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Precise damping and stiffness extraction in acoustic driven cantilever
in liquid

Abdelhamid Maalia) and Rodolphe Boisgard
Universit�e Bordeaux 1, LOMA UMR 5798 CNRS, 351 Cours de la Lib�eration, F 33400 Talence, France

In this paper, we first explain how to extract accurately the driving force acting on the acoustic 
driven atomic force microscope cantilever in liquid from the measured resonance curve. We 
present a model that includes the driving force to extract precisely the damping and the stiffness of 
the tip sample interaction. The model is validated by an experimental test based on two 
independent methods to measure the hydrodynamic drag coefficient of a sphere moving 
perpendicular to flat surface.

I. INTRODUCTION

The atomic force microscope (AFM) provides a sensi-

tive sensor1–8 to investigate materials properties at nanome-

ter scale. The surface topography and various properties of

organic and inorganic surfaces have been obtained with high

resolution in vacuum,4 in air and in liquid.3–5 The dynamic

AFM is widely used to image soft material especially when

the imaged objects are isolated. The most popular and less

expensive method to put in oscillation, the AFM cantilever is

the acoustic excitation method. A piezoelectric actuator is

used to excite the vibration of the cantilever base. For a can-

tilever having high quality factor, as is the case in vacuum

and air, the displacement of the cantilever base is negligible

compared to the deflection of the tip when the cantilever is

excited close to the resonance.

For a cantilever acoustically excited in liquid medium, it

has been pointed out that the cantilever oscillation amplitude

is comparable to the base displacement.9–14 Thus, the whole

motion of the tip is the sum of the base displacement and

the deflection oscillation amplitude of the cantilever.9–14

Furthermore, the piezo actuator transmits vibration to the

surrounding fluid, which then applies an additional force to

the cantilever. This makes a challenge and complicates the

extraction of the interaction properties: force, damping, and

stiffness.

In this work, we first explain how to extract accurately

the driving force acting on the cantilever in liquid from the

measured resonance curve. Then, we present a model that

includes the driving force to extract precisely the damping

and the stiffness of the tip sample interaction.

II. THEORETICAL MODELING

Fig. 1 shows the model for a cantilever excited acousti-

cally by a piezo actuator. For a cantilever excited at fre-

quency x, the deflection of the tip XðtÞ is described by the

oscillator model equation10,12,14

m� €X þ cbulk
_X þ kcX ¼ Fdrive; (1)

where m� is the effective mass of the cantilever, kc is the

cantilever force constant, and cbulk is the bulk damping coef-

ficient far from the surface.

In the ideal situation, the driving force in liquid medium

Fdrive induced by the displacement of the cantilever base can

be calculated using the Euler-Bernoulli beam theory.12–14

The analytical expression of the driving force is

Fdrive ¼ ðm�x2 � jxcbulkÞbAbejxt; (2)

where b ¼
Ð L

0
WðxÞdxÐ L

0
W2ðxÞdx

� 1:565, WðxÞ is the eigenmode

shape of the first mode and L is the cantilever beam length.

Ab is the amplitude of the base displacement. In our previous

paper,10 the coefficient b was omitted because the driving

force was calculated using a point-mass-oscillator model.

In a real experiment, part of the cantilever excitation

comes from the base vibration, and the other part comes from

the acoustic wave that propagates from the piezo-actuator

through the fluid.14 The total excitation is the sum of these two

parts of excitation. Accurate determination of the contribution

of the acoustic wave propagation is complicated because it

may depend on the shape and the fixation of the cantilever on

the holder. We show below that it is much easier to measure

the whole driving force for a given cantilever in liquid.

Assuming a general expression for the total driving

force in the form

Fdrive ¼ ðF1 þ jF2Þejxt; (3)

where F1 is the term in the driving force that is in phase with

acoustic vibration of the base and F2, the term that is in

phase quadrature.

By substituting expression (3) in (1) and using

XðtÞ ¼ Af reeejðxtþuf reeÞ, we get

F1

kc
¼ Af ree 1� x

x0

� �2
!

cosðuf reeÞ �
x

x0Q

� �
sinðuf reeÞ

" #
;

(4a)

F2

kc
¼ Af ree 1� x

x0

� �2
!

sinðuf reeÞ þ
x

x0Q

� �
cosðuf reeÞ

" #
:

(4b)
a)Author to whom correspondence should be addressed. Electronic mail:

a.maali@loma.u bordeaux1.fr
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Af ree and uf ree are, respectively, the free amplitude and

phase of the cantilever measured far from the surface. x0 is

the angular resonance frequency of the cantilever far from

the surface (x0 ¼ kc

m�

q
) and Q is the bulk quality factor of

the cantilever (Q ¼ m�x0

cbulk
). The measurement of the resonance

curve (amplitude and phase versus driving frequency) pro-

vides the driving force components F1 and F2 by the mean

of Eqs. (4a) and (4b).

When the tip interacts with a sample, we have to add

to the second term of Eq. (1) the interaction force. For a

cantilever oscillating with small amplitude compared to

the range of the interaction length, the instantaneous inter-

action force can be linearised. It has two contributions;

one is due to the conservative term (�kintZ) and the other

one is due to the dissipative term (�cint
_Z). Where kint, cint

are, respectively, the interaction stiffness and damping,

including pure tip sample interaction and fluid added

mass and added damping close to the surface (see

Appendix). The total tip displacement Z is given by:

Z ¼ XðtÞ þ Abejxt.

Equation (1) becomes

m� €X þ ðcbulk þ cintÞ _X þ ðkc þ kintÞX
¼ ðF1 þ jF2Þejxt � ðkint þ jxcintÞAbejxt: (5)

Under the study condition XðtÞ ¼ AejðxtþuÞ, we get

kintþ jxcint¼
F1þ jF2þðm�x2�kc� jxcbulkÞAeju

AejuþAb

¼
F1þ jF2þ

x
x0

� �2

�1� j
x

x0Q

" #
kcAeju

AejuþAb
: (6)

Separating the real and the imaginary part of the previ-

ous equation yield the desired expressions for the damping

and the stiffness of the tip-sample interaction.

xcint

kc
¼
� A

Ab

F1

kcAb
sinðuÞ þ F2

kcAb
1þ A

Ab
cosðuÞ

� �
� A

Ab
sinðuÞ 1� x2

x2
0

 !
� A

Ab

x
x0Q

A

Ab
þ cosðuÞ

� �

1þ A

Ab

� �2

þ 2
A

Ab
cosðuÞ

; (7a)

kint

kc
¼ �1þ x2

x2
0

þ

A

Ab

F1

kcAb
cosðuÞ þ A

Ab

F2

kcAb
sinðuÞ þ 1þ A

Ab
cosðuÞ

� �
1� x2

x2
0

 !
þ F1

kcAb
þ A

Ab

x
x0Q

sinðuÞ

1þ A

Ab

� �2

þ 2
A

Ab
cosðuÞ

: (7b)

In practice, the knowledge of the driving forces F1 and F2,

the quality factor Q, the resonance frequency x0 and the

base displacement amplitude Ab allows accurate extraction

of kint, cint.

To check the validity of our model, we study the motion

of a tip ended by a sphere. We focus our test of the measure-

ment of cint since we have an alternative method to deter-

mine it. The hydrodynamic drag force that acts on a sphere

moving perpendicular to a flat substrate is given by:7,15–17

Fh ¼ 6pgR2

D V, where R and g are the radius of the sphere and

the dynamic viscosity of the fluid, D is the distance between

the surface and the sphere, and V is the velocity of the

sphere. In the above equation, we have assumed no boundary

slip for the liquid on both surfaces; this assumption is valid

in our experiment because we have used a hydrophilic glass

sphere and mica substrate. For a sphere approaching to the

substrate with a constant velocity (drainage experiment), the

hydrodynamic drag coefficient that we can measure:

ch ¼ Fh

V ¼
6pgR2

D should be equal to the interaction-damping

coefficient cint Eq. (7b).

III. RESULT AND DISCUSSION

The experiment was performed using an AFM (Bruker,

Bioscope) equipped with a liquid cell (DTFML-DD-HE) that

allows both tapping and contact modes in liquid. The cantile-

vers used are silicon nitride rectangular cantilever ORC8,

purchased from Bruker AFM Probes (width¼ 40lm

FIG. 1. Schematic diagram of the cantilever configuration. The instantane

ous tip position Z is the sum of the measured deflection X and the base

displacement: Z X þ AdeðjxtÞ.
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length ¼ 200 lm thickness ¼ 0:8 lm). We have used spheri-

cal borosilicate particle (GL0186B/45-53, MO-Sci

Corporation) with a diameter of 102.8 lm. The sphere was

glued to the end of the cantilever using epoxy (Araldite,

Bostik, Coubert) (Fig. 2). The substrate is fixed on multi-axis

piezo-stage (NanoT series, Mad City Labs) that allows a

large displacement (Up to 50 lm for applied voltage of 10 v)

with a high accuracy under closed loop control. The ampli-

tude and phase of the tip were measured using a lock-in

amplifier (Signal Recovery Model 7280) with an integration

time of 100 ms.

First, we perform a drainage experiment in order to mea-

sure the hydrodynamic drag coefficient and to calibrate in
situ the cantilever with the sphere attached to its end. This

step was performed in contact mode (the acoustic excitation

was switched off). The force was generated by the rapid

approach (or withdraw) of the mica substrate to the sphere

using the piezo-stage.7,15–17 To analyze the recorded data, in

this part, we have followed the procedure given by Honig

and Ducker16 and Zhu et al.17 The measured deflection for

the approach and retract is shown in Fig. 3(a).

The deflection of the cantilever (def) is related to the

force (Fh) by: def
V ¼

Fh

kcV ¼
6pgR2

kcD . The actual velocity of the

approach (retract) was obtained from the time derivative of

the distance.16 From the fit shown in Fig. 3(b), we obtain
6pgR2

kc
¼ 0:261 nm�s, using the numerical values of the sphere

radius R ¼ 51:4 lm and the water viscosity g ¼ 0:89 mPa s,

we get the stiffness value kc ¼ 0:17 N=m. Note that the curve

plotted in Fig. 3(b) is no more than the hydrodynamic drag

coefficient divided by the stiffness
ch

kc
.

Now, we perform experiment in dynamic mode to mea-

sure the hydrodynamic interaction damping cint. First, we

need to measure the exact value of the driving force acting

on the tip. This force is determined from the resonance

curves of the cantilever in bulk free from any interaction.

Fig. 4 shows the resonance curves of the cantilever with

the sphere attached measured by thermal response and

acoustic excitations. The fit of the thermal response curve

(Fig. 4(a)) using the standard harmonic oscillator model

allows to extract the resonance frequency x0 and the quality

factor Q of the cantilever far from any interaction. Then, we

use Eqs. (4a) and (4b) to calculate the driving force F1 and

F2 shown in Fig. 4(c).

Then, we vibrate the cantilever at a given frequency and

measure the amplitude and phase of the tip as the substrate

approaches the sphere glued at the end of the cantilever with

a very low rate. On Fig. 5(a) is shown the amplitude of the

cantilever versus the distance for different frequencies of

vibration. Close to the contact position, the damping is

FIG. 2. (a) optical image of the sphere attached to end of the cantilever. (b)

Schematic diagram of the experimental setup used to test the model. A glass

sphere with a diameter of 102:8 lm was attached at the end of silicon nitride

cantilever (width 40 lm, length 200 lm, thickness 0:8 lm). The sub

strate (mica surface) is fixed on piezo stage that allows a large displacement

(Up to 50 lm for applied voltage of 10 v).

FIG. 3. (a) Measured cantilever deflection using a contact mode. The piezo

stage displaces the substrate to the sphere with a velocity of 40 lm=s. (b)

The def/V and the fitting curve using equation def
V

6pgR2

kcD . From the fit
6pgR2

kc
0:261 nm=sis obtained and thus kc 0:17 N=m.
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infinite, and thus as expected from Eq. (5) (A ¼ Ab when

cint !1), the measured cantilever deflection amplitude for

all frequencies is equal to the base vibration amplitude. The

amplitude of the base vibration was determined in this

experiment for the vibrating frequencies 100, 200, and

1000 Hz to be 1.86, 2.04, and 2.06 nm, respectively.

After measuring the driving force, the quality factor Q,

the resonance frequency x0, and the base amplitude Ab,

we can apply Eq. (7a) to extract the interaction damping

versus the distance from the measured amplitude and

phase.

Fig. 6 shows the damping cint versus the distance D for

different frequencies extracted from the data of the ampli-

tude and phase plotted in Fig. 5(a) and Fig. 5(b). Note here

that damping extracted for different vibration frequencies

coincide with each other. We have also reported on this

figure, the hydrodynamic drag coefficient ch ¼ Fh

V measured

using the contact mode. As expected, the drag coefficient ch

measured with a contact mode coincides with the damping

coefficient cint measured with the dynamic mode.

FIG. 4. (a) Thermal response of the cantilever in water. Continuous line is

fitting curves using a simple damped harmonic oscillator model. (b)

Resonance curve (amplitude and phase) measured by acoustic excitation. (c)

The experimental driving forces that act on the cantilever extracted from the

resonance curve.

FIG. 5. (a) Cantilever amplitude versus the distance for different frequencies

of the base vibration. The inset shows a zoom close to the contact position

(distance smaller than 1000 nm). (b) Phase versus distance.

FIG. 6. Hydrodynamic drag coefficient ch measured with a contact mode

(dark continuous line) and the interaction damping coefficient cint measured

with the dynamic mode for different frequencies of excitation.
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IV. CONCLUSION

In summary, we have shown how to extract accurately

the acoustic driving force acting on the cantilever in liquid

from the measured resonance curve. We have presented a

model that includes the driving force to extract the damping

and the stiffness of the tip sample interaction. Finally, experi-

mental measurements were performed to validate the model.

The three steps of our method are recalled below

(1) Measure the quality factor and resonance frequency from

the thermal response of the cantilever (actually, this

operation is available in most new AFMs).

(2) Measure the acoustic driven resonance spectra of the

cantilever and then extract the driven force using Eqs.

(4a) and (4b).

(3) Use Eqs. (7a) and (7b) to convert amplitude and phase

data to damping and stiffness.

ACKNOWLEDGMENTS

The authors thank G. Couturier for reading the manu-

script and for helpful discussions. This work was supported

by the French National Agency of research (MicRheo

Project No. ANR-08-NANO-004) and by the Conseil

R�egional d’Aquitaine (No. 20091102001).

APPENDIX: CONTRIBUTION OF THE ADDITIONAL
FLUID ADDED MASS AND ADDED DAMPING
CLOSE TO THE SURFACE

During the interaction to describe the cantilever motion,

we have to add to the second term of Eq. (1), all the contribu-

tions due to the interaction.

The equation of motion can be written as

m� €X þ cbulk
_X þ kcX ¼ ðF1 þ jF2Þejxt � k0intZ � c0int

_Z

� ciadd
_Z � m�add

€Z; (A1)

where k0int, c0int are, respectively, the interaction stiffness and

damping due to pure tip-sample interaction and m�add, cadd,

are the additional fluid mass and damping due to the cantile-

ver beam vibration close to the surface. Using the expres-

sions of the tip deflection XðtÞ ¼ AejðxtþuÞ and total tip

displacement Z ¼ XðtÞ þ Abejxt, we get

�k0intZ � c0int
_Z � ciadd

_Z � m�add
€Z

¼ �ðk0int � m�addx
2ÞZ � ðc0int þ ciaddÞ _Z ¼ �kintZ � cint

€Z:

(A2)

With kint ¼ k0int � m�addx
2 and cint ¼ c0int þ cadd: By substitut-

ing Eqs. (A2) in (A1), we get Eq. (5) of the text

m� €X þ ðcbulk þ cintÞ _X þ ðkc þ kintÞX
¼ ðF1 þ jF2Þejxt � ðkint þ jxcintÞAbejxt:
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