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Vortex Molecules in Thin Films of Layered Superconductors

A.I. Buzdin · A.S. Mel’nikov · A.V. Samokhvalov

Abstract Both the equilibrium and transport properties of
the vortex matter are essentially affected by the behavior
of the intervortex interaction potential. In isotropic bulk su-
perconductors this potential is well known to be repulsive
and is screened at intervortex distances R greater than the
London penetration depth λ. As a result, in perfect crys-
tals quantized Abrikosov vortices form a triangular lattice.
In thin films of anisotropic superconductors this standard
interaction potential behavior appears to be strongly mod-
ified because of the interplay between the long-ranged re-
pulsion predicted in the pioneering work by J. Pearl and the
attraction caused by the tilt of the vortex lines with respect
to the anisotropy axes. This interplay results in a new type
of vortex arrangement formed by finite-size vortex chains,
i.e., vortex molecules. Tilted vortices with such unusual in-
teraction potential form clusters with the size depending on
the field tilting angle and film thickness or/and can arrange
into multiquanta flux lattice. The magnetic flux through the
unit cells of the corresponding flux line lattices equals to
an integer number N of flux quanta. Thus, the increase in
the field tilting (or varying temperature) should be accompa-
nied by the series of the phase transitions between the vor-
tex lattices with different N . A similar scenario should be
realized in strongly anisotropic BSCCO high-Tc supercon-
ductors where in tilted field a crossing lattice of Abrikosov
vortices (the stacks of pancakes in this case) and Josephson
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vortices appears. This crossing leads to the zigzag deforma-
tion of the pancakes stacks which is responsible for the at-
traction interaction competing with the long-ranged Pearl’s
repulsion.
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1 Introduction

The physics of vortices in layered high-Tc superconductor
is very rich [1]. In particular, it has been noted that in cer-
tain directions it is possible to have the long-range attrac-
tion between the tilted vortex lines [2, 3]. In bulk anisotropic
superconductors this phenomenon is known to result in the
formation of vortex chains in the regime of low magnetic
fields (see [4] for a review). Indeed, the attraction between
two vortices leads to the formation of a vortex pair. Then a
third vortex will be attracted by this pair, etc. The interac-
tion between any two vortices in the chain (except the near-
est neighbors) is attractive, which stabilizes the chain. These
vortex chains have been observed experimentally by the dec-
oration technique in YBa2Cu3O7 [5], scanning-tunneling
microscopy in NbSe2 [6], and Lorentz microscopy measure-
ments in YBa2Cu3O7 [7].

The Lorentz microscopy experiments showed that vor-
tex chains formation is absent for slightly tilted vortices [8].
The particularity of the Lorentz microscopy technique is
that the magnetic field distribution induced by vortices is
probed by the penetrating electron beam and, therefore, it
permits to work only with films of thicknesses D smaller
than (0.5–1) µm. For this case the surface effects modify the
intervortex interaction and, as has been demonstrated in the
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pioneering work [9] by Pearl in 1964, the long-range inter-
vortex repulsion appears.

If we consider a thin film sample, we get an interplay be-
tween two different long-range potentials: (i) attraction of
the tilted vortices (Uatt ∼ −1/R2), and (ii) the Pearl’s re-
pulsion (Urep ∼ 1/R). By varying either the film thickness
or the tilting angle we can modify the balance between these
interactions, which should determine energetically favorable
vortex configurations in samples with thickness d compara-
ble to the London penetration depth λ [8]. The Pearl repul-
sion always dominates at large distances and, thus, the for-
mation of an infinite vortex chain can become unfavorable.
Adding vortices one by one we can find an optimal num-
ber of vortices which can be arranged in a chain of a finite
length. As a result, there appears an intriguing possibility to
form a vortex structure consisting of finite size chains, i.e.
of vortex molecules.

An anisotropic superconductor in the London limit is
known to be characterized by two penetration depths λ⊥
and λ|| which are, in fact, the lengths of magnetic field
screening by currents flowing in directions perpendicular
and parallel to the layers, respectively. The calculations of
Buzdin et al. [8] show that the interaction between two tilted
straight vortices in thin film may be written as

εint � φ2
0

8π2

(
−Deff tan2 α

R2
+ 2

R

)
, (1)

where the effective film thickness is

Deff = D − 2λ|| tanh(D/2λ||),

the angle α is between the vortex axis and the c direction,
and R is the distance between vortices in plane of the film.
The formula (1) corresponds to the limit λ⊥ � R � λ||.
For illustration, several plots of the energy [8] are presented
in Fig. 1. We see that depending on the tilting angle the
formation of some sort of the vortex molecules—dimer,
trimer, etc. occur. When the magnetic field increases, these
“molecules” start to build vortex lattice. In fact, the particu-
larity of the intervortex interaction results in the emergence
of the flux structures with different number of vortices per
unit cell [10].

2 Vortex Line in a Finite Stack of SC Layers: Basic
Equations

In very anisotropic layered superconductors like BSCCO
single crystals (Bi2Sr2CaCu208+δ) the vortex line pierces
the film and can be viewed as a string of 2D pancake vor-
tices (PVs): each of these pancakes is centered at the point
rn = xnx0 + yny0 in the nth layer. Within the model of the
stack of Josephson-decoupled SC layers, pancakes can in-
teract with each other only via magnetic field. We denote

Fig. 1 Typical plots of the interaction energy per vortex vs. the inter-
vortex distance R in an equidistant chain of N vortices: dashed (solid)
lines correspond to D = 3λ‖, α = 78◦ (D = 3λ‖, α = 80◦). Here the
numbers near the curves denote the vortex number N . Schematic pic-
tures of vortex matter consisting of dimeric and trimeric molecules are
shown in the insets. Vortex positions are denoted by filled ellipses

the interlayer spacing as s and consider each of the N lay-
ers as a thin film with the thickness D much less than the
London penetration depth λ. General equation for the vector
potential A distribution in such system reads

rot rot A = 4π

c

N∑
n,m=1

Jm
n (r)δ(z − zn), (2)

where Λ = λ2/d = λ2||/s is the effective penetration depth in
a superconducting film of a vanishing thickness d , each nth
SC layer coinciding with the plane z = zn = ns (1 ≤ n ≤ N ).
The sheet current at the nth layer created by the pancake at
mth layer takes the form

Jm
n (r) = c

4πΛ

[
Φ(r − rm)δnm − Am(r, zn)

]
, (3)

where Am(r, z) is the vector potential induced by the only
pancake vortex located in the mth layer. The vector Φ(r) in
Eq. (3) is given by the expression

Φ(r) = φ0

2π

[z0 × r]
r2

, (4)

and φ0 = π�c/e is the flux quantum. For the layered sys-
tem without Josephson coupling, a general expression for
the free energy can be written in the form

F = 1

8π

∫
dV (rot A)2 +

(
4π

c

)2

Λ
∑
n

J2
n(r)δ(z − zn)

]
,

(5)

where the total vector potential A(r, z) and the sheet current
in the nth layer Jn(r), produced by an arbitrary vortex line,
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are the sum of the contributions induced by all 2D pancakes:

A(r, z) =
N∑

m=1

Am(r, z), Jn(r) =
N∑

m=1

Jm
n (r).

Using the gauge divA = 0 and the Fourier transform

A(q, k) =
∫

d2rdzeiqr+ikzA(r, z), (6)

An(q) =
∫

d2reiqrA(r, zn), (7)

Jn(q) =
∫

d2reiqrJn(r), (8)

one can rewrite the basic equation (2) in the momentum rep-
resentation as follows:

(
q2 + k2)A(q, k) = 1

Λ

∑
n

(
Φn(q) − An(q)

)
eikns , (9)

where Φn(q) = Φ(q)eiqrn . Taking account of the relation

2πAn(q) =
∫

dkeikznA(q, k),

we obtain from (9) the following equations for the Fourier
components of the vector potential An(q):

2qΛAn =
∑
m

(
eiqrmΦ(q) − Am

)
e−|n−m|qs . (10)

These equations can be reduced to the scalar form

fn + 1

2qΛ

∑
m

e−|n−m|qsfm = eiqrn, (11)

where we introduce new functions fn(q):

Jn(q) = c

4πΛ

(
Φn(q) − An(q)

)

= c

4πΛ
Φ(q)fn(q). (12)

The solution of the linear system (11) for a fixed distribution
of pancakes rn determines the distribution of the vector po-
tential A(r, z) which is created by an arbitrary vortex line in
a finite stack of superconducting layers. In the momentum
representation the general expression (5) for the free energy
of the layered system without Josephson coupling reads

F = 1

32π3Λ

∑
n

∫
d2q

(
Φn(q) − An(q)

)
Φn(−q). (13)

For two vortex lines we can write the total vector potential
and the total sheet current as superpositions of contributions

coming from the first (A(1)
n , J(1)

n ) and second (A(2)
n , J(2)

n ) vor-
tices:

An(q) = A(1)
n (q) + A(2)

n (q), Jn(q) = J(1)
n (q) + J(2)

n (q).

Calculating the interaction energy εint of vortex lines we
should keep in (13) only the terms which contain the prod-
ucts of fields corresponding to different vortex lines:

εint = 1

32π3Λ

∑
n

∫
d2q

[(
Φ(1)

n (q) − A(1)
n (q)

)
Φ(2)

n (−q)

+ (
Φ(2)

n (q) − A(2)
n (q)

)
Φ(1)

n (−q)
]
. (14)

Finally, for the particular case of two identical (parallel)

vortex lines which are shifted at the vector R = r(2)
n − r(1)

n

(n = 1,N) in the (xy) plane, we get the following general
expression for the interaction energy via the scalar functions
fn(q):

εint(R) = φ2
0

16π3Λ

∫
d2q
q2

cos(qR)
∑
n

fn(q)e−iqrn . (15)

The expression (15) and Eq. (11) determine the interaction
energy of two identical vortex lines.

3 Interaction Potential of Zigzag Vortices

In layered superconductors with a very weak interlayer cou-
pling the application of the magnetic fields tilted from the c

axis provokes the formation of crossing lattice of Abrikosov
vortices (AVs) and Josephson vortices (JVs) [11]. The AV is
in fact a line of pancake vortices (PVs) interacting with JVs.
As has been noted in [12, 13], the perpendicular vortex line
formed by the PVs is deformed and attracted by JVs, so the
JV stacks accumulate additional PVs. Such decoration of the
JVs by the PVs was clearly observed in experiment (see for
example [4] and [14]). The interaction between pancakes
and in-plane field in the form of JVs is known to produce
zigzag deformation of PV stacks (see Fig. 2) [12, 13, 15].
These deformed PV stacks together with JVs could be
considered analogous to the tilted vortices in moderately
anisotropic superconductors, and they also reveal a long-
range attraction between such deformed stacks [16]. Here
we study the peculiarities of the interaction of zigzag de-
formed stacks of PVs caused by the Pearl effect. The zigzag
deformation is somewhat larger near the surface (due to the
decrease of the stiffness of the PVs stack) but for simplicity
we neglect this relatively small effect. Special attention is
paid to the conditions under which attraction between PVs
in the crossing lattices exists and the dense vortex chains
appear in tilted field. Keeping in mind BSCCO, we con-
sider layered superconductors with a high anisotropy ratio
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Fig. 2 Zigzag deformation of the stack of pancakes due to interac-
tion with the Josephson vortices (JVs) in high parallel magnetic field
(Bx � H0), directed along x axis. Here s is a distance between the lay-
ers, u is the amplitude of the zigzag deformation. Josephson vortices
are presented by in-plane dashed arrows (Color figure online)

γ = λ⊥/λ|| � 1, when the Josephson core radius λJ = γ s

(s is the interlayer spacing) is larger than an in-plane pen-
etration depth λJ � λ||. To describe the intervortex interac-
tion we choose to apply approach of Josephson–decoupled
superconducting layers, which is known to be useful in stud-
ies of the vortex-lattice structure at low fields.

Our further consideration is based on two assumptions:
(i) for each vortex we choose the centers of pancakes to be
positioned along the zigzag line and put

r(1)
n = ±ux0, if n − odd/even

r(2)
n = r(1)

n + R;
(16)

(ii) we restrict ourselves by the continuous limit assuming
qs 	 1 and qxu 	 1. Solving Eqs. (11) and (15) (the de-
tails of the calculations will be published elsewhere) we can
obtain the following expression for the interaction energy of
two identical zigzag pancake stacks which are shifted at the
vector R = Rx0 in the (xy) plane:

εint(R)

= φ2
0

32π2Λs
D 2K0

(
R

λ||

)
+ K0

(
R − 2u

λ||

)

+ K0

(
R + 2u

λ||

)
+ ln

(
R2 − 4u2

R2

)]

+ 2

λ2||

∫ ∞

0

dq

(q2 + λ−2
|| )2

× 2J0(qR) + J0(q(R − 2u)) + J0(q(R + 2u))

1 + q/

√
q2 + λ−2

|| tanh−1(D

√
q2 + λ−2

|| /2)

}
,

(17)

where J0 and K0 are the Bessel and modified Bessel func-
tions of zero order, respectively. The first term in Eq. (17)
describes the interaction of the zigzag stacks in the bulk

Fig. 3 Typical plots of the interaction energy per layer εint(R)/Lε0
vs. the distance R between two zigzag deformed stacks of pancakes for
in-plane magnetic field Bx = H0. The numbers near the curves denote
the values of film thickness d/λ||. The dashed line shows the inter-
action energy between two zigzag vortices in bulk (D → ∞) layered
SC. Dotted lines show long-range part of interaction energy (18). Here
ε0 = φ2

0/32π2λ||, s = 0.01λ||, γ = 300

layered system [16], while the last term describes the long-
range Pearl repulsion which decays as 1/R and results from
the surface contribution to the energy. In Fig. 3 we present
some typical plots of the interaction energy per one layer
εint/N vs. the intervortex distance R for different thick-
ness D of the film. Neglecting the effect of the zigzag defor-
mation u 	 λ|| on the Pearl repulsion, the long-range part
of interaction energy (17) between two zigzag PV stacks is
given once again by the formula (1) where Deff ≡ D and
tanα must be substituted by the amplitude of a zigzag de-
formation δ = u/λ|| = H0λ||/BxλJ :

εint(R) � φ2
0

8π2

(
− D

R2
δ2 + 2

R

)
. (18)

One can observe an interplay between the long-range attrac-
tive and the repulsive forces between two zigzag deformed
PV stacks, similar to the one between two tilted vortices in
layered [8] or anisotropic [10] SC films. Certainly, in a bulk
sample (D → ∞) the Pearl term in (18) vanishes, and at
long distances the dominant interaction between the zigzag
PV lines is an attraction [16]. As a result, there always exists
the minimum of the interaction potential, which realizes at
Rm ∼ 2λ|| ln(1/δ). However the second term in (18) is very
important even for a large sample thickness: for large R the
energy εint is always positive and corresponds to the vortex
repulsion . With a decrease in the distance R the attraction
force comes into play and can result in the change of the sign
of the energy at R0 = Dδ2/2 � λ||, while short-range repul-
sion is still weak. Such behavior should be accompanied by
the appearance of the minimum in the interaction potential if
R0 > Rm. This condition gives us the estimate of the critical
film thickness D∗ for which the minimum in the interaction
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potential can exist and the formation of vortex chains can be
energetically favorable:

D∗ ∼ 4

(
Bx

H0

)2 λ2
J

λ||
. (19)

So, in the presence of a dense lattice of Josephson vortices,
the AVs penetrate in the form of chains only for a large film
thickness D > D∗. Otherwise, if D < D∗, the formation
of the usual Abrikosov lattice of zigzag deformed stacks of
PVs occurs. It is interesting to note that following (18) the
intervortex attraction increases near Tc , when λ|| becomes
large. This is in contrast with the moderately anisotropic
case—Eq. (1) when Deff decreases near Tc and the repul-
sion prevails.

4 Discussion

If the in-plane, magnetic field Bx is small the crossings be-
tween JVs and PVs are rare and the attractive part of the
intervortex interaction is weak. On the other hand, if the in-
plane field is large, Bx � H0 = φ0/γ s2, the rhombic lat-
tice of JVs is so dense that the currents of adjacent JVs
overlap and this decreases the zigzag deformation of the
PV stacks [15]. Optimal regime for the long-range attrac-
tion corresponds to Bx ∼ H0. This case of the intervor-
tex interaction is presented in Fig. 3. We should note that
the Pearl interaction plays an important role even for rather
thick film—indeed, for the most favorable case Bx ∼ H0 it
completely masks attraction for the film thicknesses smaller
than 0.01 mm (if we take the BSCCO case with γ ∼ 300,
λ|| = 0.1 µm).

We may conclude that the formation of the vortex
molecules and the exotic vortex lattices with different num-
ber of vortices per unit cell should occur in the films with

the thickness D ∼ (10–100)λ||, and therefore the most suit-
able technique to observe these structures seems to be the
scanning tunneling microscopy, scanning Hall-probe or dec-
oration.
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