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Abstract. In this paper, we study languages of finite and infinite bi-
rooted words. We show how the embedding of free ω-semigroups of finite
and infinite words into the monoid of birooted words can be generalized
to the embedding of two-sorted ω-semigroups into (some notion of) one-
sorted ordered ω-monoids. This leads to an algebraic characterization of
regular languages of finite and infinite birooted words that generalizes
and unifies the known algebraic characterizations of regular languages of
finite and infinite words1.

1 Introduction

Infinite strings naturally arise in Software Engineering as models of (poten-
tially) non-terminating system behaviors. From an abstract point of view, infinite
strings are defined as infinite concatenations of non-empty finite strings, with an
infinite associativity law ensuring that this infinite product is compatible with
the standard concatenation of finite strings. Such an infinite string is depicted
Figure 1. The resulting algebraic structures are the (free) ω-semigroups [30],

abc da baba bab ab abab

Fig. 1. An infinite product for abcd(ab)ω.

that is, the free semigroups of finite strings with string concatenation as prod-
uct extended with the infinite product to produce infinite strings and a related
mixed product to concatenate finite strings in front of infinite strings. This leads
to the notions of ω-semigroups and morphisms that provide an algebraic char-
acterization of regular languages of infinite words (see [30]). These results also
offer quite a deep insight of the mathematical properties of Büchi’s automata on
infinite strings [3] and the associated algorithmic tools that have been developed
for model-checking and program verification (see e.g. [9] for an overview).

1 This report is the long version of [5]



Programming languages such as Haskell [12] allow for effectively defining
infinite streams of values by means of lazy evaluation mechanisms. In view of
application to temporal media programming, that is, finite and infinite sequences
of media type values such as images, sounds or control events, the abstract data
type implicitly induced by ω-semigroups is enriched with the parallel product
of finite or infinite strings. This leads to effective tools for handling temporal
media types [10]. The notion of parallel product is depicted Figure 2.

w1

w2

Fig. 2. A parallel product of two words.

It has recently been advocated that there are benefits in embedding finite
strings as well as infinite streams into (some notion of) tiled temporal media [13].
Typical temporal media synchronization constructs such as musical pickups
(anacrusis) lead to distinguishing the effective starts of temporal media – the
first note of a melody, from their logical starts – the first strong beat of that
melody [1]. Then, the notion of tiled temporal media allows for a fairly simple
modeling of these multi-level synchronization constructs. This comes from the
fact that they are equipped with a tiled product that is neither a sequential nor
a parallel product but both [21, 13].

More precisely, distinguishing string values from strings synchronization us-
age can be modeled by enriching the string data type by means of two synchro-
nization marks: the pre synchronization mark or input root, and, respectively,
the post synchronization mark or or output root (see Figure 3). These synchro-

w
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Fig. 3. A tiled temporal media (or birooted word).

nization marks tell how such enriched words are to be positioned with respect to
the temporal media that comes before, or, respectively, after, the current tempo-
ral media. The resulting objects, here called birooted words, are then equipped
with a single product, the tiled product, that is neither a sequential product as
string concatenation, not a parallel product as string “zip”, but both (see Fig-
ure 4 and [13] for a fairly simple implementation of these ideas on top of the
musical library Euterpea [11] in Haskell).

In the general setting of higher-dimensional strings and tiling semigroups [22,
23, 20], the tiled temporal media and the related tiled product lay in the math-
ematical framework of inverse semigroup theory [25] and semigroups with local
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Fig. 4. A tiled product instance

units [24, 7, 8]. Projecting tiled temporal media onto semantical tags, we ob-
tain sorts of tiled words. In the finite case, the induced algebra is the inverse
semigroup of McAlister whose elements are birooted words [27, 26].

Aiming at providing a robust mathematical framework for handling lan-
guages of tagged tiled temporal media, our purpose here is to extend the language-
theoretical tools available for languages of finite birooted words (see [17, 15, 4,
18]) to the case of infinite birooted words.

For such a purpose, we show that the obvious embedding of the free ω-
semigroups of finite and infinite words into the monoid of birooted words can be
generalized to the embedding of two-sorted ω-semigroups into one-sorted ordered
ω-monoids.

This leads to an algebraic characterization of regular languages of finite and
infinite birooted words that generalizes and unifies the algebraic characteriza-
tions of regular languages of finite and infinite words.

For the sake of simplicity, we restrict our presentation to one-sided birooted
words. The resulting monoid turned out to be the filter completion (with respect
to the natural order [25]) of the polycyclic monoid of Perrot and Nivat [29].
However, all proposed concepts and constructions can clearly be extended to
two-sided birooted words, that is, within the filter completion of the submonoid
of McAlister [25] of positive tiles. It follows that our results also apply to bi-
infinite words with the resulting ordered ω-monoids equipped with both a left
and a right infinite product.

Technically, our results capitalize on the quasi-inverse expansion of semi-
groups presented in [15, 16]. However, in the settings of infinite bi-rooted words,
a congruence property, that appears in the notion of Ehresmann semigroups [24]
is essential and was totally left unnoticed (and unused) in the finite case. The
resulting algebraic framework is thus a refinement of the one proposed in [15,
14].

2 From finite or infinite words to birooted words

In this section we define the monoid of positive finite or infinite birooted words.
From a mathematical point of view, that monoid is a submonoid of the filter



completion of the monoid of McAlister [26]. The language theory of the McAlister
monoid has been developed in [17, 15, 18, 4] for finite tiles.

Let A be a finite alphabet. Let (A∗, ·) be the free monoid of finite strings
on the alphabet A, and let (A+, Aω, ·, ∗, π) be the associated free ω-semigroup
(see [30]) with finite product ·, mixed product ∗ and infinite product π.

In the sequel, both the finite product u1 · u2 when u1, u2 ∈ A∗ or the mixed
product u1 ∗ u2 when u1 ∈ A∗ and u2 ∈ Aω may simply be denoted by u1u2.

The set A∞ = A∗ ∪ Aω of finite and infinite strings is ordered by the prefix
order ≤p, defined, for every u and v ∈ A∞, by u ≤p v when either u = v, or
u is finite and there is w ∈ A∞ such that v = uw. Extended with a maximum
element denoted by 0, the set A∞+0 ordered by the prefix order ≤p is a complete
lattice. The prefix join u ∨p v of two words u and v ∈ A∞ is then the least word
w ∈ A∞, if it exists, such that we have both u ≤p w and v ≤p w, or 0 otherwise.
Then, for every u ∈ A∗ and v ∈ A∞, the right residual u−1(v) of v by u, is
defined as the word w ∈ A∞, unique if it exists, such that v = uw. We take
u−1(v) = 0 otherwise. By definition, u−1(v) 6= 0 if and only if u ≤p v.

Definition 1. A positive (right) birooted word u is a pair u = (u1, u2) where
u1 ∈ A∗ and u2 ∈ A∞. The word u1u2 ∈ A∞ is called the domain of the birooted
word u, and the word u1, its root path. The birooted word (u1, u2) is finite when
u2 is finite. The set of positive birooted words on the alphabet A is denoted by
T ∞(A). The set of finite positive birooted words on A is denoted by T +(A).

The product u·v of two birooted words u = (u1, u2) and v = (v1, v2) is defined
as the birooted word w = (w1, w2) with w1 = u1v1 and w2 = v−1

1 (u2)∨p v2 when
v−1

1 (u2) ∨p v2 6= 0. Otherwise, we take u · v = 0 for some new birooted word 0,
with 0 · u = u · 0 = 0 for every u ∈ T ∞(A), and 0 · 0 = 0.

Examples. The following examples illustrate the definition of the product:

(ab, ab) · (a, bc) = (aba, bc) (ab, (ab)ω) · (a, bc) = 0
(ab, (ab)ω) · (a, ba) = (aba, (ba)ω) (ab, ab) · (a, (ba)ω) = (aba, (ba)ω)
(ab, ab) · (a, (bc)ω) = (aba, (bc)ω) (ab, ac) · (a, (ba)ω) = 0
(1, ab) · (1, abc) = (1, abc) (1, ab) · (1, ac) = 0

Let T ∞
0 (A) (resp. T +

0 (A)) be the set of positive birooted words (resp. finite
positive birooted words) extended with 0.

Theorem 2. The set T ∞
0 (A) equipped with the above product is a partially or-

dered monoid with unit 1 = (1, 1).

Proof. Easily proved by routine arguments. ✷

Let u 7→ uR and, resp., u 7→ uL be the right projection (or reset) and, resp.,
the left projection (or co-reset) defined on the monoid T ∞

0 (A) by

0R = 0L = 0 , uR = (1, u1u2) and uL = (1, u2)



for every u = (u1, u2) ∈ T ∞
0 (0). Then the natural order relation (see [24, 14]) is

defined by

u ≤ v when u = uR · v · uL , or, equivalently, u = uR · v

for every u and v ∈ T ∞
0 (A). Elements u such that u ≤ 1 are called subunits and

the set of subunits is denoted by U(T ∞
0 (A)).

Theorem 3. The natural order relation on T ∞
0 (A) is a partial order relation

stable under product, that is if u ≤ v then uw ≤ vw and wu ≤ wv for all
u, v, w ∈ T ∞

0 (A). Subunits and idempotents coincide, that is, we have u ≤ 1 if
and only if u = uu for all u ∈ T ∞

0 (A). Moreover, the set U(T ∞
0 (A)) ordered by

the natural order is a complete lattice with product as meet.

Proof. All statements can directly be proved by routine arguments. More inter-
estingly, on can check that the set T ∞

0 (A) of (right) birooted words is indeed
isomorphic to the filter completion of the set T +

0 (A) of one-sided finite birooted
words ordered by the natural order, or, equivalently, the polycyclic monoid of
Nivat and Perrot[29].

More precisely, an (order) filter is a non empty subset X of T +

0 (A) that is
upward closed, i.e. for every u and v ∈ T +

0 (A), if u ≤ v and u ∈ X then v ∈ X,
and downward directed, i.e. for every u and v ∈ X there exists w ∈ X such that
w ≤ u and w ≤ v. The set F(T +(A)) of filters is equipped with the product
defined, for every filters X and Y , by X ·Y = {w ∈ T +

0 (A) : ∃u ∈ X, v ∈ Y, u·v ≤
w} that is well defined since the natural order is stable under product.

Then, one can show that the mapping ϕ : T ∞(A) → F(T +(A)) that maps
every bi-rooted word u ∈ T ∞(A) to the set of finite birooted words ϕ(u) =
{v ∈ T +(A) : u ≤ v} is an isomorphism from T ∞(A) to the monoid of filters of
T +(A). ✷

Remark. In the finite case [17, 15], we consider positive two-sided birooted words.
Here, in a tile (u1, u2) ∈ T ∞

0 (A), we always have empty domain on the left of the
root path: the birooted words defined here are one-sided. A two-sided positive
birooted word would be a triple (u1, u2, u3) with a finite or infinite left word
u1 ∈ ∞A, a finite root path u2 ∈ A∗, and a finite or infinite right word u3 ∈ A∞.
All definitions and results presented here are easily extended to the two-sided
case.

An immediate interest of the notion of finite and infinite birooted words
is that the (two sorted) free omega monoid (A+, Aω) can be embedded into
the (one sorted) monoid T ∞

0 (A), that is, the pair (T ∞
0 (A), U(T ∞

0 (A))) can be
equipped with a mixed and an infinite product in such a way that it is an ω-
semigroup into which the free ω-semigroup (A+, Aω) can be embedded. More
precisely, let u ∗ v be the mixed product defined by u ∗ v = (u · v)R for all
u ∈ T ∞

0 (A) and v ∈ U(T ∞
0 (A)), and let π(ui)i∈ω be the infinite product defined

by π(ui)i∈ω =
∧

n∈ω(u0 · u1 · · · · · un−1)R for all infinite sequences of birooted
words (ui)i∈ω. Then we have:



Theorem 4. The pair (T +

0 (A), U(T ∞
0 (A))) equipped with the finite product, the

mixed product and the infinite product is a well-defined ω-semigroup.
Moreover, let θf : A∗ → T +

0 (A) be the mapping defined by θf (v) = (v, 1) for
every finite word v ∈ A∗ and let θω : Aω → U(T ∞

0 (A)) be the mapping defined
by θω(w) = (1, w) for every infinite word w ∈ Aω.

Then, the pair of mappings (θf , θω) : (A+, Aω) → (T +

0 (A), U(T ∞
0 (A))) is an

ω-semigroup embedding, that is, a one-to-one mapping that preserves the finite,
the mixed and the infinite products.

Proof. Clearly, the infinite product is well-defined since U(T0∞) ordered by the
natural order is a complete lattice with product as meet. Then, it is routine
to check that the pair (T +

0 (A), U(T ∞
0 (A)) with product ·, mixed product ∗ and

infinite product π is an ω-semigroup. Moreover, θf is clearly a one-to-one monoid
morphism and θω is one-to-one and, moreover, for every v ∈ A∗ and w ∈ Aω,
we easily check that we have θω(v ∗ w) = (θf (v) · θω(w))R. Then it is routine to
check that θω(v ∗ w) = θf (v) ∗ θω(w) for all v ∈ A∗ and w ∈ Aω and that

θω(π(ui)i∈ω) = πi∈ωθf (ui)

for every (ui)i∈ω ∈ (A+)ω. In other words, the pair of mappings (θf , θω) is an
ω-semigroup morphism. ✷

In the particular case where the infinite sequence (ui)i∈ω is constant, that is,
when there is some v ∈ T ∞

0 (A) such that ui = v for every i ∈ ω, then we write
vω for π(ui)i∈ω. One can easily check that for every idempotent (or subunit)
u ≤ 1 we have uω = u.

3 Embedding ω-semigroups into ordered ω-monoids

We show here that the above embedding of the free ω-semigroup (A+, Aω) into
the monoid of birooted words T ∞(A) can be generalized to an embedding of any
ω-semigroup S into (some notion of) ordered ω-monoid M(S).

Let M be a monoid partially ordered by a relation ≤. We assume that the
order relation ≤ is stable under product, i.e. if x ≤ y then xz ≤ yz and zx ≤ zy

for every x, y and z ∈ M . The set U(M) of subunits of the partially ordered
monoid M is defined by U(M) = {y ∈ M : y ≤ 1}.

The following definition is adapted from [18] and then, following [24], refined
with the congruence property [14, 6].

Definition 5 (Adequately ordered and E-ordered monoids). A (stable)
partially ordered monoid M is an adequately ordered monoid when:

(A1) idempotent subunits: for every x ∈ M , if x ≤ 1 then xx = x,
(A2) left and right projection: for every x ∈ M , both the left projection defined

by xL = min{y ∈ U(M) : xy = x} and the right projection defined by
xR = min{y ∈ U(M) : yx = x} exist in U(M),

It is an Ehresmann-ordered monoid (or E-ordered monoid) when, moreover:



(A3) congruence property: for every x, y, z ∈ M , if xL = yL then (xz)L = (yz)L

and if xR = yR then (zx)R = (zy)R,

Examples. Every monoid trivially ordered is an adequately ordered monoid. Ev-
ery inverse monoid ordered by the natural order [25] is also an adequately
ordered monoid with left and right projections defined by xR = x · x−1 and
xL = x−1 · x for every element x.

The notion of adequately ordered monoid is extended here with an infinite
(right) product as follows.

Definition 6 (E-ordered ω-monoid). An E-ordered ω-monoid if an E-ordered
monoid M equipped with an infinite product operator π : Mω → U(M) satisfy-
ing the following properties:

(I1) subunit preservation: for every (xi)i∈ω such that for every i ∈ ω we have
xi = x for some x ∈ U(M), then π(xi)i∈ω = x,

(I2) monotonicity: for every infinite sequences (xi)i∈ω ∈ Mω and (yi)iω, if
xi ≤ yi for every i ∈ ω then π(xi)i∈ω ≤ π(yi)i∈ω,

(I3) mixed associativity: for every infinite sequence (xi)i∈ω ∈ Mω, for every
x ∈ M , given x′

i = x when i = 0 and x′
i = xi−1 when i > 0, we have

(x · (π(xi)i∈ω))
R

= π(x′
i)i∈ω

(I4) infinite associativity: for every infinite sequence (xi)i∈ω ∈ Mω, for every
strictly increasing sequence (ki)i∈ω of positive integers with k0 = 0, given
yi = xki

· xki+1 · · · xki+1−1 defined for every i ∈ ω, we have π(yi)i∈ω =
π(xi)i∈ω.

Definition 7 (Monoid completion). Let S = (Sf , Sω) be an ω-semigroup
with finite product · : Sf × Sf → Sf , mixed product ∗ : Sf × Sω → Sω and
infinite product π : (Sf )ω → Sω. By definition (see [30]) the finite, mixed and
infinite product are related by mixed and infinite associativity laws. Let S1

f be
the semigroup Sf extended with a unit and let P∗(Sω) be the set of non-empty
subsets of Sω.

The monoid completion M(S) of the ω-semigroup S is defined to be the
M(S) = S1

f × P∗(Sω) + 0 equipped with the product · defined, for every non

zero element (x, X) and (y, Y ) ∈ M(S) by (x, X) · (y, Y ) = (xy, y−1(X) ∩ Y )
when y−1(X) ∩ Y 6= 0 with y−1(X) = {z ∈ Sω : y ∗ z ∈ X} and is defined to
be 0 all other cases, with y−1(X) = {z ∈ Sω : y ∗ z ∈ X}. Element of M(S) are
also ordered by the relation ≤ defined over M(S) by taking 0 to be the smallest
element and by (x, X) ≤ (y, Y ) when x = y and X ⊆ Y for every (x, X) and
(y, Y ) ∈ M(S).

Theorem 8. The set M(S) with the above product · and the natural order ≤ is
an E-ordered monoid with unit 1 = (1, Sω).

Proof. The proof follows from the following Lemmas.

Lemma 9 (Soundness). The set M(S) with the above product · and the natural
order ≤ is a partially ordered monoid with unit 1 = (1, Sω).



Proof. Associativity and stability of the order relation are easily proved with
essentially the same argument as in [14] though with subsets of Sω instead of
right ideals of Sf . The fact that 1 = (1, Sω) makes no difficulty either. ✷

Let U(M(S)) = {x ∈ M(S) : x ≤ 1} be the set of subunits of M(S).

Lemma 10 (Adequacy). The set M(S) is an adequately ordered monoid.

Proof. By definition, a subunit of M(S) is either 0 or an element of the form
(1, X) for some X ⊆ Sω. It follows that (A1) holds: subunits are indeed idem-
potent elements.

Let us prove (A2). We easily check that 0L = 0R = 0. Let x ∈ M(S) be some
non zero element of M(S), that is an element of the form x = (s, X). We prove
that we have xR = (1, s ∗ X) and its left projection xL = (1, X).

For the right projection, let z = (1, s∗X). We have z ·x = (x, X ∩s−1(s∗X))
but X ⊆ s−1(s ∗ X) hence z · x = x. Now, if z′ · x = x for some z′ = (1, Y ) then
we have X = X ∩ s−1(Y ) hence X ⊆ s−1(Y ) hence s ∗ X ⊆ Y that is, following
the order definition, z ≤ z′.

For the left projection, let z = (1, X). We have x · z = (s, X ∩ 1−1(X)) =
(s, X) = z. If x · z′ = x for some z = (1, Y ) we have x · z′ = (s, Y ∩ 1−1(X)) =
(s, X) hence X ⊆ Y that is z ≤ z′. ✷

Lemma 11 (Congruence property). The monoid M(S) is even an E-ordered
monoid.

Proof. We prove that M(S) satisfies (A3). Let x, y, z ∈ S. If any of x, y or z is
zero then the claim is satisfied. Assume x = (x1, X), y = (y1, Y ) and z = (z1, Z).

For the left projection, assume that xL = yL. This means that X = Y .
We have xz = (x1z1, z−1

1 (X) ∩ Z) hence (xz)L = (1, z−1

1 (X) ∩ Z). A similar
computation shows that (yz)L = (1, z−1

1 (Y ) ∩ Z) hence the claim since X = Y .
For the right projection, assume that xR = yR. This means that x1 ∗ X =

y1∗Y . We have zx = (z1x1, x−1

1 (Z)∩X) hence (zx)R = (1, z1∗x1∗(x−1

1 (Z)∩X)).
A similar computation shows that (zy)R = (1, z1y1(y−1

1 (Z) ∩ Y )). Now let z′ ∈
z1∗x1∗(x−1

1 (Z)∩X). By definition, and mixed associativity in S hence we do not
bother about parenthesis, this means there is x′ ∈ X such that z′ = z1 ∗ x1 ∗ x′

with the additional constraint that x1 ∗ x′ ∈ Z since x′ ∈ x−1

1 (Z). But since
x1 ∗ X = y1 ∗ Y , this means there exists y′ ∈ Y such that x1 ∗ x′ = y1 ∗ y′ ∈ Z

hence y′ ∈ y−1

1 (Z)∩Y and thus z′ = z1∗x1∗x′ = z1∗y1∗y′ ∈ z1∗y1∗(y−1

1 (Z)∩Y ).
This proves that (zy)R ≤ (zx)R. The reverse inequality is proved by applying a
symmetrical argument. ✷

This concludes the proof of Theorem 8. ✷

Remark. The notion of E-ordered monoid, extending Ehresmann semigroups [24],
appears in [6]. It is examined quite in detail in [14]. There, a general construction,
based on left and right ideals, is provided to embed every monoid S into a non
trivial adequately ordered monoid Q(S): the quasi-inverse expansion of S that



turned out to be E-ordered as well. One can observe that the construction of
M(S) is quite similar with right ideals replaced by non empty subsets of Sω.

We define the infinite product π almost by iteration although, as well known
in ω-language theory, the infinite product itself cannot be defined as a limit since
many regula languages are not closed in prefix topology.

Among subunits of M(S), the meet ∧ in the order correspond to the product.
Indeed, a subunit in M(S) is either zero (with just behave like (1, ∅)) or of the
form (1, X) for some non empty X ⊆ Sω with (1, X) · (1, Y ) = (1, X ∩ Y ).
The monoid of subunits U(S) is thus isomorphic to the power set P(Sω) with
intersection as product. In the next definition, when appropriate, we thus may
use at will the meet operator ∧ in place of the product.

Definition 12 (Infinite product). Let (xi)i∈ω ∈ (M(S))ω. Let π0() = 1 and

for every n ∈ ω, let πn+1(xi)i≤n = (x0 · πn(xi+1)i<n)
R

. Then, the infinite prod-
uct π(xi)i∈ω is defined by

π(xi)i∈ω = (1, Xω) ∧
∧

n∈ω πn(xi)i≤n

with Xω defined by Xω = Sω when J = {i ∈ ω : xi ≤ 1} is finite and Xω

defined by Xω = {xω} when J is infinite, with xω = π(sji
)i<ω where (ji)i∈ω is

the increasing enumeration of the elements of J and, for very j ∈ J , the (non
zero) element xj is of the form xj = (sj , Xj).

Theorem 13. The E-ordered monoid M(S) equipped with the above infinite
product is an adequately ordered ω-monoid.

Proof. Subunit preservation (I1) immediately follows from the definition. Mono-
tonicity (I2) is also easily check. Indeed, if (xi)i≤ω ≤ (yi)i∈ω then, by definition
of the order relation, this means that for every i ∈ ω if xi = (si, Xi) for some
si ∈ Sf and Xi ⊆ Sω then we have yi = (si, Yi) for some Yi ⊆ Sω with Xi ⊆ Yi.
It is then routine to check that we indeed have π(xi)i≤ω ≤ π(yi)i∈ω.

Mixed associativity (I3) quite immediately follows from Lemma 11 and the
mixed associativity in S.

It remains to check that the product and the infinite product also satisfies
the infinite associativity law (I4). Let (xi)i∈ω ∈ (Sf × {Sω})

ω
, let (ji)i∈ω a

strictly increasing sequence of integers with j0 = 0, and, for every i ∈ ω, let
yi = xji

· xji+1 · · · · · xji+1−1. We have to prove that π(xi)i∈ω = π(yi)i∈ω. By
definition, for every i ∈ ω, we have

πji+1(xj)j<ji+1
≤ πi(yj)j<i ≤ πji(xj)j<ji

hence
∧

i∈ω πi(xj)j<i =
∧

i∈ω πi(yj)j<i. In the case any of these meet is zero then
we are done. Otherwise, assuming that, for every i < ω we have xi = (si, Xi) and
yi = (ti, Yi) with ti = sji

· sji+1 · · · · · sji+1−1 we have to check that Xω = Yω as
defined above. But this immediately follows from the definition and the fact S is
an ω-semigroup. Indeed, either we have Xω = Yω = Sω, or we have Xω = {xω}



and Yω = {yω} with xω = yω that follows from the infinite associativity property
in the ω-semigroup S. ✷

Last, we aim at showing that the ω-monoid S = (Sf , Sω) can be embedded as
an ω-monoid into M(S). This means defining over M(S) an ω-monoid structure
(Mf (M), Mω(S)), which can be done by taking Mf (S) = M(S) for the “finitary”
part and Mω(S) = U(M(S)) for the “infinitary” part. The infinite product is
the one already defined, and the mixed product of two elements x ∈ M(S) and
y ∈ U(M(S)) is defined to be x ∗ y = (x · y)R.

Theorem 14. The mapping θ = (θf , θω) : (Sf , Sω) → (M(S), U(M(S))), de-
fined by θf (x) = (x, Sω) for every x ∈ Sf and by θω(y) = (1, {y}) for every
y ∈ Sω, is a one-to-one ω-monoid morphism.

Proof. We first check that the pair of sets (M(S), U(M(S))) equipped with the
product ·, the mixed product ∗ and the infinite product π is an ω-semigroup.

Lemma 9 ensures that M(S) equipped with the product · is a semigroup.
The mixed associativity law follows from Lemma 11. The infinite associativity
law follows from Theorem 13.

The fact θf is a one-to-one monoid morphism follows from the fact that for
every x ∈ Sf we have x−1(Sω) = {y ∈ Sω : x ∗ y ∈ Sω} = Sω hence we indeed
have θf (x · y) = θf (x) · θf (y) for every x, y ∈ Sf .

Let us show it preserves the mixed product. Let x ∈ Sf and y ∈ Sω. We have
θ(x ∗ y) = (1, {x ∗ y}) and θ(x) ∗ θ(y) = ((x, Sω) · (1, {y}))R = ((x, {y}))R =
(1, {x ∗ y}) hence we indeed have equality. Observe that this property is also a
particular case of the congruence property proved in Lemma 11.

It remains to prove that θ also preserves infinite products. Let (xi)i<ω ∈
(Sf )ω. By definition of θω, we have θω(π(xi)i∈ω) = (1, {π(xi)i∈ω}). By definition
of the infinite product, since θf (xi) 6≤ 1 for every i ∈ ω, we have π(θf (xi))i∈ω =
θω(π(xi)i∈ω) ∧

∧
i∈ω πi(θ(xj))j<i. Now, by definition of θf , for every i ∈ ω, we

have θf (xi) = (xi, Sω)i∈ω hence, by definition of πi, πi+1θ(xj)j≤i = (1,
⋂

j≤i x0 ∗
x1 ∗ · · · ∗ xj ∗ Sω). Now, by mixed associativity in S, we have we have π(xi)i∈ω ∈
x0 ∗x1 ∗· · ·∗xi ∗Sω for every i ∈ ω, hence θω(π(xi)i∈ω) ≤ πi(θ(xj))j<i henceforth
π(θf (xi))i∈ω = θω(π(xi)i∈ω). ✷

4 Application to language theory

We provide here a complete language theory for birooted words. Since every
non-zero birooted word can just be seen as a pair composed of a finite and a
finite or infinite word, the logical definability in Monadic Second-Order (MSO)
logic of languages of birooted words boils down to the classical finite and infinite
word language theory. More interestingly, we also provide a notion of finite-state
birooted word automata and algebras that essentially captures definability in
MSO logic.

A language of birooted words is a set X ⊆ T ∞(A) of non-zero birooted
words. The class of such languages is equipped with the boolean operators union



(also called sum), intersection and complement, plus operators derived from the
structure of T ∞

0 (A): for all X and Y ⊆ T ∞(A), the product X · X, the star X∗,
as well as X+ and the omega Xω, are defined by extending the corresponding
operators on T ∞

0 (A) in a point-wise manner, always omitting the birooted word
zero possibly resulting from these products. Additionally, we define the left and
right projections XL and XR of the language X as the sets XL = {xL ∈ T ∞(A) :
x ∈ X} and XR = {xR ∈ T ∞(A) : x ∈ X}.

Theorem 15. The class of languages of (positive) birooted words definable in
MSO is closed under all the operators defined above. Moreover, it is finitely
generated from the finite languages of (positive) birooted words, sum, product,
star, omega and left and right projections.

Proof. Easily follows from standard relativization techniques of mathematical
logic. ✷

Combining the notions of Muller ω-word automata [28] (see also [30]) and
of tile automata [18], we define birooted words ω-automata as follows.

Definition 16. A (finite) birooted word ω-automaton is a tuple A = 〈Q, δ, K, W 〉
with a (finite) set of states Q, a transition function δ : A → P(Q × Q), a fini-
tary acceptance condition K ⊆ Q × Q and an infinitary acceptance condition
W ⊆ P(Q). For technical reasons, we always assume that ∅ ∈ W .

A run of the automaton A on a birooted word u = (u1, u2) is a labeling
mapping ρ : [0, |u1 ∗ u2| + 1[→ Q that satisfies the local consistency property :
(ρ(k), ρ(k + 1)) ∈ δ((u1 ∗ u2)[k]) for every 0 ≤ k ≤ |u1| + |u2|.

The run ρ of the automaton A on the birooted word u = (u1, u2) is locally
accepting when the pair of states (ρ(0), ρ(|u1|)) that marks the input and output
roots belongs to K.

The run ρ is globally accepting when the set of states that occur infinitely
often belongs to W , i.e. {q ∈ Q : |ϕ−1(q)| = ∞} ∈ W}. Observe that when
(u1, u2) is finite then the global acceptance constraint is always satisfied since
we assume that ∅ ∈ W .

The language L(A) is then defined as the set of birooted words (u1, u2) ∈
T ∞(A) for which there exists a locally and globally accepting run of A on
(u1, u2).

Theorem 17. A language L ⊆ T ∞(A) of non nul birooted words is recognized
by a finite-state birooted word ω-automaton if and only if L is definable in MSO
and upward closed.

Proof. Assume that L is recognizable by a finite-state automaton. Since the exis-
tence of an accepting run on a birooted word amounts to checking the existence
of some labeling of the vertices of (the graph representation of) the birooted
word, this property is classically definable in MSO. Then, by definition of bi-
rooted word automata, the language L is upward closed w.r.t. in the birooted
word order.



Conversely, assume that L is definable in MSO. By applying classical au-
tomata theoretic techniques, there exists an finite-state word automaton A′ rec-
ognizing the language of finite and infinite words L′ = {u1#u2 ∈ (A + #)∞ :
(u1, u2) ∈ L}. It is not difficult to derive from the automaton A′ a birooted word
automaton A recognizing, under upward closure hypothesis, the language L. ✷

Corollary 18. The class of languages recognized by a finite-state birooted word
ω-automaton is closed under the sum, intersection, product, star and omega
operations. Moreover, it is finitely generated from finite languages of (positive)
birooted words, sum, product, star and omega, and the upward closure of left and
right projections.

The next definitions and theorem extend a similar result proved in [18] for
languages of finite birooted words.

A mapping ϕ : T ∞
0 (A) → T from birooted words to an adequately ordered

monoid T is a premorphism when ϕ(1) = 1 and ϕ(xy) ≤ ϕ(x)ϕ(y) and if x ≤ y

then ϕ(x) ≤ ϕ(y) for every x and y ∈ T ∞
0 (A).

The premorphism ϕ is adequate when, moreover, ϕ(xL) = (ϕ(x))L and
ϕ(xR) = (ϕ(x))R for every x ∈ S, and if xLyR 6= 0 and xL ∨ yR = 1 then
ϕ(xy) = ϕ(x)ϕ(y) for every x and y ∈ S. In the latter case we say that the
product xy is disjoint.

The adequate premorphism ϕ is ω-adequate when T is an adequately or-
dered ω-monoid and, for every infinite sequence (ui)0≤i ∈ (T 0

∞(A))ω, we have
ϕ(π(ui)0≤i) ≤ π(ϕ(ui))0≤i and, moreover, if the product π(ui)0≤i is disjoint (i.e.
for every 0 < k, given x = u0 · u1 · · · uk−1 and y = π(ui+k)0≤i we have xLyR 6= 0
and xL ∨ yR = 1), then we also have ϕ(π(ui)0≤i) = π(ϕ(ui))0≤i.

A language L ⊆ T ∞(A) is quasi-recognizable when there exists a finite ade-
quately ordered ω-monoid S and an ω-adequate premorphism ϕ : T ∞

0 (A) → S

such that L = ϕ−1(ϕ(T )).

Theorem 19. Let L ⊆ T ∞
0 (A) be a language of non-zero finite or infinite bi-

rooted words. The language L is quasi-recognizable if and only if it is a finite
boolean combination of upward-closed (for the natural order) languages definable
in monadic second order logic (MSO).

Proof. Assume that there is an ω-adequate premorphism ϕ : T ∞
0 (A) → S that

recognizes L. Without loss of generality, possibly by adding a new zero to S, we
may assume that ϕ−1(0) = 0. Then, for every non-zero s ∈ S, ϕ−1(s) is definable
in MSO.

Indeed, the mapping that maps every finite word u ∈ A∗ to ϕ((u, 1)) is a
monoid morphism since, for every a ∈ A, every u ∈ A∗, the product (a, 1) · (u, 1)
is disjoint. Then, given (u1, u2) ∈ T ∞(A), since (u1, u2) = (u1, 1) · (1, u2) with a
disjoint product, we have ϕ((u1, u2)) = ϕ((u1, 1))·(ϕ(1, u2)). In the case u2 is also
finite, we are done since ϕ(1, u2) = ϕ((u2, 1)R) = ϕ((u2, 1))R. In the case when
u2 is infinite, we can apply Ramsey’s theorem and infinite associativity, following
the technique used for infinite words [30], to show that (1, u2) = π((vi, 1))0≤i

with ϕ((vi, 1)) = ϕ((v1, 1)) henceforth ϕ((1, u2)) = (ϕ((v0, 1)) · (ϕ((v1, 1)))ω)R.



Then, by applying classical arguments of algebraic language theory, the fact
that L is a finite boolean combination of upward closed languages is a conse-
quence of the monotonicity of ϕ and the finiteness of S since, for every s ∈ ϕ(L),
we have ϕ−1(s) = ϕ−1(s↑) ∩ ϕ−1(s↓) with s↑ (resp. s↓) is the upward closure
(downward closure) of the singleton {s}.

Conversely, assume that L is a finite boolean combination of upward closed
languages {Li}0≤i≤n definable in MSO. For every 0 ≤ i ≤ n, by applying The-
orem 17, the language Li is recognized by a finite-state automaton Ai. Now,
by applying Lemma 20 below, for every i ∈ I, there exists an ω-adequate pre-
morphisms ϕi : T ∞

0 (A) → Si with finite Si such that Li = ϕ−1

i (ϕi(Li)) hence
we conclude by applying classical algebraic techniques that the product premor-
phism

ϕ : T ∞
0 (A) → S = S0 × S1 × · · · × Sn

defined for every x ∈ T ∞
0 (A) by

ϕ(x) = (ϕ0(x), ϕ1(x), · · · , ϕn(x))

quasi-recognized L. Proving that the product monoid S is a (finite) adequately
ordered ω-monoid raises no particular difficulties. ✷

Lemma 20. Let A be a finite-state birooted word ω-automaton. There exists a
(finite) adequately ordered ω-monoid SA and an ω-adequate premorphism ϕA :
T ∞

0 (A) → SA such that L(A) = ϕ−1

A (ϕA(L(A)).

Proof. Let A = 〈Q, δ, K, W 〉 be the automaton. Let TQ ⊆ Q × P(Q) × Q × P(Q)
be the set of automaton traces, that is, quadruples of the from (p, P, q, R) ∈
Q × P(Q) × Q × P(Q) with p ∈ P when p 6= q, with, intendedly, a input root
state p, a set of states P occurring between the input and the output root, an
output root state q and a set of states R occurring infinitely often.

The set TQ is equipped with the partial product · defined, for every (p, P, q, R)
and (p′, P ′, q′, R′) ∈ TQ, when q = p′ and either R = ∅ or R′ = ∅ or R = R′, by

(p, P, q, R) · (p′, P ′, q′, R′) = (p, P ∪ P ′, q′, R ∪ R′)

One can check that, although partial, it is nevertheless associative in the sense
that for every traces t, t′, t”, we have the product (t · t′) · t” is defined if and only
if the product t · (t′ · t”) is defined and, in that case, they are equal.

The set TQ is also equipped with an infinite product π defined, for every
sequence (pi, Pi, qi, Ri)0≤i of traces of TQ, when qi = pi+1 and Ri = ∅ for every
0 ≤ i, by

π(pi, Pi, qi, ∅)0≤i = (p0, {p0}, p0, R)

with R = {q ∈ Q : |{i ∈ ω : q ∈ Pi}| = ∞}.
Then we define SA as the power set of TQ, with product and infinite product

defined as the point-wise extensions of the product and infinite product of TQ.
That is, for every X and Y ⊆ TQ, we define X · Y as the set of all defined
products x · y in TQ with x ∈ X and y ∈ Y , and, for every sequence (Xi)0≤i



of subsets of traces, we define π(Xi)0≤i as the set of all defined products of the
form π(xi)0≤i with xi ∈ Xi for every 0 ≤ i.

It is routine to check that the monoid SA obtained, ordered by inclusion, is
an adequately ordered ω-monoid (following the technicalities used in [18, 16] for
finite birooted words or trees).

We define ϕA : T ∞
0 (A) → SA by ϕ(0) = ∅ and, for all birooted words (u1, u2),

ϕ((u1, u2)) is the set of traces of the form (p, P, q, R) such that there exists a
run ρ of the automaton A on (u1, u2) with ρ(0) = p, P = ρ([0, |u1|]), q = ρ(|u1|)
and R = {r ∈ |Q| : |ρ−1(q)| = ∞}. Again, it is routine to check that ϕA is an
ω-adequate premorphism.

We finally check that, by construction, a birooted word x ∈ T ∞
0 (A) belongs

to L if and only if there exist (p, P, q, R) ∈ ϕA(x) such that (p, q) ∈ K and
R ∈ W . ✷

5 Conclusion

We have shown that the embedding of strings and streams into tiled streams,
as done for programming purposes [21], can be lifted to arbitrary ω-semigroups,
thus unifying the finite and infinite word language theory into the emerging
language theory of birooted words.

Since regular languages of finite and infinite tiled streams can be used as
programming language subtypes, this result is also a new step in developing the
idea that, in the long term, inverse semigroups [25] may be tuned towards robust
engineering practice.

Following [16, 19], we could also aim at generalizing the present approach to
trees, possibly leading to further developments in the very subtle and difficult
emerging algebraic theory of languages of infinite trees [2]. However, there is
no evidence yet that such a generalization could lead to a successful algebraic
characterization of infinite tree languages.
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