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Abstract—We investigate the strategic interaction between
a fixed number of users sharing the capacity of a processor
operating with relative priorities. Each user chooses a payment,
which corresponds to his priority level, and submits jobs of
variable sizes according to a stochastic process. These jobs have
to be completed before some user-specific deadline. They are
executed on the processor and receive a share of the capacity
that is proportional to the priority level. The users’ goal is to
choose priority levels so as to minimize their own payment,
while guaranteeing that their jobs meet their deadlines. Given
the complexity of the underlying queueing model, we develop
an approximation based on heavy-traffic. We characterize the
solution of the game under the heavy-traffic assumption and we
numerically investigate the accuracy of the approximation. Our
results show that the approximate solution captures accurately
the structure of the equilibrium in the original game.

I. INTRODUCTION

We are interested in studying the equilibria that arises in
queueing games where a common resource is shared among
multiple concurrent users. The study of strategic behavior in
queueing systems has a long history and there is by now a
broad literature, cf. [10] and [16] for monographs. A particular
problem who has received a lot of attention deals with the
strategic behavior of users in parallel servers, see for example
[11], [5], [3]. In recent years, motivated by the rise of paid
resource sharing systems like in cloud computing, researchers
have started to investigate pricing schemes, where capacity of
the server is shared simultaneously by all jobs present in the
system, see for example [12] or [19]. For the case in which
the the underlying queueing model has no priorities we refer
to [4] and [21].

We are interested in studying the equilibria in a more
complex scenario, where users may arrive at random and
leave the system after getting service, and when the capacity
allocated to each user is a function of the prices. More pre-
cisely, we assume that the capacity is shared according to the
Discriminatory Processor Sharing (DPS) discipline introduced
in [15], which is a multi-class generalization of the egalitarian
Processor Sharing queue. The DPS discipline is a versatile
model that captures the essential features of a system that
implements service differentiation, see [1] for a recent survey.
As we will see later in Section II the analysis of time-
sharing queueing models with relative priorities like DPS is
extremely challenging, and as a consequence results are scarce.
In the DPS model, each user chooses a priority level, and the
processor capacity is shared in proportion to the priority level

of all jobs being executed. The higher the priority level chosen
by the user, the higher the cost he will have to pay for the
execution of his job on the processor. Each users submits jobs
of variable sizes according to a stochastic process. All jobs
in the system receive simultaneous service with a share of the
capacity, determined by the DPS rule, that is proportional to the
priority level of the user. The users’ goal is to choose priority
levels so as to minimize their own payment, while guaranteeing
that the probability of their jobs not meeting their deadlines is
below some threshold.

A central difficulty in the analysis of the equilibria of this
game comes from the absence of a closed-form expression for
the mean processing times of the jobs in a DPS system. For
example, the mean unconditional sojourn time in the system
is only known in the case of two classes with exponentially
distributed service requirements. It is thus not surprising that
results on strategic behavior under DPS are scarce. For ex-
ample, in [13] the authors consider two types of applications
in a DPS queue that compete to be served and they analyze
how optimal prices can be found. A more recent work is [20],
where the authors define a game for the DPS queue where each
user seeks to minimize the sum of the expected processing cost
and payment. Given the difficulty in analyzing the model, the
authors propose a heavy-traffic approximation of the problem.

We follow a similar approach to [20] and consider an
approximate approach using results from heavy-traffic theory.
More precisely, we use results from [9] to obtain tractable
expressions for the mean response time in the system. Even
though of approximate nature, we believe that the heavy-
traffic approach allows to derive interesting insights into the
performance of the system. Our main contribution is to provide
a complete characterization of the solution to the problem
using the heavy-traffic approximation. In particular we show
that classes can be ordered in a decreasing order with re-
spect to the ratio between the mean size requirement and
their constraints on the response time. We characterize the
sufficient and necessary condition for the game to have a Nash
equilibrium, and then show that this equilibrium is unique and
fully characterize it. Interestingly, we show that in equilibrium,
the prices that users pay decrease as the ratio above mentioned
decreases. We then explain how the heavy-traffic solution can
be used to obtain an approximate solution to the original
problem. The numerical experiments illustrate that when the
various classes have a similar ratio between the mean size and
response time constraint, then the heavy-traffic approximation
predicts satisfactorily the outcome (both in terms of equilib-



2

rium weights and performance) of the original game. However,
an interesting situation arises when the disparity of the users
increases or when the original game becomes unfeasible far
from the saturation point. In this case, the error in predicting
the equilibrium weights can be very significant, but in spite of
this, the heavy-traffic approximation captures very accurately
the structure of the equilibrium. Despite its limitations, we
consider that our paper will represent a step further in the
difficult area of pricing with time-sharing systems, even though
more research is needed in order to enhance the understanding
of resource-sharing games.

The rest of the paper is organized as follows. In Section II
we describe the model. We present the game with constraints
on the mean response time in Section III. In Section IV we
analyse the game for the heavy-traffic regime and in Section V
we study the game for an arbitrary load of the system. We
present the numerical experiments and discuss the accuracy of
our approximation in Section VI.

II. GAME DESCRIPTION

Consider a game in which a single server of unit capacity is
shared among R classes (or users). We assume that the arrival
process of jobs of each class i is Poisson with rate λi and that
the service requirements of jobs are i.i.d. and have an arbitrary
distribution with mean E(Bi) and second moment E

(

B2
i

)

. For
the case of exponential service time distribution, we will use
the notation E(Bi) = µ−1

i and E
(

B2
i

)

= 2/µ2
i . We define

the total incoming traffic of the system by λ =
∑R

i=1 λi. Let
ρi = λiE(Bi) be the load of class i and the total load of the

system be ρ =
∑R

i=1 ρi.

The processing capacity of the server is shared amongst
jobs according to the DPS discipline, that is, all jobs present
in the system are served simultaneously at rates controlled by a
vector of weights {gi > 0; i = 1, . . . , R}. If there are Ni jobs
of class i present in the system, then class-i jobs are served at
rate

ri(N1, . . . , NR) =
gi

∑R
j=1 gjNj

. (1)

When all the weights are equal, DPS is equivalent to the
standard PS discipline. By changing the weights, one can
effectively control the instantaneous service rates of different
job classes. For example, by setting the weight of a class
close to infinity, one can give preemptive priority to this class.
The possibility of providing different service rates to users
of various classes makes DPS an appropriate model to study
the performance of heterogeneous time-sharing systems. We
note that a direct consequence of (1) is that the service rate
every class gets for a vector θ(g1, . . . , gR) is independent of
the common factor θ.

We describe our game formulation in Subsection II-B. Prior
to that, we briefly mention the main results on DPS that we
need in this paper.

A. Main results on DPS

We denote by Ti(g; ρ) the random variable corresponding
to the response time of a class-i job in a DPS queue for
the vector of weights of g = (g1, . . . , gR) when the load in
the system is ρ < 1. The mean response time is denoted by
T i(g; ρ) = E(Ti(g; ρ)).

In a seminal paper, Fayolle et al. proved that for exponen-
tial service time distributions, the mean response time is the
solution of a system of equations. For completeness we state
their result:

Proposition 1 ([7]): In the case of exponentially dis-
tributed required service times, the unconditional average
response times satisfy the following linear system of equations:

T k(g; ρ)



1−
R
∑

j=1

λjgj
µjgj + µkgk



−
R
∑

j=1

λjgjT j(g; ρ)

µjgj + µkgk
=

1

µk
,

(2)
with k = 1, . . . , R.

A solution to this system of equations is only known for
the case R = 2. In this case the solution is :

T 1(g; ρ) =
1

µ1(1− ρ)

(

1 +
µ1ρ2(g2 − g1)

µ1g1(1− ρ1) + µ2g2(1− ρ2)

)

,

(3)
and

T 2(g; ρ) =
1

µ2(1− ρ)

(

1 +
µ2ρ1(g1 − g2)

µ1g1(1− ρ1) + µ2g2(1− ρ2)

)

.

(4)

Unfortunately, for general service time distributions the
results are scarce. In [7] the authors showed that the derivative
of the mean conditional (on the service requirement) response
time of the various classes satisfies a system of integro-
differential equations. Unfortunately a closed-form solution of
this system of equations has been obtained only in the case of
exponential distributions. To the best of our knowledge, there
is no known tractable results on the distribution of the response
time Ti(g; ρ).

To overcome this difficulty, in our approach we will
approximate Ti(g; ρ) using a heavy-traffic characterization. It
turns out that the scaled response time (1 − ρ)Ti(g; ρ) has a
proper distribution as ρ → 1. The DPS queue in heavy-traffic
was first considered in [9], (see also [17] and [18]). The result
we require reads:

Proposition 2 ([9]): When scaled with 1−ρ, the response
time of class-i jobs has a proper distribution as ρ → 1.

(1− ρ) Ti(g; ρ)
d
→ Ti(g; 1) = X ·

E(Bi)

gi
, i = 1, . . . , R (5)

where
d
→ denotes convergence in distribution and X is an

exponentially distributed random variable with mean

E(X) =

∑

k λkE
(

B2
k

)

∑

k λkE (B2
k)

1
gk

. (6)
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Proposition 2 implies that for sufficiently high load, the
response time distribution in a DPS queue can be approximated
by an exponential random variable, that is,

Ti(g; ρ) ≅
Ti(g; 1)

1− ρ

d
=

E(Bi)

gi(1− ρ)
X, (7)

and for the mean response time we obtain that

T i(g; ρ) ≈
E(Bi)

gi(1− ρ)

∑

k λkE
(

B2
k

)

∑

k λkE (B2
k)

1
gk

. (8)

In the above derivation, we have ignored a technical
subtlety. Indeed, in order for (8) to be valid, one needs to
establish that the heavy-traffic limit and expectation can be
interchanged, namely, limρ→1 T i(g; ρ) = E(limρ→1 Ti(g; ρ)).
In [18] the authors performed numerical experiments to vali-
date the validity of this interchange. In the rest of the paper
we will assume that the interchange is valid.

In the case of identical weights gi, the DPS queue is
equivalent to the well-known egalitarian PS, which has been
thoroughly studied, see for example [14] or [6]. For PS, it
holds that T i(g; ρ) = E(Bi)/(1−ρ). From (6) and (5) we get

that T i(g; 1) = E(Bi), and it follows that the approximation

T i(g; ρ) =
T i(g;1)
1−ρ is exact.

We can now introduce the game formulation we study in
the paper.

B. Game formulation

We assume that the service provider (or the server) pro-
poses to each class i the choice of its weight gi in exchange of
a payment per-unit-of-work proportional to the chosen weight.
The quality-of-service metric of class i is the probability of its
jobs missing a given deadline di. Class i then wants to ensure
that this probability is below a certain threshold αi ∈ (0, 1)
while paying as little as possible for this service. Formally,
class-i solves the problem

min
gi≥ǫ

ρigi (OPT-P)

subject to P (Ti(g; ρ) > di) ≤ αi. (9)

The quantity ǫ is the minimum price a class has to pay in
order to get access to the service.

As explained in Subsection II-A the probability of jobs
missing a deadline in a DPS queue has no easy-to-compute
closed-form expression. One could then consider a game in
which the constraints are based on the mean response time of
tasks. The optimization problem above then gets modified as
follows

min
gi≥ǫ

ρigi (OPT-M)

subject to T i(g; ρ) ≤ ci, (10)

for i = 1, . . . , R.

The modified game (OPT-M) is not completely unrelated
to the original game (OPT-P) as we shall argue next. Assuming
that the load is high enough, we invoke the heavy-traffic
approximation so:

P (Ti(g; ρ) > di) = P (Ti(g; 1) > (1− ρ)di) ,

= e
−

(1−ρ)di
Ti(g;1) ,

implying that

P (Ti(g; ρ) > di) ≤ αi ⇐⇒ −
(1− ρ) di

T i(g; 1)
≤ logαi. (11)

Since αi ∈ (0, 1), we have logαi < 0 and, hence, we

obtain the following equivalent constraint T i(g; 1) ≤ c̃i =

− (1−ρ)di

logαi
.

Thus, we propose to use the heavy-traffic result given in
Proposition 2 as an approximation to (OPT-P) and (OPT-M).
We obtain the problem

min
gi≥ǫ

ρigi (OPT-HT)

subject to T i(g; 1) ≤ c̃i. (12)

In the case c̃i = − (1−ρ)di

logαi
we will be approximating (OPT-P),

and if c̃i = (1− ρ)ci we will be approximating (OPT-M).

This approximation has the advantage that one can compute
the scaled mean response time of a DPS queue in heavy-traffic
T i(g; 1) for any service time distribution with finite second
moment.

Our hope is that the solution of the game (OPT-HT) will
give useful insights into the equilibrium properties of the
(OPT-M) and (OPT-P). We emphasize that the benefit of the
heavy-traffic approximation is that the mean response time
formulae have a nice closed-form expressions even for general
service time distributions whereas (OPT-M) has a simple
structure only in case of exponentially distributed service
times, while (OPT-P) does not appear to be tractable even for
that case. In Section VI we investigate the accuracy of the
approximation, and show that it always gives us the structure
of the equilibrium and our approach is accurate when the users
have similar mean size and mean service time characteristics.

Before going further, we give a couple of definitions.

Definition 1 (Feasibility): For fixed traffic conditions, a
vector c of deadlines is feasible if there is a vector g of weights
such that T i(g; ρ) ≤ ci, for all i = 1, . . . , R.

A game is feasible if its vector of deadlines is feasible. A
related definition is that of an achievable vector which is
defined as a vector of mean response times for which there
exists a vector of weights leading to the desired mean response
times. In [8], it was shown that the achievable region of a DPS
queue with Poisson inputs and general service time distribution
is a polytope with one equality constraint and 2R − 2 + R
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inequality constraints. For an achievable vector t, it follows
that the set of deadline vectors which are coordinatewise larger
that t are feasible. One can then compute the set of feasible
deadline vectors by taking the union over feasible sets of each
achievable vector. This definition simplifies considerably in the
heavy-traffic limit, where it will be shown that the feasible
region can be characterized using R+ 1 inequalities.

Definition 2: A class i will be considered fair if
E(Bi)/ci ≤ (1− ρ).

In other words, a class i is fair if the response time it
would obtain under PS, E(Bi)/(1− ρ), would satisfy its own
constraint on the mean performance ci. As we will see in
Proposition 7, a sufficient condition for the game to be feasible
is that all classes be fair.

Without loss of generality, we assume that the classes are
ordered in decreasing order of E(Bk)/ck, i.e., if i < j, then
E(Bi)/ci ≥ E(Bj)/cj . We observe that the ratio E(Bk)/ck
is the maximum throughput of a class-i job with a service re-
quirement equal to the mean. In the case of exponential service
time distribution, it becomes c1µ1 ≤ c2µ2 ≤ · · · ≤ cRµR.

In the following sections, we shall first give results related
to the game (OPT-M), then do a more detailed analysis of the
approximation (OPT-HT), and finally compare the two results
using numerical experiments.

III. SOLUTION OF (OPT-M)

A vector of weights g
NE = (gNE

1 , . . . , gNE
R ) is a Nash

equilibrium (NE) for the game (OPT-M) if each class is paying
the least possible amount while ensuring that its mean response
time does not exceed its deadline. Thus, we can say that a
vector of weights g

NE is a Nash equilibrium if for all i =
1, . . . , R

gNE
i = argmin

{

gi ≥ ǫ : T i(g; ρ) ≤ ci
}

.

In [2] the authors showed that T i(g; ρ) is decreasing with
gi and increasing in gj for j 6= i. It then follows that, for a
given i,

gNE
i > ǫ, ⇒ T i(g

NE ; ρ) = ci,

gNE
i = ǫ, ⇒ T i(g

NE ; ρ) ≤ ci.

Since T i(g; ρ) is decreasing in gi, a class which is paying more
than ǫ is necessarily satisfying its constraint with equality.
Otherwise, if it were to be satisfying the constraint with strict
inequality, then it would pay less and still satisfy its deadline.
On the other hand, a class which is paying the least possible
price could be satisfying its deadline with strict inequality.

We notice that the dynamics of best-response are given
by increasing the weight of class i when T i(g; ρ) > ci and

decreasing the weight of class i when T i(g; ρ) < ci and
gi > ǫ. Thus, we observe that if we start the best-response
dynamics from a feasible point g, the weights of all the
classes always decrease. Moreover, after each best-response,
the current vector of weights remains feasible because by

decreasing its weight a class can only improve the mean
response times of the other classes. Thus, we can conclude
that the equilibrium will be obtained in a finite number of
best-response steps.

Proposition 3: The dynamics of best-response converge to
the Nash Equilibrium when started from a feasible point.

From Proposition 3, we immediately obtain the following
corollary.

Corollary 1: If the game is feasible, there exists a Nash
equilibrium.

For more precise results for this game, we focus on the
game (OPT-M) for two classes, i.e. R = 2, and exponentially
distributed service time requirements (see (3) and (4)). We aim
to find the minimum values of the weights such that the time
constraints T 1(g; ρ) ≤ c1 and T 2(g; ρ) ≤ c2 are satisfied. We
present the condition for the existence of a Nash equilibrium:

Proposition 4: The game is feasible if and only if
the deadlines c1 and c2 satisfy a(c1) ≥ b(c2), where

a(c1) = −µ1ρ2−µ1(1−ρ1)[µ1c1(1−ρ)−1]
−µ1ρ2+µ2(1−ρ2)[µ1c1(1−ρ)−1] and b(c2) =

µ2ρ1−µ1(1−ρ1)[µ2c2(1−ρ)−1]
µ2ρ1+µ2(1−ρ2)[µ2c2(1−ρ)−1] .

We now present the unique equilibrium of the game:

Proposition 5: If the game is feasible, the unique equilib-
rium is a vector of weights gNE such that:

• if class 1 is fair, i.e. (1 − ρ)−1 ≤ c1µ1, then gNE =
(ǫ, ǫ),

• otherwise, gNE = ( ǫ
a(c1)

, ǫ), where a(c1) is as defined

in Proposition 4.

Proposition 5 characterizes the unique equilibrium of the
game when the number of classes is two with exponential
service time requirements. We explain briefly the solution of
the problem. Assuming feasibility, at least class 2 is fair. If
class 1 is also fair, then (g1, g2) = (ǫ, ǫ) is the equilibrium;
however, if the mean response time of class 1 for PS weights
exceeds its deadline c1, the class 1 must pay g1 > ǫ per unit-
of-work to ensure that its time constraint is satisfied.

IV. SOLUTION OF (OPT-HT)

In this section we will characterize the solution to
(OPT-HT). In Subsection IV-A we first investigate the achiev-
able vector of performances in heavy-traffic, in Subsec-
tion IV-B we characterize the sufficient and necessary con-
dition under which the game has a feasible solution and in
Subsection IV-C we present the unique Nash-Equilibrium of
the game.

A. Achievable Performances

The following proposition characterizes the achievable re-
gion of performances in heavy-traffic:
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Proposition 6: A vector of performances of DPS
(t1, . . . , tR) is achievable in heavy-traffic if and only if

∑

k

λk
E(B2

k)

E(Bk)
tk =

R
∑

j=1

λjE
(

B2
j

)

. (13)

Proof: See appendix B-A

Remark 1: In the case ρ < 1, in [8] the authors character-
ized the achievable region of DPS under exponential service
requirements. It can be easily checked, than the vector space
obtained in [8] converges to the hyperplane (13) as the load
increases to 1.

B. Feasibility

As introduced in Definition 1, we say that the game is
feasible if there exists at least one vector of weights g such
that all time constraints are satisfied. Using the same arguments
that for Proposition 3 and Corollary 1, this is easily seen to
imply the existence of a Nash equilibrium for (OPT-HT). In the
following result, we give a sufficient and necessary condition
for the game to be feasible.

Proposition 7: The game (OPT-HT) is feasible if and only

if
∑

i λiE
(

B2
i

)

(

c̃i
E(Bi)

− 1
)

≥ 0.

Proof: See appendix B-A

Interestingly, we observe that a sufficient condition for the
game to be feasible is that in heavy-traffic all classes be fair.
Note that T i(g

PS ; 1) = E(Bi), thus from Proposition 7 if

T i(g
PS ; 1) ≤ c̃i, ∀i, then the game is feasible.

C. Characterization of the Nash Equilibrium

We now show that if the game is feasible, the Nash
equilibrium is unique and fully characterize it. The following
theorem states our main result:

Theorem 1: If the problem is feasible, the unique Nash
equiblibrium is

gNE
i = ǫ

˜tm/E(Bm)

c̃i/E(Bi)
, for all i < m

gNE
i = ǫ, for all i ≥ m,

where m = 1, . . . , R is the minimum value such that there
exists a value ˜tm ≤ c̃m verifying

˜tm
E(Bm)

=

∑R
k=1 λkE

(

B2
k

)

−
∑m−1

k=1 λk
E(B2

k)
E(Bk)

c̃k
∑R

k=m λkE (B2
k)

. (14)

In the particular case where all classes are fair, then the
solution is very simple:

Corollary 2: If all the users are fair in heavy-traffic, i.e.,
T i(g

PS ; 1) ≤ c̃i, then the equilibrium is gNE = (ǫ, . . . , ǫ).

The following corollary shows that the price paid by classes
in the Nash equilibrium decreases as the ratio E(Bk)/ck
decreases, namely:

Corollary 3: Let gNE = (gNE
1 , . . . , gNE

R ) be the vector of
weights in the equilibrium. We have

gNE
1 ≥ gNE

2 ≥ · · · ≥ gNE
R−1 ≥ ǫ

Proof: It follows from the result of Theorem 1 and our
assumption on the ordering of the classes.

It is interesting to observe that the ordering of classes in
the equilibrium do not depend on the arrival or second moment
of the distributions. Instead, the key parameter is the ratio
E(Bk)/ck, which can be interpreted as the throughput of a
class k. Thus, classes will deviate from the minimum weight
in decreasing order with respect to the throughput they expect
to obtain from the system.

V. APPROXIMATING (OPT-M)

In this section we explain how the results of Section IV
can be used to obtain insights into the solution of games
(OPT-P) and (OPT-M). As explained in Section II-B, provided
that ρ is sufficiently large for the approximation T i(g; ρ) =
T i(g;1)
1−ρ to be valid, the results established for game (OPT-HT)

can be applied to approximate the solution of (OPT-P) by
setting c̃i = −(1 − ρ)di/ logαi and the solution of (OPT-M)
by setting c̃i = (1−ρ)ci. We will focus on the case (OPT-M).
This choice allows to evaluate numerically the accuracy of the
approximation using the formulas presented in Section II-A.

A. Feasibility when ρ < 1

It follows directly from Proposition 7 that a necessary
and sufficient condition for the (approximate) feasibility of
(OPT-M) is

∑

i

λiE
(

B2
i

)

(

ci
E(Bi)/(1− ρ)

− 1

)

≥ 0. (15)

This implies that if all users are fair, then the game is feasible.

B. The Nash Equilibrium for ρ < 1

Extending Theorem 1 to the case ρ < 1 with c̃i = ci(1−
ρ), we obtain that the Nash-Equilibrium of (OPT-M) can be
approximated by

gNE
i = ǫ

tm/E(Bm)

ci/E(Bi)
, for all i < m

gNE
i = ǫ, for all i ≥ m,

where m = 1, . . . , R is the minimum value such that there
exists a value tm ≤ cm verifying

tm
E(Bm)

=

∑R
k=1

λkE(B2
k)

(1−ρ) −
∑m−1

k=1 λk
E(B2

k)
E(Bk)

ck
∑R

k=m λkE (B2
k)

. (16)
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Note that if class 1 is fair, then all users are fair. In this
case, the right-hand side of (16) is upper-bounded by (1−ρ)−1,

implying that c1 ≥ E(B1)
1−ρ ≥ t1, so that m = 1. Thus, if

class 1 is fair, the approximate equilibrium corresponds to the
PS solution gNE

i = ǫ for all i, which is clearly the exact
equilibrium.

It is interresting to compare the above approximate charac-
terization of the Nash equilibrium with the exact result given in
Proposition 5 in the case of two users and exponential service
time distributions. As discussed above, if class 1 is fair, then
the approximate and exact equilibria coincide and correspond
to the PS queue. Otherwise, the equilibrium in both instances
have the same form, i.e., gNE = (gNE

1 , ǫ), with gNE
1 > ǫ.

Observe that tm/E(Bm) increases with ρ, and define ρmin

and ρmax as the threshold values such that:

• if ρ ≤ ρmin, then all classes are paying the minimum
price ǫ,

• if ρmin < ρ ≤ ρmax the game is feasible and there is
at least one class paying more than ǫ,

• if ρ > ρmax, the game is not feasible.

C. Characterization of ρmin

As discussed above, if class 1 is fair, that is if
E(B1)
c1

≤
1 − ρ, then all users are paying the minimum price at the
equilibrium. As a consequence, the minimum value ρmin such
that at least one user pays more than ǫ is obtained when
E(B1)
c1

= 1− ρmin, that is for

ρmin = 1−
E(B1)

c1
. (17)

We emphasize that, since we have not used heavy-traffic
results to characterize ρmin, the above expression of ρmin is
the exact threshold where class 1 starts paying more than ǫ.
We also note from (17) that if the throughput E(B1)/c1 of
class 1 is close to 0, then ρmin is close to 1, implying that
the PS solution (ǫ, . . . , ǫ) corresponds to the equilibrium for a
large range of utilization rates.

D. Characterization of ρmax

We obtain an approximate value for ρmax using the heavy-
traffic characterization. From (15) it follows that

ρmax =

∑R
i=1 λiE

(

B2
i

)

(

ci
E(Bi)

− 1
)

∑R
i=1 λi

E(B2
i )

E(Bi)
ci

(18)

We emphasize that this approximation of ρmax is only valid
if the real value is sufficiently close to 1 for the approximation

T i(g; ρ) =
T i(g;1)
1−ρ to be accurate.

E. Identical throughput expectations

A particular case of interest is obtained when all classes
have the same throughput expectations. In this case, we can
characterize exactly the value of ρmax.

Proposition 8: If E(Bi)/ci = k < 1 for all i, then the
unique equilibrium of the game is the PS solution (ǫ, . . . , ǫ)
for ρ ≤ 1− k, and the game is not feasible for ρ > 1− k.

Proof: If all users had the same weights (so the equilib-
rium were PS), we would have that E(Bi)/ci = 1− ρ, for all
i. Since E(Bi)/ci = k < 1, we conclude that if ρ ≤ 1−k then
(ǫ, . . . , ǫ) is the unique equilibrium. When ρ = 1− k we have
ci = E(Bi)/(1− ρ), ∀i, that is, ci, ∀i, is equal to the sojourn
time in a PS queue. This means that the vector (c1, . . . , cR)
lies in the achievable region of the system, and as soon as ρ
increases further the game becomes infeasible.

We thus have ρmin = ρmax = 1 − k. From (18) we also
conclude that in this case the approximation of ρmax gives the
exact value 1− k.

VI. NUMERICAL EXPERIMENTS

In this section, we present the results of numerical ex-
periments in order to compare the equilibrium of the game
(OPT-M) (which we call the original problem) with that of the
heavy-traffic approximation (OPT-HT). Our main observation
from the experiments that we conducted is that while in
certain cases the error in weights can be substantial, the
proposed heavy-traffic approximation is good at predicting the
set of classes that pay a higher than minimum price at the
equilibrium, and the mean response times of the classes paying
the minimum price.

Without loss of generality, the minimum weight ǫ is set to
1 in all the experiments.

A. Exponential service time distribution

First, we present the results for exponentially distributed
service times. In the first set of experiments, there are two
players with deadlines c1 = 5 and c2 = 6, and the mean service
times µ1 = 2 and µ2 = 3. Note that c1µ1 = 10 < c2µ2 = 18.
We now vary the total system load starting from 0.8 until the
system becomes unfeasible while maintaining ρ1 = 0.3ρ and
ρ2 = 0.7ρ. For each value of load, the equilibrium is computed
using the best-response algorithm. In order to compute the
best-response of a class for the original problem, the mean
response time is computed from the system of equations
presented in Proposition 1.

In the bottom subfigure of Figure 1, we plot the equilibrium
weights for both the original problem and the HT approxima-
tion as a function of the total system load. The percentage
relative error1 between the two is shown in the top subfigure

1The percentage relative error for class i is given by

∣

∣

∣

∣

gSY S
i −gHT

i

gSY S
i

∣

∣

∣

∣

×100,

where gSY S
i (resp., gHT

i ) is its equilibrium weight for the original problem
(resp. HT approximation).
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Fig. 1: Comparison of equilibrium weights (above) and the
corresponding percentage relative error (below) as a function
of the total system load. R = 2 and exponential service time
distribution.

of the same figure.

Both problems become unfeasible for ρ > 0.93, so the
data is restricted to ρ ≤ 0.93. When the load of the system
is between 0.9 and 0.93 we observe in Figure 1 (below) that
the equilibrium of the heavy-traffic result approximates very
well the equilibrium of the original problem. In particular, the
heavy-traffic approximation follows the same increasing trend
of the equilibrium weight of class 1 as that of the original
problem. The error of class 1 users is small, while there is no
error for the users of class 2. We see in Figure 1 (above) that
the maximum percentage relative error is 9% and it is achieved
when ρ = 0.93.

In the second set of experiments, we scale the deadlines
by (1 − ρ)−1, that is, the deadline of user i, ci =

c̃i
(1−ρ) for

some fixed c̃i. This reflects that class i jobs is aware that the
performance worsens as ρ increases, and is willing to adjust its
deadline correspondingly. When the deadlines are scaled with
(1−ρ)−1, the constraint on the mean response time of player i
for the original problem becomes T i(g; ρ) ≤

c̃i
1−ρ , and that for

the heavy-traffic approximation becomes T i(g; 1) ≤ c̃i. Note
that the latter constraint does not change with ρ.

We set the parameters to : µ1 = 2 and µ2 = 3, ρ1 = 0.3ρ,
and ρ2 = 0.7ρ, with the scaled deadlines being c̃1 = 0.3 and
c̃2 = 0.7. In Figure 2, we present the accuracy of the heavy-
traffic approximation as ρ → 1. As expected, the error in the
weight of class 1 reduces as the load tends to 1.

In the next set of experiments, we look at a four-
player game with parameters c = [10, 15, 25, 45] and µ =
[1, 2, 4, 9]. The loads of individual classes are in the proportion
[1/3, 1/6, 1/4, 1/4], that is ρ1 = ρ/3, ρ2 = ρ/6, and so on.
In Figure 3, the equilibrium weights are plotted in the top
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0
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error1
error2

Fig. 2: Comparision of equilibrium weights (above) and the
corresponding percentage relative error (below) as a function
of the total load, and the deadlines of the two classes are scaled
by (1− ρ)−1. R = 2 exponential service time distribution.

subfigure, the corresponding error is plotted in the middle
subfigure, and in the bottom subfigure we plot the error in the
equilibrium mean response times of the classes. We did not
plot the weights and the error for class 4 because its weight
is always 1 in both the systems.

The trend in the four-player plots is similar to that of the
two-player example in which the deadlines are not scaled. Until
ρ < 1 − 1

c1µ1
= 0.9, PS is a feasible solution and all the

classes pay the minimum price. As the load increases further
and moves closer to the ρmax of the original system, one or
more classes start to pay, and the error in the equilibrium starts
to increase. The main observation here is that, even though the
maximum error in the weights is around 19%, the maximum
error in the mean response times is less than 2%.

It is rather surprising that mean response times in the
heavy-traffic approximation are so close to that in the original
game. As another example in support of this observation,
we set the parameters to : c = [5/3, 5/4, 10, 100] and µ =
[1, 2, 8, 12], with the proportion of loads being the same as
before. The main difference with the previous example is that
there is much more heterogeneity in the deadlines and the
cµ of the classes. The first two classes have a much smaller
deadline and the range of values of ciµi is now much larger as
well compared to the previous example. The plots are shown In
Figure 4. Note that the scale is logarithmic for the vertical axis
in the top subfigure, and that in the top and middle subfigure,
the data is plotted only for the first two classes because the
other two classes are always paying the minimum price.

The error in the weight of class 1 is close to 60% at ρ =
0.5 and increases to almost 100% at ρ = 0.9. The error for
class 2 is similarly large for loads close to ρ = 0.9 which
means that the prediction is poor. For example, for ρ = 0.9 the
weights are : gSY S

1 = 7287.8, gHT
1 = 45.2, gSY S

2 = 2120.6,
and gHT

2 = 30.14. That is, the heavy-traffic approximation
predicts a weight of 45.2 for class 1 whereas the weight in
the original system is 7287.8. There is a similar disparity in
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Fig. 3: Comparison of equilibrium weights (above) and the
corresponding percentage relative error (below) as a function
of the total system load. R = 4 and exponential service time
distribution. c = [10, 15, 25, 45], µ = [1, 2, 4, 9].

the weight of class 2. A similar observation on the negative
impact of heterogeneity on the error was also made in [20].
On the other hand and in spite of the large disparity in the
weights, the maximum error in the mean response times is
negligible. For classes 1 and 2 it is not surprising that the
error is small because their mean response times are equal to
their constraint since they are paying more than the minimum
price. For classes 3 and 4, the mean response times are strictly
smaller than their constraint, and their values in the original
system and as predicted by the heavy-traffic approximation are
: TSY S

3 = 9, THT
3 = 9.41, TSY S

4 = 6.7, and THT
4 = 6.28,

which are reasonably close.

B. Hyper-exponential service requirements

Finally, in this subsection, compare the approximation for a
two-player game with hyper-exponentially distributed service
times.

While there is no explicit expression for mean response
time in DPS with service time distributions other than the
exponential distribution, for the hyper-exponential distribution,
a simple trick can be used to compute the mean response
times using those of the exponential distribution. For example,
consider a two-class DPS queue with hyper-exponential distri-
bution of two phases each. The service rates of the phases are
(µ1, µ2) for class 1 and (µ3, µ4) for class 2. and the arrival
rates to these phases are (λ1, λ2) for class 1 and (λ3, λ4)
for class 2. In order to compute the mean response time
in this queue when the weights are g = (g1, g2), one first
computes the mean response time in a four-class DPS queue
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100
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Fig. 4: Comparison of equilibrium weights (above) and the
corresponding percentage relative error (below) as a function
of the total system load. R = 4 and exponential service time
distribution. c = [5/3, 5/4, 10, 100], µ = [1, 2, 8, 12].

with exponential distribution and weights g = (g1, g1, g2, g2).
The arrival rate of class i in this queue is λi, and the rates of
the exponential distribution of class i is taken to be µi. The
mean respone time of class i in the DPS queue with hyper-
exponential distribution is then:

T
HEXP

1 (g; ρ) =
λ1

λ1 + λ2
T 1(g; ρ) +

λ2

λ1 + λ2
T 2(g; ρ),

T
HEXP

2 (g; ρ) =
λ3

λ3 + λ4
T 3(g; ρ) +

λ2

λ3 + λ4
T 4(g; ρ).

Using the above trick, the equilibrium weights were com-
puted for the two-player DPS game with parameters: µ1 = 1,
µ2 = 3, µ3 = 5, µ4 = 7, and deadlines c1 = 5 and c2 = 7.
The fraction of the load of class 1 was (ρ1, ρ2) = (ρ6 ,

ρ
3 ), and

for class 2 it was (ρ3, ρ4) = (ρ4 ,
ρ
4 ).

In Figure 5 we depict variation of the weights and the
relative error when the total load of the system changes.
Finally, we observe that the error on the equilibrium is similar
to that of the exponentially distributed service times.
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APPENDIX A
PROOFS OF THE GAME WITH CONSTRAINTS ON THE MEAN

RESPONSE TIME

A. Feasibility

First, we introduce this result we use to characterize
the feasibility of the game with two classes of jobs with
exponential service requirements:

Lemma 1: For any vector g = (g1, g2) there ex-

ists a(c1) = −µ1ρ2−µ1(1−ρ1)[µ1c1(1−ρ)−1]
−µ1ρ2+µ2(1−ρ2)[µ1c1(1−ρ)−1] and b(c2) =

µ2ρ1−µ1(1−ρ1)[µ2c2(1−ρ)−1]
µ2ρ1+µ2(1−ρ2)[µ2c2(1−ρ)−1] such that

T 1(g; ρ) = c1 ⇐⇒
g2
g1

= a(c1),

T 2(g; ρ) = c2 ⇐⇒
g2
g1

= b(c2).

Proof: It follows from equations (3) and (4).

Since we know that when gi increases the mean response
time of class-i jobs decreases, then it follows from lemma 1
the following property:

Corollary 4: For any vector (g1, g2) the values of a(c1)
and b(c2) defined in lemma 1 verify that

T 1(g; ρ) ≤ c1 ⇐⇒
g2
g1

≤ a(c1),

T 2(g; ρ) ≤ c2 ⇐⇒
g2
g1

≥ b(c2).

For a given values of the deadlines c1 and c2, we obtain
a(c1) and b(c2), so that we can state that all the points (g1, g2)
such that T 1(g; ρ) ≤ c1 and T 2(g; ρ) ≤ c2 must satisfy
a(c1) ≥

g2
g1

≥ b(c2). Thus, the desired result follows directly

from this property because if a(c1) ≤ b(c2) there are no
weights (g1, g2) verifying both time constraints.

B. Nash Equilibrium

Proof of proposition 5:

To characterize the equilibrium, we need to assume that
the solution of the game exist which means that c1 and c2 are
such that a(c1) ≥ b(c2). It is obvious that if the game is not
feasible there is no solution of the game.
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If user of class 1 is fair, then c1
E(B1)

≥ (1−ρ)−1 and hence

we see that c2
E(B2)

≥ (1− ρ)−1 because we have assumed that
c1

E(B1)
≤ c2

E(B2)
. We notice that

ci
E(Bi)

≥ (1−ρ)−1, i = 1, 2 ⇐⇒ T i(g
PS ; ρ) ≤ ci, i = 1, 2,

This means that if both classes are fair, then the Processor
Sharing weights satisfy both the time constraints, and thus
the equilibrium is gNE

i = ǫ, for i = 1, 2, since both classes
have the minimum weight possible and the time constraints
are satisfied.

If c1
E(B1)

< (1−ρ)−1, then we can ensure that (1−ρ)−1 ≤
c2

E(B2)
since we assumed feasibility (if ci

E(Bi)
< (1 − ρ)−1,

for i = 1, 2, then T i(g
PS ; ρ) > ci, i = 1, 2, and according

to corollary 4 and proposition 4, there is no solution of the
game).

We observe that, if only users of class 2 are fair, then (ǫ, ǫ)
is not the equilibrium because class 1 do not satisfy its time
constraint with PS queue weights. In fact, the equilibrium is
achieved in g = (g1, ǫ), where g1 is such that T 1(g; ρ) = c1
and T 2(g; ρ) ≤ c2 because g1 is the minimum weight
satisfying its time constraint and ǫ is the minimum weight
possible for class 2 and its time constraint is verified.

According to lemma 1, we state that T 1(g; ρ) = c1 is
obtained when g2

g1
= a(c1) which yields to g1 = ǫ

a(c1)
.

APPENDIX B
PROOFS OF THE HEAVY-TRAFFIC APPROXIMATION GAME

A. Achievable Performances

Proof of Proposition 6: We observe that (13) holds when
T i(g; ρ) = ti and using the expression of the scaled mean
response time in the heavy-traffic regime of a class-i job of
Proposition 2.

The other implication is proven if we show that any vector
t ∈ R

R
+ such that T i(1) = ti satisfying (13) can be obtained

by a vector of DPS weights g.

From Proposition 2 we observe that the scaled mean
response time in heavy-traffic for all i 6= j verifies that

T i(g; 1)

T j(g; 1)
=

gj/E(Bj)

gi/E(Bi)
. (19)

It then follows that all the components of the vector g must

verify that gi
gj

=
tj/E(Bj)
ti/E(Bi)

. In fact, we present that a vector

satisfying the latter holds that T i(g; 1) = ti, for i = 1, . . . , R.
From the result of Proposition 2 and 19, we obtain

T i(g; 1) = E(Bi)

∑

k λkE
(

B2
k

)

∑

k λkE (B2
k)

tk/E(Bk)
ti/E(Bi)

= ti

∑

k λkE
(

B2
k

)

∑

k λk
E(B2

k)
E(Bk)

tk

and it follows from (13) that T i(g; 1) = ti, i = 1, . . . , R.

B. Feasibility

Proof of proposition 7:

If the problem is feasible in heavy-traffic there exists a
vector t = (t1, . . . , tR) such that T i(g; 1) = ti ≤ ci for all i
and the condition of proposition 6 is verified. Then, since ti ≤

ci for all i, it follows that
∑

i λi
E(B2

i )
E(Bi)

ci ≥
∑

k λkE
(

B2
k

)

.

We now show the other implication of the proposition using

that
∑

k λk
E(B2

k)
E(Bk)

ck ≥
∑

k λkE
(

B2
k

)

. We define a new vector

t = (t1, . . . , tR) such that ti = ci

∑
k λkE(B2

k)
∑

k λk

E(B2
k)

E(Bk)
ck

, for all i.

We observe that ti is positive for all i and ti ≤ ci because
∑

k λk
E(B2

k)
E(Bk)

ck ≥
∑

k λkE
(

B2
k

)

.

We now show that the vector t satisfies the condition of
proposition 6

∑

k

λk

E
(

B2
k

)

E(Bk)
tk =

∑

k

λk

E
(

B2
k

)

E(Bk)
ci

∑

i λiE
(

B2
i

)

∑

i λi
E(B2

i )
E(Bi)

ci

which equals
∑

i λiE
(

B2
i

)

and this means that the vector t

is achievable. Thus, we have shown that t is achievable and
ti ≤ ci which means that the problem is feasible in heavy-
traffic.

C. Nash Equilibrium

Let us first introduce some results that we will be used to
prove theorem 1.

We define the vector gm as a vector where its i-th coordi-
nate, gmi , is gmi = 1, if i ≥ m, and gmi > 1, otherwise.

Definition 3: For all m = 1, . . . , R, we define gm =
(gm1 , gm2 , . . . , gmm−1, 1, . . . , 1), where gmi > 1, if i < m.

We observe that when m = 1, then gm coincides with the
all-ones vector.

We show that if a vector gm satisfies the m-th time
constraint, then all the constraints m + 1, . . . , R will be also
satisfied.

Lemma 2: Let gm be a vector as defined in definition 3.
If Tm(gm; 1) ≤ c̃m, then, for all j > m, T j(g

m; 1) ≤ c̃j .

Proof: From the expression Tm(gm; 1) ≤ c̃m we obtain
∑

k λkE
(

B2
k

)

∑

k λkE (B2
k) /gk

≤ c̃mgmm/E(Bm) = c̃m 1/E(Bm)

Since for all j > m, we have that c̃m/E(Bm) ≤ c̃j/E(Bj)
due to the order of classes and that c̃i = ci(1− ρ) and using
that gj = 1 for all j ≥ m, then we can state that

∑

k λkE
(

B2
k

)

∑

k λkE (B2
k) /gk

≤ c̃m/E(Bm) ≤ c̃j/E(Bj) ⇐⇒
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T j(g; 1) ≤ c̃j ,

for all j > m.

We are now in position to proof the main result of the
equilibrium.

Proof: Proof of theorem 1.

To characterize the equilibrium, we need to assume that the
feasible region is not empty. It is obvious that if the feasible
region is the empty set there is no solution of the game.

First, we give the conditions that must verify the equi-
librium. Then, we characterize the weights in the equilibrium.
Thirdly, we see that this condition coincides with the condition
given in (14). Finally, we see that the equilibrium is unique.

Let m be the minimum value such that Tm(gm; 1) ≤ c̃m,
where g

m is as defined in definition 3. We prove that the
equilibrium is obtained for the vector gm verifying that m is
the minimum such that Tm(gm; 1) ≤ c̃m and, in addition, it

is satisfied that T i(g
m; 1) = c̃i for all i < m.

Using the result of lemma 2, we can say that if
Tm(gm; 1) ≤ c̃m, then T k(g

m; 1) ≤ c̃k, for k = m+1, . . . , R.
This means that all the if the m-th time constraint is satisfied
then all the following constraints also hold. We show that the
vector of weights gNE = ǫ gm that verifies T i(g

m; 1) = c̃i,
for all i < m and T i(g

m; 1) ≤ c̃i for all i ≤ m is the
equilibrium. We know that gNE is feasible because it satisfies
all the time constraints. We now see that gNE minimizes the
weights. In case that one of the first m− 1 coordinates of gm

diminishes its weight, its time constraints will not be satisfied
since they are equalities. The rest of the coordinates of gm

are ǫ, so they can not be less and their time constraints are
satisfied.

We now characterize the weights of the equilibrium. From
the definition of the vector gm, we know that gNE

i = ǫ, for
all i ≥ m. Using the feasibility condition, we state that there
exists t̃i ≤ c̃i for all i such that T i(g

m; 1) = t̃i. From the
result given in proposition 6, it follows that this performance

is given when the weights satisfy
gNE
i

gNE
j

=
t̃j/E(Bj)

t̃i/E(Bi)
for all i 6= j.

Since t̃i = c̃i for all i < m, we can state that for all i < m we

have
gNE
i

gNE
m

=
˜tm/E(Bm)
c̃i/E(Bi)

, i.e., gNE
i = ǫ

˜tm/E(Bm)
c̃i/E(Bi)

for all i < m.

We prove that the condition Tm(gm; 1) = ˜tm ≤ c̃m is
equivalent to (14), from Proposition 2 and that the weights in
the equilibrium are gNE

i = ǫ for all i ≥ m and for all i < m,

gNE
i = ǫ

˜tm/E(Bm)
c̃i/E(Bi)

. Using Proposition 2 for the vector gm

and that
gNE
i

gNE
j

=
gm
i

gm
j

, it follows that for the minimum m we

have

c̃m ≥ ˜tm = E(Bm)

∑R
k=1 λkE

(

B2
k

)

∑R
k=1 λkE (B2

k)
gm
m

gm
k

Since for all k < m,
gm
m

gm
k

= c̃k/E(Bk)
˜tm/E(Bm)

and for all k ≥ m,

gm
m

gm
k

= 1 , then

˜tm = E(Bm)

∑R
k=1 λkE

(

B2
k

)

∑m−1
k=1 λkE (B2

k)
c̃k/E(Bk)
˜tm/E(Bm)

+
∑R

k=m λkE (B2
k)

This is equivalent to say that

˜tm
E(Bm)

=

∑R
k=1 λkE

(

B2
k

)

∑m−1
k=1 λkE (B2

k)
c̃k/E(Bk)
˜tm/E(Bm)

+
∑R

k=m λkE (B2
k)

And rearranging both sides of the equation it yields to

˜tm
E(Bm)

=

∑R
k=1 λkE

(

B2
k

)

−
∑m−1

k=1 λk
E(B2

k)
E(Bk)

ck
∑R

k=m λkE (B2
k)

that coincides with the given formula since ˜tm ≤ c̃m.

We show the uniqueness of the equilibrium proving that if
the equilibrium is gm, then gm+i is not the equilibrium, for
i = 1, . . . , R−m. To prove this, we consider that there exists
a value m satisfying

c̃m
E(Bm)

≥
tm

E(Bm)
=

∑R
k=1 λkE

(

B2
k

)

−
∑m−1

k=1 λk
E(B2

k)
E(Bk)

c̃k
∑R

k=m λkE (B2
k)

(20)

and we will see that for any i = 1, . . . , R − m, gm+i that
satisfies (14) is not the equilibrium. To prove that, we show
that there is no vector gm+i with weights as defined in theorem
1 that verifies

˜cm+i

E(Bm+i)
≥

tm+i

E(Bm+i)
=

∑R

k=1 λkE
(

B
2
k

)

−
∑m+i−1

k=1 λk

E(B2
k)

E(Bk)
c̃k

∑R

k=m+i
λkE (B2

k)
(21)

We suppose that there exist a value i = 1, . . . , R − m
such that (21) is verified and we will arrive to a contradiction
because we observe that the m-th coordinate of gm+i is less
than ǫ, i.e., tm+i/E(Bm+1) ≤ c̃m/E(Bm).

Using (20), we obtain the following equality:

tm
E(Bm)

R
∑

k=m

λkE(B
2
k) =

R
∑

k=1

λkE
(

B2
k

)

−

m−1
∑

k=1

λk

E
(

B2
k

)

E(Bk)
c̃k

(22)

From (21) we observe that

˜cm+i

E(Bm+i)
≥

tm+i

E(Bm+i)
=

∑R

k=1 λkE
(

B
2
k

)

−
∑m+i−1

k=1 λk

E(B2
k)

E(Bk)
c̃k

∑R

k=m+i
λkE (B2

k)

=

∑R

k=1 λkE
(

B
2
k

)

−
∑m−1

k=1 λk

E(B2
k)

E(Bk)
c̃k −

∑m+i−1
k=m

λk

E(B2
k)

E(Bk)
c̃k

∑R

k=m+i
λkE (B2

k)

Taking into account the equality of (22), we obtain

tm+i

E(Bm+i)
=

tm
E(Bm)

∑R
k=m λkE(B

2
k)−

∑m+i−1
k=m λk

E(B2
k)

E(Bk)
c̃k

∑R
k=m+i λkE (B2

k)
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Since we know that ˜cm
E(Bm) ≤

c̃k
E(Bk)

for all k > m, then

tm+i

E(Bm+i)
≤

tm
E(Bm)

∑R

k=m
λkE(B

2
k)−

˜cm
E(Bk)

∑m+i−1
k=m

λkE
(

B
2
k

)

∑R

k=m+i
λkE (B2

k)

We now use that tm ≤ c̃m since gm is the equilibrium to
state that

tm+i

E(Bm+i)
≤

tm
E(Bm)

∑R

k=m
λkE(B

2
k)−

cm
E(Bk)

∑m+i−1
k=m

λkE
(

B
2
k

)

∑R

k=m+i
λkE (B2

k)

=

˜cm
E(Bm)

∑R

k=m+i
λkE(B

2
k)

∑R

k=m+i
λkE (B2

k)
=

cm

E(Bm)

which means that the component m of the equilibrium gm+i

is less than the m+ i-th component, which is in contradiction
with proposition 3.
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