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Nonreflecting boundary conditions are essential elements in the computation of many compressible flows. Such
simulations are very sensitive to the treatment of acoustic waves at boundaries. Nonreflecting conditions allow
acoustic waves to propagate through boundaries with zero or small levels of reflection into the domain. However,
perfectly nonreflecting conditions must be avoided because they can lead to ill-posed problems for the mean flow.
Various methods have been proposed to construct boundary conditions that can be sufficiently nonreflecting for
the acoustic field while still making the mean flow problem well-posed. A widely used technique for nonreflecting
outlets is analyzed (Poinsot, T., and Lele, S., “Boundary Conditions for Direct Simulations of Compressible Viscous
Flows,” Journal of Computational Physics, Vol. 101, No. 1, 1992, pp. 104–129; Rudy, D. H., and Strikwerda, J. C., “A
Non-Reflecting Outflow Boundary Condition for Subsonic Navier–Stokes Calculations,” Journal of Computational
Physics, Vol. 36, 1980, pp. 55–70). It shows that the correction introduced by these authors can lead to large
reflection levels and resonant behavior that cannot be observed in the experiment. A simple scaling is proposed to
evaluate the relaxation coefficient used in these methods for a nonreflecting outlet. The proposed scaling is tested
for simple cases (ducts) both theoretically and numerically.

I. Introduction

D ERIVING nonreflecting boundary conditions for hyperbolic
or incompletely hyperbolic problems1 is a key problem in

multiple fields such as classical engineering fluid dynamics,2−8

aeroacoustics,9−12 astrophysics,13−15 vibrations in solids,16 and
electromagnetism.17

In the field of fluid mechanics, acoustic phenomena can affect
the flow in a drastic manner in potentially unstable cases.18−20 The
numerical simulation of such flows in compressible codes is a ma-
jor issue. Numerical boundary conditions must be treated with great
caution to predict both the acoustic waves and the mean flow. Even
though techniques have been developed to predict the mean flow
in steady compressible codes (when acoustic phenomena are sup-
pressed by numerical or physical viscosity) or to control the acous-
tic waves in linearized codes (where the mean flow is imposed), no
method can handle both the mean flow and the acoustic waves in a
perfect way: boundary conditions that allow perfect control of the
mean flow generally reflect acoustic waves, whereas purely non-
reflecting conditions used, for example, for linearized simulations
allow mean flow values to drift.

One example where such issues are critical is the prediction
of combustion instabilities in reacting flows.20−24 Flames exhibit
strong combustion instabilities when they are placed in channels.
These oscillations are due to coupling between the flame and the
channel acoustics (Fig. 1a). Acoustic waves are reflected at inlets
and outlets into the domain where they can couple with the hydro-
dynamics and the unsteady heat release. A convenient method for
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characterizing these instabilities is to study the forced response of
the flame in the channel while disconnecting the coupling with the
acoustics of the channel. This can be done experimentally by chang-
ing the channel geometry upstream or downstream of the burner.
Numerically, the same result can be achieved by diminishing the
acoustic feedback of the channel to the burner, i.e., by using non-
reflecting boundary conditions on inlets and outlets (Fig. 1b). This
allows outgoing waves to leave the domain, but cancels the ampli-
tude of waves entering the domain, thereby diminishing the possible
effects of coupling mechanisms. In certain cases, making only the
outlet nonreflecting (Fig. 1c) may be sufficient to stabilize the flow,
as tested in Sec. V. There is no general rule indicating whether mak-
ing boundaries nonreflecting in a given configuration will indeed be
sufficient to damp the instability.

The decomposition of the Euler equations into characteristic
waves is widely used to derive nonreflecting boundary conditions.
A specific point that is common to all characteristic techniques is to
prescribe the amplitude of the incoming waves.3,5,13,14 The natural
choice for nonreflecting boundaries is to set this amplitude to zero.
This method is well suited to controlling the acoustic field (when
acoustic waves reach the boundary at normal incidence) but not the
mean flow: various authors2,25 indicate that this choice may lead to
ill-posed problems. Indeed, setting, for example, a zero amplitude
for the incoming wave (L1) at a subsonic outlet (Fig. 2) may not al-
low the flow to retain a constant mean pressure. In the “real” world
the mean pressure is imposed by the state at infinity downstream
of the burner, where the pressure is P∞, and this information is fed
back into the domain throughL1. Setting this value to zero is usually
not a good choice because the information on P∞ is simply ignored
by the code, leading to possible drifts on the mean pressure. This
problem is well known and various solutions have been proposed.
One of them is to provide a value for L1, either using an analytical
solution in region 2 or solving a linear problem between the outlet
section S and infinity (see recent review edited by Tourrette and
Halpern26). Such solutions can only be used in certain academic
cases for which an analytical solution may be derived between the
outlet of the computational domain and the “infinity” condition.16

More practical (but less accurate) solutions have been proposed.
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a)

b) c)

Fig. 1 Waves entering and leaving the computational domain.

Fig. 2 Influence of far-field conditions on the amplitude of the waves
entering the computational domain.

The simplest one (linear relaxation method; LRM) is to set the am-
plitude of L1 as proportional to the static pressure difference,2,25

L1 = K (P − P∞), where P is the predicted pressure at the outlet
section S, P∞ is the far field pressure, and K has the dimension
of a frequency. “Appropriate” values of K are expected to provide
a quasi-nonreflecting boundary condition while avoiding pressure
drifts; if P drifts away from P∞, L1 acts as a spring force to relax
P toward P∞.27

Even though this relaxation approach is used today in numerous
studies,28 two questions arise:

1) Are there optimal choices for K ?
2) What is the effect of this relaxation on the global acoustic

behavior of the boundary?
Obviously, low levels of K may be inefficient in terms of control-

ling the mean pressure. Conversely, high levels of K ensure that P re-
mains very close to P∞ and then make the boundary partially or fully
reflecting. Therefore a direct link exists between the magnitude of K
and the reflection coefficient R of the boundary. Actually K controls
not only the magnitude of R but also its phase. Choosing K without
care may lead to numerical results in which the outlet boundary
condition introduces important biases in terms of acoustic behavior.

The objectives of this paper are 1) to derive a simple analytical so-
lution relating the magnitude of the relaxation coefficient K and the
complex reflection coefficient R of a boundary condition modeled
with LRM (Sec. III); 2) to verify this relation using corresponding
numerical simulations in which the outlet of a simple tube is sub-
mitted to a harmonic propagating wave (Sec. IV); 3) to demonstrate
the effect of nonreflecting boundary conditions on the global res-
onance of a given duct using LRM, a simple case with fixed inlet
velocity and nonreflecting LRM outlet is studied both analytically

and numerically (Sec. V); and 4) finally, to propose a method to
scale the K coefficient in practical computations (Sec. VI).

It will be shown that the values of K control the damping rate of
the modes but may also change the eigenvalues significantly. In other
words, a nonoptimal choice of K may lead to erroneous resonant
frequencies.

II. Wave Amplitudes
The developments in this section are based on the method derived

by Poinsot and Lele,2 called Navier–Stokes characteristic boundary
conditions (NSCBC). In all characteristic approaches the main is-
sue is the determination of the amplitudes of waves entering the
computational domain. In the NSCBC method the determination is
based on the assumption that the amplitudes can be obtained as if
the flow were laminar, one-dimensional, and inviscid (LODI). Note
that for one-dimensional nonviscous flows, the NSCBC method is
equivalent26,29 to many other boundary treatments,3,13,14,30 so that
the results presented in Sec. III apply to all characteristic techniques
using LRM.

LODI equations link the wave amplitudes (Li ) and the temporal
evolution of primitive Navier–Stokes variables (ρ, u, v, w, P). The
wave amplitudes L1,L2,L3,L4,L5 correspond, respectively, to the
left traveling acoustic wave (speed u − c), the entropy wave (speed
u), the first vorticity wave (speed u), the second vorticity wave
(speed u), and the right-traveling acoustic wave (speed u + c). Their
expression is obtained through characteristic analysis2,27:

∂ρ

∂t
+ 1

c2

[
L2 + 1

2
(L5 + L1)

]
= 0 (1)

∂u

∂t
+ 1

2ρc
(L5 − L1) = 0 (2)

∂v

∂t
+ L3 = 0 (3)

∂w

∂t
+ L4 = 0 (4)

∂ P

∂t
+ 1

2
(L5 + L1) = 0 (5)

where the wave amplitudes L1, . . . ,L5 are defined by

L1 = (u1 − c)

(
∂ P

∂x1
− ρc

∂u1

∂x1

)
(6)

L2 = u1

(
c2 ∂ρ

∂x1
− ∂ P

∂x1

)
(7)
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L3 = u1
∂u2

∂x1
(8)

L4 = u1
∂u3

∂x1
(9)

L5 = (u1 + c)

(
∂ P

∂x1
+ ρc

∂u1

∂x1

)
(10)

Equations (1–5) provide a simple method to choose the incoming
wave amplitudes to be imposed at a boundary. For example, from
Eq. (2), a fixed velocity inlet condition will require the incoming
wave amplitude L5 to be equal to the outgoing wave L1. Fixing
a constant pressure at an outlet will be achieved [from Eq. (5)]
by setting L1 = −L5. A more critical situation arises in mimicking
nonreflecting conditions; this would require setting the incoming
waves to zero. As indicated earlier, such a perfectly nonreflecting
condition is not adequate because it may lead to a drift of the mean
flow quantities. The next section illustrates the behavior of a duct
outlet for which a nonreflecting condition is sought.

III. Reflection Coefficient of a Linear Relaxation
Method Boundary Condition

Let us consider the propagation of one-dimensional acoustic
waves in a semi-infinite tube of constant cross section (Fig. 3). The
tube is infinite in the x < 0 direction and ends at x = xB in the other
direction, where a nonreflecting boundary condition must be imple-
mented. An harmonic wave propagating in increasing x direction
is imposed. This wave amplitude is chosen so that in the absence
of reflected wave, the inlet velocity signal would be u(t) = U0e−iωt .
Note that the phase is set to zero at x = xB to simplify the algebra.
This has no influence on the result. The expression of this complex
wave at x = xB is taken as

L5 = 2ρcU0iωe−iωt (11)

The objective of the condition at x = xB is to be nonreflecting. In
practice, to avoid a drift of the mean pressure, the incoming wave
amplitude L1 is not set to zero but to

L1 = K (P − P∞) (12)

Equations (11) and (12), together with LODI relations (2) and
(5), lead to the system of equations

∂u

∂t
+ 1

2ρc
(2ρcU0iωe−iωt − K (P − P∞)) = 0

∂ P

∂t
+ 1

2
(2ρcU0iωe−iωt + K (P − P∞)) = 0 (13)

The second equation of system (13) involves only P and can
easily be solved. (This system was derived at the outlet boundary;
consequently, coordinates are fixed and both u and P are functions
of time only.) The solution for P is

P(t) = P∞ + A0e−K t/2 − ρcU0iω

K/2 − iω
e−iωt (14)

Fig. 3 One-dimensional harmonic wave impacting on the outlet
boundary of a tube.

The transient term A0e−K t/2 of Eq. (14) (A0 being a constant
fixed by initial conditions) always vanishes with time since K > 0.
In further developments it will be assumed that a steady state has
been reached and this term will be omitted.

Equations (14) (without transient part) and (12) make it possible
to reconstruct the incoming wave L1 and the complex reflection
coefficient of the boundary. The analytical value of the reflection
coefficient R is

Rout = L1/L5 = −1/[1 − i(2ω/K )] (15)

The magnitude ‖R‖ and phase φ of a nonreflecting outlet modeled
with LRM are derived from Eq. (15):

‖R‖ = 1
/√

1 + (2ω/K )2 (16)

φ = −π − arctan(2ω/K ) (17)

The asymptotic behavior of ‖R‖ and φ is summarized in Table 1.
As expected, for a given pulsation ω, ‖R‖ goes to 0 when K is

small, showing that the boundary condition is indeed nonreflecting
(‖R‖ � 0) when K is limited to small values. However, large values
of K destroy the nonreflecting character of the boundary condition:
when K goes to infinity ‖R‖ goes to 1, making the boundary fully
reflecting. Actually, as shown by Eq. (16), the control parameter for
‖R‖ is 2ω/K , so that one can define a cutoff pulsation ωc = K/2.
For a fixed value of K (which is the case in any computation),
all frequencies will not be reflected with the same strength. High
frequencies will easily leave the computational domain (R → 0),
whereas very low frequencies will be strongly reflected (R → 1). In
practice a cutoff frequency fc separates waves that will be reflected
( f < fc) from the ones that will leave the domain ( f > fc). fc is
defined from Eq. (15) by

fc = ωc/2π = K/4π (18)

This definition implies that R( fc) = 1/
√

2. In terms of energy this
means that at the frequency fc half of the acoustic energy is fed back
into the computational domain.

Figure 4 is a plot of Eqs. (6) and (17). The cutoff frequency fc

is represented by the vertical line. Equation (18) suggests that a
proper interpretation of K is to view fc = K/(4π) as a frequency
below which the boundary condition will not let the waves leave the
domain.

Table 1 Asymptotic behavior of a
nonreflecting outlet with LRM

Pulsation ‖R‖ φ

ω = 0 1 −π

ω = K/2 1/
√

2 −π − π/4
ω = ∞ 0 −3π/2

Fig. 4 Modulus and phase of reflection coefficient vs frequency at
K = 2000 s−1.
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Table 2 Summary of numerical
simulation parameters

Parameter Value

Size of the domain L , m 0.5
Number of cells 400
Mean inlet velocity, m · s−1 10
Sound speed c, m · s−1 348
Forcing frequency f , Hz 500
Forcing amplitude, m · s−1 0.1

Fig. 5 Comparison of numerical and theoretical reflection coefficients
at a “partially reflecting” outlet.

At constant K , the phase φ of the reflected signal is that of a fixed-
pressure outlet for low values of ω. But as shown in Fig. 4, when the
frequency increases, the boundary treatment induces a delay that
moves the phase from −π to −3π/2. This phase shift can induce
dramatic changes in the acoustic properties of the domain, as shown
in Sec. V.

IV. Numerical Evaluation of the Reflection Coefficient
In this section Eq. (15) is compared to numerical simulations.

This is done by simply running a full Euler code on the configura-
tion of Fig. 3 and using Eq. (12) at the outlet. The code AVBP was
used for this validation. (The AVBP home page for detailed informa-
tion is http://www.cerfacs.fr/cfd/CFDWeb.html.) AVBP is a three-
dimensional fully compressible Navier–Stokes equation solver us-
ing characteristic boundary conditions.2

The outlet condition is nonreflecting (with LRM) as described in
Sec. III and the inlet is a nonreflecting pulsed inlet.31 The numerical
scheme is second order in space and uses a three-step Runge–Kutta
method (third order) for time integration. Calculation parameters
are summarized in Table 2.

For technical reasons, it is more convenient to vary K at the outlet
than to change the forcing frequency f at the inlet. Therefore the
following results present R(K ) at fixed f instead of R( f ) at fixed
K . The reflection coefficient R is obtained in AVBP by R =L1/L5.
The amplitudes L1 and L5 are measured at the outlet using Eqs. (6)
and (10) and one-sided spatial derivatives.

The agreement between numerical simulations and the theory
[Eq. (15)] is extremely good (Fig. 5). Both modulus and phase of the
reflection coefficient at the outlet are superimposed on the theoretical
curves.

V. Computing a Closed Domain with Nonreflecting
Boundary Condition

A. Description of the Configuration
The preceding sections have shown that nonreflecting boundary

conditions using LRM can have impedances that make them par-
tially reflecting. This section shows the implications of these results
for the computation of flows where one or more sections are modeled
using such nonreflecting conditions.

Consider a simple duct filled with a homogeneous gas (in which
the speed of sound c is constant), as represented in Fig. 6. The
inlet speed is imposed: u(x = 0, t) = U0. The steady flow solution
is of course u(x, t) = U0. This system is acoustically defined by its
reflection coefficients at the inlet and the outlet. Assuming that the
duct inlet is the phase reference, one can write the relations between
the amplitude of the acoustic waves in the duct and the reflection
coefficients:

Rin = L5

L1
, Rout = L1e−iω(L/c)

L5eiω(L/c)
(19)

which can be written as

Rin Route
iω(2L/c) − 1 = 0 (20)

Calculating the eigenfrequencies of this duct consists in giving
the values of ω that are solutions of Eq. (20).

B. Analytical Solutions
For this test, the inlet corresponds to fixed velocity conditions,

which implies that Rin = 1. The outlet is modeled using a nonreflect-
ing condition with LRM. Therefore Eq. (15) shows that the effective
impedance of this outlet is Rout = −1/[1 − i(2ω/K )]. In this case
Eq. (20) degenerates to

eiω(2L/c) + [1 − i(2ω/K )] = 0 (21)

The values of ω that satisfy Eq. (21) are complex. The real part
of ω (ωr = �(ω) = 2π fr ) is the eigenpulsation and the imaginary
part (ωi = 	(ω) = 2π fi ) is the damping (or amplification) rate. The
temporal evolution of pressure and velocity at an eigenfrequency is
proportional to e−iωt = e−iωr t eωi t (in the linear regime):

1) If ωi > 0, the mode is amplified: ωr is an unstable pulsation.
2) If ωi < 0, the mode is damped: ωr is a stable pulsation.
Figure 7 is a plot of the eigenfrequencies of Eq. (21) vs K . At

very high values of K the system responds as if the pressure were
fixed at the outlet. Combining Eqs. (11), (12), and (14) one can

Fig. 6 Configuration.

Fig. 7 Eigenfrequencies of the first three modes vs K for the duct of
Fig. 6.
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Fig. 8 Imaginary part of the first three modes vs K for the duct of
Fig. 6.

show that L5 +L1 goes to zero when K goes to infinity, and the
eigenfrequencies

fn = (2n + 1)(c/4L) (22)

correspond directly to the 1
4 wave (n = 0), 3

4 wave (n = 1), . . . modes
of a duct with fixed inlet velocity and outlet pressure (represented
by horizontal lines in Fig. 7): the boundary is fully reflecting.

When K decreases the eigenfrequencies of the duct also decrease
due to the phase shift induced by the boundary treatment shown by
Eq. (17). At very low K values the 1/4 wave mode even disappears.

At very high values of K the imaginary part fi of all eigenfre-
quencies is zero (Fig. 8), indicating that they are not damped. This
is consistent with the fact that there is no source term in the duct and
boundary conditions are acoustically closed (no fluctuation of P or
u allowed). Obviously at such large K values the outlet boundary
condition fails to evacuate acoustic waves. For lower values of K
the modulus of Rout is lower than 1 and thus all modes are damped
(	(ω) < 0).

Figures 7 and 8 show that the value of K must remain small to
provide damped modes but also that the modes that appear are not
physical: their frequencies are not the eigenfrequencies of the duct.

VI. Scaling Strategy for the Relaxation Coefficient K

As shown in the preceding sections, the value of K has a drastic
influence on the results of a numerical simulation. This has already
been pointed out by different authors for either steady25 or unsteady2

calculations. The main problem for several authors is to know how
to choose K in practical cases. Rudy and Strikwerda25 suggested
the following scaling of K for optimal convergence of steady cal-
culations:

K = σ(1 − M2)(c/L) (23)

where M is the Mach number of the mean flow, c the sound speed,
and L the domain size.

Numerical simulations2,25,27 showed that an optimum is reached
for σ

optim
Num = 0.58, whereas the theory of Rudy and Strikwerda25 sug-

gested an optimum value of σ
optim
RS = 0.27. Rudy and Strikwenda’s

definition of the optimum value for σ is based on the convergence
of steady-state calculations, whereas in Refs. 2 and 27 the definition
is based on both the convergence of mean values and the evacuation
of acoustic waves in unsteady calculations.

The present work gives a new interpretation of K , which is now
linked to the cutoff frequency of the boundary by Eq. (18). Thus
“good” values of K are those that allow all duct acoustic modes to
leave the domain. It was shown in Sec. III that frequencies lower
than fc = K/(4π) are reflected, and frequencies higher than fc leave
the computational domain. It is then relevant to choose K so that fc

Fig. 9 Summary of the influence of σ on the acoustics and mean flow
quantities.

is lower than all acoustic frequencies expected in the computational
domain.

As an example, this strategy is now applied to the duct of Sec. V.
Since velocity is imposed at the inlet and pressure at the outlet, the
lowest acoustic frequency is that of a quarterwave mode. At a given
Mach number M the quarter wave mode frequency is

f0 = (1 − M2)(c/4L) (24)

From Eqs. (18) and (24) the highest value of K for this calculation
that will significantly damp the 1/4 wave mode (as well as other
higher order modes) is

K max = π(1 − M2)(c/L) (25)

This scaling of K is very similar to the theory of Rudy and
Strikwerda25 given in Eq. (23) but with a σ coefficient of π in-
stead of 0.58. This approach suggests that the highest admissible
value of σ to prevent acoustic feedback is

σ max = π (26)

On the other hand, K (or σ ) has to be chosen large enough to
prevent a drift in the mean values (pressure, mass flow, etc.). Fig-
ure 9 offers a simple summary of these findings. (Note that Fig. 9
is actually a one-dimensional plot.) The minimum admissible value
σmin is not fixed by acoustics. It strongly depends on the computa-
tional parameters (Reynolds number, three-dimensional effects such
as swirl and geometry, etc.). Consequently, the boundary σmin is not
clearly defined in Fig. 9. Other tests (not reported here) suggest that
choosing σ lower than 0.1 often increases convergence times and
sometimes does not allow mass fluxes and pressure to reach a steady
state.

VII. Numerical Computations
Section V.B has provided a theoretical stability analysis of the duct

of Fig. 6. In the present section, these results are tested numerically.
The duct inlet is a fully reflecting characteristic inlet with imposed
velocity, achieved through LODI relation 2 by imposing L5 =L1.
A nonreflecting outlet with LRM is applied at the outlet; the value
of σ is varied to illustrate the results of Secs. V and VI. A Gaussian
perturbation is superimposed on the initial pressure field to excite
all acoustic modes.

Two values for σ are investigated to illustrate the influence on
both the damping of acoustics and the shift of the eigenfrequencies
of the duct.

A. Case 1: σ = 10ππ
In this section, the relaxation factor at the outlet σ is fixed to

σ = 10π , which is too high to evacuate the first eigenmodes of the
duct. The pressure perturbations recorded at the inlet show exponen-
tial decay (Fig. 10) before t = 0.1s, corresponding to the evacuation
of high-frequency modes. The signal then remains almost constant,
because low-frequency modes are reflected by the outlet condition.
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Fig. 10 Time evolution of pressure perturbation at the inlet (σ = 10π).

Fig. 11 Spectrum of pressure signal (σ = 10π) compared to analytical
values of Sec. V and Eq. (22).

Figure 11 is the Fourier transform of the inlet pressure signal. The
spectrum is compared to the expected eigenfrequencies analytically
derived in Sec. V. The first three modes predicted by Eq. (21) and
displayed in Fig. 11 remain in the computational domain, as sug-
gested from Fig. 9 for σ = 10π . Moreover, the frequencies of these
modes are not the true eigenfrequencies as predicted by Eq. (22),
which gives the eigenfrequencies of an acoustically closed duct (im-
posed velocity at the inlet and imposed pressure at the outlet). This
confirms the biasing effects induced by the outlet condition when
large values of σ are used:

1) The outlet is strongly reflecting, so that certain modes are not
damped.

2) The frequencies of the modes differ from the true eigenfre-
quencies of the duct.

Obviously, this would not be a good choice for σ for practical
computations.

The agreement between numerical and analytical results is good;
the shift between the eigenfrequencies of the closed duct and the
duct with LRM is correctly predicted.

B. Case 2: σ =ππ

In this section the relaxation factor σ is set to π , which is the
highest value that enables the evacuation of all acoustic modes of
the duct.

Figure 12 shows the exponential decay of the pressure perturba-
tions. At t = 0.1s all acoustic modes have vanished. Note that there

Fig. 12 Time evolution of pressure perturbation at the inlet (σ =π).

Fig. 13 Spectrum of pressure signal (σ =π) compared to analytical
values of Sec. V and Eq. (22).

is no source term in the domain and that the simulation is quite
long compared to fc (35 cycles), so that even a reflection coefficient
slightly lower than 1 (the definition of the cutoff frequency fc is that
R = 1/

√
2) attenuates the mode.

Figure 13 is the Fourier transform of the pressure signal of Fig. 12
between t = 0 and 0.05s. The spectrum is compared to the expected
eigenfrequencies analytically derived in Sec. V and to the true eigen-
frequencies of the duct given by Eq. (22). The spectrum is not very
sharp, due to the exponential decay of the signal, and yet the agree-
ment is fairly good. Again the eigenfrequencies of the duct are
significantly shifted compared to those of an acoustically closed
duct.

VIII. Conclusions
A simple acoustic theory was proposed to characterize the ac-

tual reflection coefficient of numerical “nonreflecting” boundary
conditions using LRM (linear relaxation method) as proposed by
Rudy and Strikwerda25 or Poinsot and Lele.2 It has been shown
that large values of the relaxation coefficient K used in these meth-
ods to link the ingoing wave amplitude L1 to the pressure differ-
ence (P − P∞) make the boundary condition fully reflecting and
that K can be linked to a cutoff frequency fc by K = 4π fc. At a
given value of K , all modes such that f < fc are not damped. A
proper strategy to minimize acoustic coupling is to choose K such
that fc is lower than the first duct acoustic mode. In the case of a
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one-dimensional duct with imposed velocity inlet, this is obtained
by writing K = σ(1 −M2)(c/L) and choosing 0.2 < σ < π . For
more complex cases (three dimensions, complex geometries, com-
bustions, etc.), an extension of this strategy is to solve the general
acoustic equation in the domain to find its eigenfrequencies fi . The
maximum value of σ is then given by choosing fc = min( fi ).
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