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Objective: This study was designed to highlight by means of numerical simulations, the correlation between 

aneurism sac pulsatility and the risk of rupture through the mechanical properties of the wall."

"

Methods: In accordance to previous work suggesting a correlation between the risk of rupture and the 

material properties of cerebral aneurysms, twelve fluid-structure interaction (FSI) computations were 

performed on 12 ”patient-specific” cases, corresponding to typical shapes and locations of cerebral 

aneurysms."

The variations of the aneurismal volume during the cardiac cycle (ΔV) are compared using wall material 

characteristics of either degraded and non-degraded tissues."

"

Results: Aneurysms were located on 7 different arteries: Middle Cerebral Artery (4), Anterior Cerebral 

Artery (3), Internal Carotid Artery (1), Vertebral Artery (1), Ophthalmic Artery (1) and Basilar Artery (1). 

Aneurysms presented different shapes (uniform or multi-lobulated) and diastolic volumes (from 18 to 392 

mm
3
). The pulsatility (ΔV/V) was significantly larger for a soft aneurismal material (average of 26 %) than 

for a stiff material (average of 4 %). The difference between ΔV, for each condition, was statistically 

significant: p = 0.005."

"

Conclusion: The difference in aneurismal pulsatility as highlighted in this work might be a relevant patient-

specific predictor of aneurysm risk of rupture."

"
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Intracranial Aneurysm kills about 15 000 people in Europe each year. Most of these people are young, 

between 40 and 60 years old. New medical imaging techniques are now able to clearly depict intracranial 

aneurysm, but no systematic screening of this disease exists at the moment. The main reason is that 2 to 6% 

of the general population lives with an aneurysm  (Wardlaw et al. 
1
), but only 0.5% of them will rupture. 

Screening of intracranial aneurysm is not justified unless being able to detect the vulnerable aneurysms. 

Subarachnoid hemorrhage is the consequence of aneurysm rupture and approximately 12% of patients die 

before receiving medical attention, 40% of the patient will die within the first month and 30% will present a 

severe permanent disability. Nevertheless, with brain imaging being more frequently and widely used, a 

growing number of intracranial aneurysms are being diagnosed, raising the problem of which aneurysms 

harbour a sufficiently high risk of rupture to merit a prophylactic repair. This question is still unsolved at the 

moment and therapeutic decision for unruptured aneurysm still a challenging point discussed by the 

neurosurgeon/neuro-interventionist based on sparse epidemiological clinical data that cannot represent the 

specific individual risk of the patient. 

Recent publications have addressed this issue and have demonstrated that, among other variables affecting 

the natural history of aneurysms, size and location represent independent predictors of both risk of rupture 

and surgical/endovascular repair outcomes
2, 3

. Other parameters, such as irregular aneurysm shape and the 

presence of blebs are recognized as markers of weak wall structure and high risk of rupture. Rapid aneurysm 

growth is also likely a risk factor for rupture
4
. 

From a mechanical point of view, the rupture of an aneurysm occurs when wall tension exceeds the strength 

of the wall tissue. Since these quantities cannot be assessed via conventional medical imaging, a natural 

approach is to compute the wall tension and set a rupture threshold. 

Few studies consider the coupled fluid - structure interaction problem (FSI), where the flow equations for 

blood are solved together with the structural equations for the tissue
5
. The problem is the lack of data on 
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mechanical properties of cerebral arteries and aneurysms, most of the studies based on a FSI
6-10

 framework 

do not use experimental mechanical behavior of the aneurysm wall as input. A few exceptions exist for the 

case of the abdominal aorta aneurysms 
11, 12

  but not for intracranial aneurysms, until recently where in a 

study by Costalat et al 
13

, the aneurysm wall properties were characterized and a classification of aneurysm 

wall behavior was carried out. One of the main conclusions of this work was that the clinical status of the 

aneurysm (unruptured, pre-ruptured and ruptured) was strongly correlated with the mechanical behavior of 

the aneurysm wall and hence a classification was proposed, (stiff, intermediate and soft). 

This was followed with FSI computations by Sanchez et al. 
14

, who demonstrated for one specific aneurysm 

that the different mechanical properties of the aneurysm wall (stiff or soft) are responsible for significantly 

different variations in aneurism volume over the cardiac cycle (pulsatility). A parametric study was also 

achieved in this work, and demonstrated that uncertainties did not change the main conclusion.  

The further application of these results to the in-vivo setting and in particular to cerebral aneurysms arising 

from the circle of Willis circle is an additional important step. 

The aim of this work was to investigate and verify the correlation between wall biomechanical properties 

(stiff and soft) and aneurismal volume variation during the cardiac cycle for a  variety of aneurysms which 

differ in shape and location in the circle of Willis. 

This study was conceived and carried out as part of the IRRAs consortium which is a research project 

dedicated to the evaluation of patient-specific risk of rupture of cerebral aneurysms. The consortium brings 

together neurosurgeons, neuroradiologists and researchers in biomechanical engineering in a common 

translational research project.  
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The details of the study establishing the correlation between the aneurysm status and tissue mechanical 

properties are given in the work of Costalat et al. 
13

. The methodology and main results are briefly given in 

the following for the sake of completeness. A similar study has been done by Duprey and al. 
15

 for the 

thoracic aortic aneurysms."

Each sample was then studied as appropriate for biomaterials
16-19

 . Only the meridional axis of the aneurysm 

was chosen in order to preserve maximum length of the aneurismal tissue in the sample, given the very 

small size of each specimen and the fragility of the tissue. Using theses measurement series, a model of the 

tissue behavior was proposed for large displacements in order to represent the evolution of the stress in the 

materials 
20

. For this purpose the assumption that the material is isotropic and non-compressible was made 

and the hyperelastic model of Mooney-Rivlin with 3 parameters was selected (1). It reads:"

"
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"

where W  is the strain energy potential, I1 = tr(C) and I2 = 1 /2 (tr
2
(C)−tr(C

2
)) are the first and second strain 

invariants of the right Cauchy-Green deformation tensor C and C10, C01, C11 are the material coefficients.  

All unruptured aneurysms presented as stiffer tissue than the ruptured aneurysms."

Their mechanical behavior was either stiff or intermediate. Conversely, all ruptured aneurysms correspond 

to a soft tissue. The corresponding parameters are given in Table 1 while the strain/stress curves are 

displayed in Fig. 1."

"
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Aneurysm geometry was obtained from 3D rotational angiography. Using dedicated software ScanIP 

(Simpleware), the aneurismal geometries were clean up by keeping only the aneurysms and the parent 

vessels in order to reduce the region of interest. A low-pass filter was applied on the geometries to reduce 

noise-to-signal ratio. The results were exported as STL files in order to proceed to numerical analysis. 

"
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The flow boundary conditions imposed were obtained from specific patient examinations by using phase 

contrast MRI for each aneurysm location (SIEMENS 3T, Skyra, Hessen, Germany). The velocity profiles 

were considered as uniform, Outlet pressure was computed by computational fluid dynamic (CFD) and used 

as boundary conditions at the outlet of the computational domain. It had been obtained by resolving the 1D 

equations in the arterial network with boundary flow conditions from imaging measurement
21

.  

 An intracranial pressure of 20 mmHg
22

  was applied on the external surface of the geometries to recreate 

the in vivo conditions."
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The blood flow within the computational domain is described by the incompressible Navier-Stokes 

equations (2), (3)."

"

ρf   = div σ
f 
,              (2)"



-"

"

"

div (vf) = 0 ,              (3)"

"

where vf  is the time dependent flow velocity vector, ρf is the density of blood and σ
f
 is the stress tensor  for 

the fluid part. The flow is assumed to be laminar, a reasonable assumption given the moderate value of the 

Reynolds number (Re ≈ 300). Blood is modeled as a Newtonian fluid (4), of density of ρf = 1050 kg/m
3
 and 

dynamic viscosity of µ = 0.004 Pa.s 
9, 23-25

."

"

σ
f 
= −pI + 2µD,         (4)"

"

where p is the pressure, I is the identity tensor and D is the rate of deformation tensor."

For the parent artery, a linear elastic model was selected in order to focus the attention on the aneurismal sac 

and to reduce the computational time. The structural equation solved for both the artery and aneurismal sac 

reads (5):"

"

ρs  =div σ 
s 
         

  
(5)"

"

where σ
s
 is the Cauchy strain for the structural part and vs stands for the structural velocity vector."

"

The aneurysm wall is modeled as an isotropic incompressible hyperelastic material (6):"

"

σ 
s 
 = ρsF F

t
 – pI ,       (6)"

"

where F is the transformation gradiant tensor, E is the Green Lagrangian strain tensor and W  is the strain 

energy potential defined in Eq.(1) ."

The material used for the parent artery has the following properties: Young modulus E = 3 MPa, Poisson 

ratio ν = 0.49, specific mass ρs = 2300 kg/m3 and thickness epa = 0.6 mm 
24, 26 

.The thickness of the aneurism 
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wall is e = 0.38 mm. A linear model was used for the arterial wall because the deformations are small 

enough in all cases (< 5%) to stay in the small deformation theory. 

Furthermore, the edge nodes of the arterial extremities are taken away of the displacement in the 

longitudinal direction 

"
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Computations were performed using the software Ansys V.13. The fluid motion equations were solved with 

the software CFX, which uses the finite volume approach and the Newton-Raphson method for solving the 

subsequent non-linear system. For the structural part, Ansys employed the finite-element method and the 

Newton-Raphson algorithm. The wall pressure resulting from the fluid was imported as boundary conditions 

in the structural analysis while wall displacement calculated by the structure solver was imported as a 

boundary condition for the fluid solver; this procedure was carried out in an iterative manner within each 

time step. It was an iterative implicit coupling. At the interface of the two physical domains, the element 

type differs and the nodes of the two meshes did not coincide, so surface interpolation was carried out
27

. For 

each FSI computation, a time step of 0.004 s was used. The structural meshes were composed by 2500 to 

5000 shell elements and the fluid meshes by 100 000 to 300 000 tetrahedral elements. These meshes were 

fine enough to ensure the convergence of the computations. The two FSI computations of the reference case 

from Sanchez et al 
14

 were performed for mesh refinements multiplied by 10 (about 30 000 elements for 

structural mesh and 1 000 000 elements for fluid mesh). Despite a significant increase of the computation 

time, the results were similar. For example, in the soft case, the maximal mesh displacement was 0.78 

instead of 0.77 mm (variation of 1.3%) and the volume variation was 44.3 mm
3
 instead of 44 mm

3
 (variation 

of 0.7%). 

A structural computation was performed before the FSI computation to determine the stress state of the 

acquired geometry. All the details about the initial stress of the aneurysm geometry are given in Sanchez et 

al 
14
,"
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2.2.5 Wall motion analysis(

"

For each aneurismal geometry, two FSI computations were performed using the two different biomechanical 

properties (stiff and soft) defined in section 2.1. Volume variations and wall motions were calculated for 

each aneurysm. For each case, the systolo-diastolic variation of the volume of the aneurysm (ΔV) was 

computed from the results. The maximal mesh displacement on the aneurysm sac Dmax was also calculated. 

ΔV is a global information about the aneurismal sac behaviour, whereas Dmax provides a local information 

(maximal displacement of a point of the aneurysm boundary)."

In order to compare ΔV and Dmax between soft and stiff material for different aneurysms, we defined the 

following ratio:"

"

Rv = ΔV
soft 

/ ΔV
stiff

"

"

Rd = Dmax
soft

 / Dmax
stiff

"

"

A pulsatility index was also defined as: Pulsatility = ΔV/V, where V is the diastolic volume of the aneurismal 

sac."

"
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"

A statistical analysis was performed to evaluate the influence of ΔV and Dmax in soft and stiff cases. The 

comparison was made by using non-parametric Wilcoxon rank test for continuous variables and Fisher exact 

test for categorical ones. Statistical significance threshold was set at 5%. Statistical analyses were performed 

using SAS version 9.1 (SAS Institute, Cary, North Carolina). "
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Twelve aneurysms from twelve different patients were computed with the stiff and the soft materials. These 

aneurysms were located on 7 different arteries: Middle Cerebral Artery right and left (MCA R and L) [4 

cases], Anterior Cerebral Artery (ACA) [3 cases], Internal Carotid Artery (ICA) [1 case], Vertebral Artery 

(VA) [1 case], Ophthalmic Artery (OA) [1 case] and Basilar Artery (BA) [2 cases]. These had a variety of 

shapes: simple (uniform) or complex (multi-lobulated). The volume varied from 18 mm
3
 to 392 mm

3
. 

Geometric information is displayed in Table 2."

"

"
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Fig.2 gives an example of the FSI results for 3 different cases, by displaying maximum displacement for the 

simulations with soft or stiff materials. All results of the patient-specific FSI computations are displayed in 

Table 3 and Table 4. Two aneurysms (5 and 6) show unusual results. For aneurysm 5, the volume variation 

is 149 mm
3
. The important initial volume of the aneurysm sac, almost 400 mm3, can explain this important 

variation. This aneurysm could be considered as a giant aneurysm. Nevertheless, the pulsatility ratio is still 

in the range of 30% in comparison to an overall mean of 25% for the cases.   For aneurysm 6, the pulsatility 

is much more important than in the other cases. That is the result of a volumetric flow rate more important in 

this location (vertebral artery) for this specific patient compare to the others (table 4). This due to the 

particularity of his cerebral arterial network."

A significant difference was observable between ΔV for a stiff material and for a soft material (p = 0.005). 

Consequently, the pulsatility index (ΔV /V) was obviously more important for a soft aneurismal sac (average 
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of 26 %) than for a stiff aneurismal sac (average of 4 %), in spite of the relatively small number of 

aneurysms considered."

Naturally, we found the same difference for the ratio Rv: Rv varies from 4 (aneurysm 7 and 10) to 16 

(aneurysm 2) for an average of 7. Rd also showed differences between stiff and soft materials but to a lesser 

extent: the minimum is 1.5 (aneurysm 6) and the maximum is 5 (aneurysm 4) and the average was 3 (Table 

5). The difference between ΔV and Dmax for each condition was statistically significant: p = 0.005 for ΔV 

and p = 0.02 for Dmax."
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Our results clearly suggest that the wall displacement provides information about the level of degradation of 

the aneurysm wall and, thanks to the findings of Costalat et al 
13

, about the rupture risk of the aneurysm sac. 

Our study shows that whatever the location of the aneurysm on the Willis circle, the aneurismal pulsatility 

was about 7 times higher for soft/ruptured aneurysms in comparison with stiff/unruptured aneurysms (26 % 

versus 4 %). That is the result of a volumetric flow rate more important in this location (vertebral artery) 

compare to the others (table 4). These observations are consistent with our previous work: the study from 

Sanchez et al
14

, using FSI computations, where a significant difference between the displacements and 

volume variations corresponding to the soft (close to the rupture) and stiff (undegraded) tissues was 

observed in a particular case. This result is generalized to the entirety of the circle of Willis in this paper. "

Interestingly, Hayakawa et al 
28

 highlighted in an observational study on 51 patients using 4D computed 

tomography angiography (CTA)
28

 that the pulsation of the aneurysm sac (or volume variation) between 

ruptured aneurysms and unruptured aneurysms was significantly different. In their study, 12/51 cerebral 

aneurysms were ruptured (RCA). Among these 12 RCA, a pulsation was observed in nine cases (75%). 

Thirty nine cerebral aneurysms were unruptured (URCA); among these 39 URCA, a pulsation was observed 

in 12 cases (30%). Two of these 12 pulsating URCA were treated by surgery because of the clinical 

background of the patients. They came to the conclusion that the detection of pulsation in an unruptured 

aneurysm could be therefore a clue of an important risk factor. Our results confirm this point of view."
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Furthermore, the precision needed to identify the aneurismal wall motion variation between 

unruptured/ruptured aneurysm would be about 0.1 mm (Dmax) or 0.5 mm
3
 (ΔV) according to our study. New 

imaging techniques may approach this high resolution level in recent literature (for example Ishida et al 
29

 

and Zhang et al 
30

)."

To date, the most relevant solution has been proposed by Karmonik et al 
31

 who used 2D phase contrast MRI 

(1.5 T MRI) to observe wall displacement over the cardiac cycle on 7 patients (7 aneurysms) and 3 different 

locations (ACom, BA and ICA). This non-invasive technique was accurate enough to measure wall 

displacements as small as 0.04 mm, in the range of the expected wall displacement reported in our study. 

New generation MRI at 3T could offer a more accurate depiction of the wall motion in the next future."

As already stated, Dmax gives local information about the wall displacement and in some cases, this 

parameter is not accurate enough to clearly demonstrate a difference between degraded/ruptured and non-

degraded/unruptured aneurysms. The variation of the maximal mesh displacement measured by the software 

depends strongly of the displacement of the artery. The deformation of the artery induces an additional 

displacement of the mesh of the aneurismal sac. Then, the bulge of the artery is added to the displacement of 

the sac in relation to the artery to obtain the total maximal mesh displacement. 

As shown in Table 4, the value of the ratio Rv is more important than Rd and allow us to better characterize 

aneurysm status. Furthermore, ΔV is a global indicator and is less sensitive to the uncertainties of the input 

parameters of the computations
14

. ΔV is thus thought to be a better parameter to evaluate the risk of rupture.  

A limitation of this study was the simplification of the aneurismal environment in the FSI computations, by 

assuming that the aneurysm lies in a fluid of a given pressure. This environment would probably influence 

the geometrical variations of the aneurysm depending on the location: friction and contact of the wall with 

other structures (bone, meninges, arachnoid trabeculae, cerebrospiral fluid) will certainly impact on the wall 

motion 
32, 33

. The assumptions made regarding the aneurysm wall is another limitation. In the present study, 

the aneurysm wall was considered as isotropic and homogenous but the anisotropy of this kind of biological 

material is well known 
34

. Nevertheless, isotropy and homogeneity were assumed because they most 

probably do not change the trends observed when comparing soft and stiff materials in this range of 

physiological solicitation. To characterize the behavior of blood, more sophisticated models can be used in 
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order to account for non-Newtonian effects, especially in the aneurismal sac (Cebral et al.
35

 and Sforza et 

al.
36

). However, these effects are expected to be prevalent only when dealing with local quantities like wall 

shear stress. This is not the case in the present study where the aneurismal volume, which is primarily 

influenced by the pressure forces generated by the blood flow, was analyzed. 

Numerous parameters are not known precisely when computing the FSI problem for a specific patient: wall 

thickness, fluid boundary conditions, artery properties and intracranial pressure. 

Despite these last limitations, the parametric study achieved in previous work
14

 showed a positive 

consistency of our results regarding the numerous sources of uncertainty involved in such FSI computations. 

Therefore, the uncertainties of the input parameters did not change the main conclusion: whatever the values 

of the parameters (in a range of physiological variations), the soft/ruptured aneurysms deform more than the 

stiff/unruptured ones.  

"
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The difference in aneurismal pulsatility as highlighted in this work might be a relevant patient specific 

predictor of aneurysm rupture. These results are consistent with recent observational data in the literature to 

date. Development of new imaging technique would allow in the near future to accurately measure wall 

motion and therefore to characterise the intracranial aneurysm vulnerability for any given patient."
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Table 1: Material coefficients of the aneurysm walls used in the present study"

Aneurysm" C10 (Mpa)" C01(Mpa)" C11(Mpa)"

Soft" 0.024" 0.026" 0.42"

Stiff" 0.39" 0" 22.14"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"
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Table 2: Aneurysm geometry informations, with V the diastolic volume, D the dome size,"

N the neck size and D/N the ratio Dome/Neck."

aneurysm" location" V (mm
3
)" shape" D (mm)" N (mm)" D/N"

1" MCA R" 61" Simple" 4.8" 4" 1.2"

2" MCA L" 51" Complex" 3.4" 3.75" 0.91"

3" ACA" 161" Simple" 5.25" 5.6" 0.94"

4" MCA R" 188" Complex" 5.5" 6.5" 0.85"

5" ICA" 392" Complex" 9.2" 5" 1.84"

6" VA" 45" Simple" 4" 2.3" 1.74"

7" MCA L" 212" Complex" 7.8" 6.6" 1.18"

8" ACA" 232" Complex" 8" 4.5" 1.78"

9" ACA" 79" Complex" 6.85" 2.9" 2.36"

10" OA" 138" Simple" 6.1" 4.3" 1.41"

11" BA" 68" Complex" 4.4" 3.9" 1.13"

12" BA" 18" Simple" 3" 3" 1"

"

"

"

"

"

"

"

"

"

"

"

"
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Table 3: Results of FSI computations for 12 different aneurysms for stiff and soft materials."

aneurysm" material" V (mm
3
)" ΔV (mm

3
)" Pulsatility = ΔV/V (%)" Dmax (mm)"

1" Soft"

Stiff"

61" 10"

1"

16"

2"

0.35"

0.12"

2" Soft"

Stiff"

51" 8"

0.5"

16"

1"

0.32"

0.09"

3" Soft"

Stiff"

161" 44"

6"

27"

4"

0.7"

0.26"

4" Soft"

Stiff"

188" 37"

7"

20"

4"

0.71"

0.15"

5" Soft"

Stiff"

392" 149"

18"

38"

5"

1"

0.45"

6" Soft"

Stiff"

45" 33"

4"

73"

9"

1.8"

1.2"

7" Soft"

Stiff"

212" 60"

14"

28"

7"

1.05"

0.48"

8" Soft"

Stiff"

232" 54"

10"

23"

4"

0.84"

0.4"

9" Soft"

Stiff"

79" 15"

3"

19"

4"

0.48"

0.15"

10" Soft"

Stiff"

138" 26"

5"

19"

4"

0.47"

0.17"

11" Soft"

Stiff"

68" 11"

2.5"

16"

4"

0.42"

0.12"

12" Soft"

Stiff"

18" 4"

0.5"

22"

3"

0.27"

0.14"

"
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Table 4: Comparison between volumetric flow rate variation and volume variation of soft aneurismal sacs. 

"

Aneurysm Systole flow rate (m
3
.s

-1
) Flow rate variation (m

3
.s

-1
) ΔV (mm

3
) 

1 3.21
 
E-06 1.78 E-06 10 

2 3.10 E-06 1.75 E-06 8 

3 2.85 E-06 1.95 E-06 44 

4 3.36 E-06 1.84 E-06 37 

5 4.21 E-06 2.15 E-06 149 

6 3.55 E-05 4.454E-05 33 

7 3.12 E-06 1.77 E-06 60 

8 1.28 E-06 1.27 E-06 54 

9 1.62 E-06 7.94 E-07 15 

10 2.92 E-07 1.36 E-07 26 

11 5.07 E-06 3.34 E-06 11 

12 5.07 E-06 3.34 E-06 4 

"

"

"

"

"

"

"

"

"

"

"

"

"

"



%."

"

"

"

"

"

Table 5: Results for Rv and Rd for the 12 cases"

aneurysm" Volume (mm
3
)" Rv = ΔV

soft 
/ ΔV

stiff
"

"

Rd = Dmax
soft

 / Dmax
stiff

"

"

1" 61" 10" 2.9"

2" 51" 16" 3.5"

3" 161" 7.3" 2.7"

4" 188" 5.3" 4.7"

5" 392" 8.3" 2.2"

6" 45" 8.25" 1.5"

7" 212" 4.3" 2.2"

8" 232" 5.4" 2.1"

9" 79" 5" 3.2"

10" 138" 5.2" 2.8"

11" 68" 4.4" 3.5"

12" 18" 8" 1.9"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"
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Figure 1:"Nominal stress/engineering strain curves representing the average mechanical properties of the 

soft and the stiff classes."
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Figure 2: FSI maximal mesh displacement results for the systolic pressure for the aneurysms 10 (top), 8 

(middle row) and 7 (bottom row) with the volumetric flow rate imposed at the inlet (On the left for the stiff 

material and on the right for the soft material). 
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