, see [7]. A common approach is to transform risk measures or probabilistic
uncertainties into deterministic uncertainty sets [18]. Bounds on moments using convex

2



optimization and LMIs have also been presented by [27, 2, 3].

An approach to probabilistic model (in)validation using probability metrics has been
presented by [11, 10], which can be used to compare probabilistic model predictions with
data. As in our work, Liouville’s equation is used to propagate the uncertainties. However,
convex relaxations allowing the outer approximations of moments were not considered.

Many probabilistic estimation methods require (implicitly or explicitly) assumptions on
the type of probability densities of the estimates. Parameter and state estimation from a
system identification perspective [15] aims at validations through a statistical correlation
analysis of the residuals. Randomized algorithms employ randomness in the simulation
of particles and use a Bayes approach for estimation. Well-known techniques are Markov-
Chain-Monte-Carlo approaches and particle filters for optimal and suboptimal Bayesian
algorithms for nonlinear/non-Gaussian tracking problems. For a review see [1].

Polynomial Chaos has been used for parameter estimation [9, 13], but usually requires
knowledge of the probability densities of the uncertainties. These methods allow the
transformation of the stochasticity in the parameters or initial conditions by a finite
series of orthogonal polynomials into deterministic equations enabling an easy analysis of
the moments of the state trajectory obtained by numeric integration.

The initial setup of the presented framework is set-based and has been used in [25] for
the estimation of consistent parameter sets and model invalidation. In this work, the
framework is extended such that probabilistic, moment and set-based uncertainties and
data can be considered. This allows the outer approximation of the moments and of
the support of the probability densities of the parameters, initial conditions or state
trajectories pointwise-in-time, without explicit assumptions on the underlying probability
density and without numerical integration or approximation by discrete-time models.
Furthermore, bounds on the probability mass on a subset can be given, which can be used
to approximate the shape of the probability densities of the parameters or for probabilistic
model validation. To reach these goals, converging hierarchies of LMI problems are derived
by reformulating the nonlinear dynamics in terms of occupation measures as described in
[12, 25, 14].

The remainder of this contribution is structured as follows. Sec. 2 defines the dynamical
model and the constraints and uncertainties imposed by the probabilistic and set-based
measurements and additional a-priori information, and it states the considered problems.
Sec. 3 formally introduces the framework of occupation measures and derives outer ap-
proximations of pointwise-in-time moments. Those outer approximations define the im-
precision or confidence in the moment estimates. Furthermore, lower and upper bounds
on the probability mass on a subset are derived. Small example are used in Sec. 3 to
illustrate the results. The approach and future research directions are discussed in Sec. 4.

Notation.

nx denotes dimension of a vector x. Subscripts of vectors and matrices denote the cor-
responding row and column elements. Sets and function spaces are denoted by capital,
calligraphic letters, e.g. X . M(A) denotes the set of finite Borel measures supported on
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the set A, which can be interpreted as elements of the dual space C(A)′, i.e. as bounded
linear functionals acting on the set of continuous functions C(A). P (A) denotes the set of
probability measures on A, i.e. those measures µ ofM(A) which are nonnegative and nor-
malized to µ(A) = 1. Themth moment (m ∈ N) of µ(x) ∈ P (X ) supported on the set X is
denoted by ν(m)(x) :=

∫
X
xmµ(dx). All moments up to degree d are denoted by ν(≤d). We

define the probability mass on a set X̂ ⊆ X by F (X̂ ) :=
∫
X̂
µ(dx) ≤ 1. Pointwise-in-time

probability measures are denoted by µk(dx) (and their moments by ν
(m)
k ), and occupation

measures on the time-interval [tk, tk+1] are denoted by µk,k+1(dt, dx) (and their moments

by ν
(m)
k,k+1).

2 Problem Setup

2.1 Dynamical System

Consider continuous-time, nonlinear systems of the following form

ẋ(t) = f
(
t, x(t)

)
, x(0) = x0. (1)

The states and initial conditions are denoted by x ∈ R
nx and x0 ∈ R

nx , respectively.
Time is denoted by t and is restricted to the interval [0, 1], which can be achieved by a
suitable time-scaling of the dynamics.

We assume the vector fields f to be polynomial maps. Time-invariant variables, i.e.
parameters, can be accounted for in (1) by adding trivial dynamics ẋi = 0 for some
i ∈ {1, . . . , nx}. Note that we do not explicitly consider output maps.

We assume set-based and moment-based uncertainty descriptions of the variables, i.e.
parameters, initial conditions and measurements. With these data and using the nonlin-
ear continuous-time model (1), outer approximations of the consistent moments and the
support of the variables are estimated pointwise-in-time. In Sec. 2.3 we formally define
consistency and state the considered problems.

2.2 Uncertainty Descriptions

The set-based uncertainties define the support of the variables, whereas the moment-based
probabilistic uncertainties constrain the probability measures. We assume that set-based
uncertainties on the variables x(t) at time tk are given by mx polynomial inequalities:

Xk :=
{
x(tk) : gi(tk, x(tk)) ≥ 0, i = 1, . . . ,mx

}
⊂ R

nx .

Eq. (2.2) can be used to represent constraints on the initial conditions x0 (including the
parameters) and measurements of states (or polynomial combinations thereof) at time
points tk, k = 1, . . . ,mt.

In a similar manner to (2.2), we define a set X such that x(t) ∈ X ⊂ R
nx , ∀t ∈ [0, 1] and

such that Xk ⊆ X .
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Constraints on the moments (up to order d) of the probability measure µk at time tk are
given by mν polynomial inequalities:

Mk :=
{
ν
(≤d)
k : hi

(
ν
(≤d)
k

)
≥ 0, i = 1, . . . ,mν

}
⊂ R

nν .

As above for the set-based uncertainties, Eq. (2.2) can be used to represent constraints
on the moments of the initial conditions x0 (including the parameters), the states or the
measurements pointwise-in-time.

2.3 Problem Statement

For general purposes, we define the following consistency set using the nonlinear dynamics
(1), the set-based (2.2) and the probabilistic uncertainties (2.2):

Definition 1 (Consistency set): The set of consistent values of x(tk) and ν
(≤d)
k at

time-point tk is given by:

C∗
k :=

{ (
x(tk), ν

(≤d)
k

)
: ∃

(
x(t), µ(t, x(t))

)
∀t ∈ [0, 1]

such that x(tl) ∈ Xl, l = 0, . . . ,mt, and

ν
(≤d)
l ∈ Ml, l = 0, . . . ,mt, and

x(t)=x0+

∫ t

0

f
(
t, x(t)

)
dt ∈ X ∀t∈ [0, 1]

}
⊂ R

nx+nν . (2)

In particular, the set of consistent initial conditions is given by the orthogonal projection
of C∗

0 onto x0, i.e. ⊥x0 C∗
0 . Furthermore, the consistent pointwise-in-time moments of

x(tk) are given by the projection ⊥
ν
(≤d)
k

C∗
k.

Based on Def. 1, we state the problems considered in this paper. See also Fig. 1 for
illustrations.

The first problem aims to estimate the consistent sets of moments of the parameters and
states based on the measurement data and uncertainties (2.2)–(2.2) under consideration
of the dynamics (1).

Problem 1 (Pointwise-in-time estimation of moments): Find consistent pointwise-
in-time moments C∗

0 of the consistent initial conditions (including parameters) and C∗
k , tk ∈

[0, 1] of the states.

Due to the possible uncertainties in the data, the results are sets of consistent moments,
where the size of the set reflects the confidence of the moment estimates. Note that the
pointwise-in-time estimation of the consistent sets of the initial conditions and parameters
has been treated in [25]; however, without probabilistic data or moment constraints.

Set-based approaches can be used to provide model invalidity certificates, i.e. yes/no an-
swers whether a model is invalid or not. In case a model is valid, i.e. there exist consistent
parameter values, then it is often of interest to quantify probabilistic model validity which
is related to the shape of probability density [10, 11]. We therefore consider the following
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problem:

Problem 2 (Estimation of probability measure): Determine lower and upper

bounds (F and F , respectively) on the probability mass F over the set X̂0 ⊆ X0.

Prob. 2 allows probabilistic model validation under consideration of set-based and moment-
based measurement data: if F is small, then the (cumulative) probability over the subset

X̂0 for the constraints (2.2) and (2.2) to be satisfied is small. The comparison of the prob-

ability mass of different subsets X̂0,1, . . . , X̂0,ms
then allows quantifying the likeliness that

a random parameter sample from this set satisfies the moment- and set-based constraints.
The subset X̂0 could be obtained from a partitioning of the set X0 as shown in Fig. 1.
Furthermore, it allows the approximation of the probability density, cf. Fig. 1.

Note that in Prob. 2 bounds on the 0th-order moment (i.e., the probability mass) are
derived for a given subset, whereas in Prob. 1 the consistent set of state, parameter and
moments are determined based on measurements.

In Prob. 1 and 2, the desired estimates are difficult to determine due to the nonlinearities
of the dynamics and other constraints, which results in nonconvexity of the sets. In the
next section, we use occupation measures and convex relaxations to account for the time-
continuous dynamics and this allows the efficient computation of outer approximations of
the estimates.

Note that in this work, we make the following assumption:

Assumption 1 (Bounded support): The probability measure µ(t, x) is supported on
[0, 1]×X , i.e. µ(t, x) ∈ P ([0, 1]×X ).

3 Outer Approximation of Moments and Estimation

of Probability Mass

In the first subsection an intuitive and condensed explanation of the method and concepts
of the underlying mathematical framework is presented. All mathematical details and
proofs are found in [12, 25, 14] and in the references therein. In the subsequent subsections,
Prob. 1 and 2 are addressed and the results are illustrated for simple examples.

3.1 Constrained Uncertainty Propagation in Nonlinear Continuous-
Time Systems

The approach can be summarized as follows. The original deterministic nonlinear dynam-
ics, given by (1), is reformulated in the space of nonnegative measures. To do so, so-called
occupation measures µ0,1(dt, dx) are introduced. These probability measures encode the
nonlinear dynamics on the time interval [0, 1] and allow the consideration of uncertainties
by averaging over space and time which also eliminates the nonlinear expressions. Fur-
thermore, they are linked by pointwise-in-time probability measures µ0(dx) and µ1(dx)
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via Liouville’s equation:

∫

X

∫ 1

0

(
∂v

∂t
(t, x) +∇xv(t, x)f(t, x)

)
µ0,1(dt, dx)

=

∫

X

v(1, x)µ1(dx)−

∫

X

v(0, x)µ0(dx) (3)

which allows deriving linear constraints as shown below. Here, Liouville’s equation is
written in its variational form, for all monomials v(t, x) = tαxβ. Note that the mono-
mials are a dense basis for the set of continuous functions on compact sets. Liouville’s
equation is a linear partial differential equation which accounts for the time-evolution of
probability measures ruled by the nonlinear continuous-time dynamics. Note that if the
initial conditions are certain (i.e. points for fixed t and hence a Dirac probability distri-
bution), Liouville’s equation describes the evolution of the test function v(t, x) along the
trajectory.

This reformulation in terms of occupation measures results in a system of a finite number
of linear constraints in an infinite-dimensional space, which links all the moments ν

(∞)
0,1

of the occupation measures µ0,1(dt, dx) and the moments ν
(∞)
j of the measure µj(dx)

(j = 0, 1), respectively. In case of the probability measure µ0(dx), the moments are
related to the test functions v(t, x) by

ν
(m)
0 :=

∫

X

xm
0 µ0(dx) with v(t, x) = t0xm, (4)

and similar for the other probability measures. Let us denote the resulting infinite-
dimensional linear system of equations by Ã(ν

(∞)
0,1 , ν

(∞)
0 , ν

(∞)
1 ) = b̃. The obtained set

of equations can be extended by equations constraining the support of the probability
measures (cf. set-based uncertainties (2.2)), and by enforcing constraints on the moments
of the probability measures thereby including data on the moments (cf. probabilistic
uncertainties (2.2)). For a measure to be supported on a semi-algebraic set, the infinite-

dimensional vectors of moments ν
(∞)
0 , ν

(∞)
1 and ν

(∞)
0,1 have to fulfill necessary and sufficient

conditions. These are formulated by infinite-dimensional convex linear matrix inequalities
(LMI) called moment matrices that we express by M(ν

(∞)
0 ) � 0 to guarantee positivity of

the measures. Furthermore, the matrices necessary to account for the support are called
localizing matrices and are denoted by L(giν

(∞)
0 ) � 0, where the gi are polynomials. The

matrices M are symmetric, square matrices whose rows and columns are indexed by the
monomials v(t, x) (cf. Eq. (4)). The matrices L are similar to M , but their elements are
additionally multiplied by the polynomial gi.

The resulting infinite-dimensional decision problem can be solved by a converging hierar-
chy of semidefinite relaxations or sum-of-squares restrictions. This then allows determin-
ing an outer approximation of the moments and initial conditions (cf. Prob. 1 and 2). If
we truncate the infinite sequence of moments to moments of degree up to d, we obtain a
finite-dimensional linear system of equations that we denote by A(ν

(≤d)
0,1 , ν

(≤d)
0 , ν

(≤d)
1 ) = b,

as well as truncated finite-dimensional LMI constraintsM(ν
(≤d)
0 ) � 0 and L(giν

(≤dgi )
0 ) � 0,

where dgi := d−degr(gi). Note that these constraints are necessary for the corresponding
measures to be supported on a semi-algebraic set. By construction, minimization (resp.
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maximization) of an entry of the vectors ν
(≤d)
0 or ν

(≤d)
1 on the resulting finite-dimensional

convex set yields a valid lower (resp. upper) bound on the corresponding moment. When
increasing the truncation degree d (also called relaxation order), we obtain a monoton-
ically nondecreasing (resp. nonincreasing) sequence of lower (resp. upper) bounds that
converge to the exact value of the moment consistent with the uncertain set-based and
moment-based measurement data.

To address Prob. 1 and 2 and to recover local, non-averaged information in time and
space, a discretization is needed, which still allows guaranteed outer approximations.
This is explained in the following subsections.

3.2 Estimation of Moments Pointwise-in-time

As in [25] we split the global occupation measure time-wise into local occupation measures
µk,k+1(dx) corresponding to time intervals [tk, tk+1], k = 0, 1, . . . ,mt − 1. For the upper

bound on a moment ν̃ ∈ {ν
(≤d)
0 , . . . , ν

(≤d)
mt }, this then gives the following moment relaxation

of order d:

maximize ν̃

subject to A
(
ν
(≤d)
k,k+1, ν

(≤d)
k , ν

(≤d)
k+1

)
= bk,k+1, k = 0, . . . ,mt − 1,

M
(
ν
(≤d)
k,k+1

)
� 0, k = 0, . . . ,mt − 1,

M
(
ν
(≤d)
k

)
� 0, k = 0, . . . ,mt,

L
(
giν

(≤dg,i)
k

)
� 0, i = 0, . . .mx, k = 0, . . . ,mt,

L
(
hiν

(≤dh,i)

k

)
� 0, i = 0, . . .mν , k = 0, . . . ,mt,

(5)

where gi, i = 1, . . . ,mx and hi, i = 1, . . . ,mν are polynomials from (2.2) and (2.2),
respectively. The matrices M and L are the truncated moment and localizing matrices,
respectively, depending linearly on moment vectors of the respective degrees.

3.2.1 Example 1.

Consider the following bilinear example

ẋ1 = −x1x2 (6a)

ẋ2 = 0 (6b)

with certain, fixed initial conditions x1(0) = 0.5 (represented by a Dirac probability
measure), and probabilistically uncertain parameter x2 uniformly distributed on [0, 1].
This example was chosen because an analytic solution is available which allows an easy
comparison with the computational results. The analytic solution is:

x1(t) = x1(t0) exp(−x2t), (7a)

ν(1) (x1(t)) = x1(t0)
1− exp(−t)

t
, (7b)

ν(2) (x1(t)) = x1(t0)
21− exp(−2t)

2t
. (7c)
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We estimated the moments pointwise-in-time at t = 0, 0.1, . . . , 1.0. The results are pre-
sented in Fig. 2 and compared it with the analytic solution (7). As can be seen, the
moment estimates are very tight already for small relaxation orders.

3.3 Estimation of Probability Mass

This section addresses Prob. 2, which is approached similar as the pointwise-in-time es-
timations of the moments. However, instead of splitting the occupation measure in time,
the measure of interest (e.g. the initial measure µ0) is split in space, which gives differ-
ent measures supported on the different subdomains and which are linked by Liouville’s
equation. To estimate the lower and upper bounds on the probability masses over the
subdomains, the 0th moment of the corresponding measure is minimized and maximized,
respectively. As above, the infinite-dimensional decision problem can be relaxed by a
converging hierarchy of semidefinite programs, cf. Eq. (5). The results are illustrated in
the following example.

3.3.1 Example 2.

Consider the example

ẋ1 = −x3
1 + x1x2 (8a)

ẋ2 = −x2
2 − x1x2x3 + 1 (8b)

ẋ3 = 0. (8c)

The initial condition of x2 was assumed fixed (x2(0) = 0.5), and the initial condition of
x1 and of parameter x3 were assumed to be distributed according to Beta distributions
(see Fig. 3b):

x1(0) ∼ Beta(20, 15),

x3(0) ∼ Beta(5, 2).

Using these distributions we determined the first 10 raw moments for the two states at
t1 = 0.5 from 10,000 Monte Carlo simulations and by considering an uncertainty of 1%
for the moments. The moments determined from the samples were:

ν(≤10) (x1(0.5)) = [ 0.6416 0.4156 0.2716 0.1790 0.1188
0.0795 0.0535 0.0362 0.0247 0.0169 ]T,

ν(≤10) (x2(0.5)) = [ 0.6848 0.4695 0.3222 0.2214 0.1523
0.1049 0.0723 0.0499 0.0345 0.0239 ]T.

We then partitioned the set [0, 1]× [0, 1] into squares of length 1/15 and determined the
lower and upper bound on the probability masses on the subsets. The upper bounds are
shown in Fig. 3(a), whereas Fig. 3(b) shows the probabiliy mass of the original distribu-
tions. The results demonstrate that the shape of the probability measure as well as the
location of its peak can be approximated using the proposed approach.
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4 Conclusion

This work proposes a combination of set-based and probabilistic uncertainties for the es-
timation of the support and the moments pointwise-in-time. In addition, an approach is
presented to estimate the probability masses over a subset, which then can be used to
approximate the underlying probability distribution and to provide statements on prob-
abilistic model validity.

Due to limitations of state-of-the-art SDP solvers and the high workload of LMIs, only
small systems can be treated currently, since the complexity grows polynomially in the
number of variables and the relaxation order. However, semi-definite programming and
sum-of-squares restrictions is an active research field and computational and algorithmic
improvements exists (e.g. [19, 22]) and are likely to be implemented in solvers in the
future.

The work provides several directions for future research. For safety and estimation pur-
poses, it might be required to have explicitly time-dependent outer approximations or
funnels of the moment and state trajectories. This is particularly challenging for the
moments, since these do not explicitly appear in the decision problems. Another impor-
tant line of research is the consideration of time-varying disturbances. Both extensions
are beyond the scope of this article, but interesting future research direction with pos-
sible applications for optimal control and estimation of systems governed by stochastic
differential equations.
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Figure 1: Illustration of notation, the problems and the approach. In the lower part
of the figure, the pointwise-in-time probability densities µk (and their support Xk) are
shown by the light-gray shaded areas at tk, k = 0, 1, 2. The dotted line shows a sample
trajectory starting at x0 and ending at x(t2), and the dark gray shaded area shows the
set of possible trajectories. In the upper part, the lower bounds F and upper bounds F
on the probability mass over the subsets X̂0,1, . . . , X̂0,6 ⊂ X0 are shown by the gray boxes.
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Figure 2: Estimation of moments for example 1. The pointwise-in-time estimates of the
second moment ν(2) of x2(t) and the comparison with the analytic solution (black lines)
for relaxation order d = 3 are shown. The green and red lines correspond to the lower
and upper bound, respectively. The pointwise-in-time estimates were connected by lines
to guide the eye. Estimates for the first moment are not shown but the estimates are even
tighter.
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Figure 3: Probabilistic model validation. Upper bounds on the probability mass on the in-
dicated box-shaped subsets determined by the proposed approach (a) and the distribution
of samples used for the Monte-Carlo simulations for the generation of data (b).
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