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In autodyne interferometry, the beating between the reference beam and the signal beam 

takes place inside the laser cavity and therefore the laser fulfills simultaneously the roles of 

emitter and detector of photons. In these conditions, the laser relaxation oscillations play a 

leading role, both in the laser quantum noise which determines the signal to noise ratio 

(SNR) and also in the laser dynamics which determines the response time of the 

interferometer. In the present study, we have experimentally analyzed the SNR and the 

response time of a Laser Optical Feedback Imaging (LOFI) interferometer based on a Nd
3+

 

microchip laser, with a relaxation frequency in the megahertz range. More precisely, we 

have compared the image quality obtained, when the laser dynamics is free and when it is 

controlled by a stabilizing electronic feedback loop using a differentiator. From this study, 

we can conclude that when the laser time response is shorter (i.e. the LOFI gain is lower), 

the image quality can be better (i.e. the LOFI SNR can be higher) and that the use of an 

adapted electronic feedback loop allows high speed LOFI with a shot-noise limited 
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sensitivity. Despite the critical stability of the electronic feedback loop, the obtained 

experimental results are in good agreement with the theoretical predictions.  

© 2013 Optical Society of America  

OCIS codes: 110.3175, 280.3420.  
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1. INTRODUCTION 

When a frequency shift is introduced between the two beams of an interferometer, one realizes 

the so-called heterodyne interferometry. Resulting from this shift, the interference between the 

two waves produces an intensity modulation at the beat frequency, which can be measured by a 

photo-detector. In this paper, we refer only to autodyne laser interferometry where the 

heterodyne wave mixing takes place inside the cavity of the laser source and is finally indirectly 

detected by a photodiode.  

Since the development of the first laser in 1960, laser heterodyne interferometry has become a 

useful technique on which many high accuracy measurement systems for scientific and industrial 

applications are based [1]. Since the pioneer work of K. Otsuka, on self-mixing modulation 

effects in class-B laser [2] the sensitivity of laser dynamics to frequency-shifted optical feedback 

has been used in autodyne interferometry and metrology [3], for example in self-mixing laser 

Doppler velocimetry [4-7], vibrometry [8-10], near field microscopy [11,12] and laser optical 

feedback imaging (LOFI) experiments [13-16]. Compared to conventional optical heterodyne 

detection, frequency-shifted optical feedback shows an intensity modulation contrast higher by 

several orders of magnitude and the maximum of the modulation is obtained when the shift 

frequency is resonant with the laser relaxation oscillation frequency [17]. In this condition, an 

optical feedback level as low as -170 dB (i.e. 10
17

 times weaker than the intracavity power) has 

been detected [5].  

In previous papers [17-19], we have demonstrated that in autodyne interferometry, the main 

advantage of the resonant LOFI gain (defined by the ratio between the cavity damping rate and 

the population-inversion damping rate of the laser) is to raise the laser quantum noise over the 

detector noise in a relatively large frequency range around the laser relaxation frequency.  
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We have also established that to maximize the dynamical range of a LOFI setup, the best value 

of the shift frequency is not the relaxation frequency, but the frequency at which the amplified 

laser quantum noise is equal to the detection noise level [18,19]. Recently [20], through a whole 

analytical and numerical study, we have demonstrated that for a fixed integration time intT  of the 

detection, the best LOFI images (images with the best SNR) are always obtained when using the 

laser with the shortest laser time response R , (i.e. the lowest LOFI gain) and that the detection is 

shot noise limited if the condition RintT   is satisfied.  

The main objective of this paper is to confirm experimentally theses theoretical predictions and 

to determine the best conditions to obtain images with the best SNR (i.e. shot-noise limited) as 

fast as possible. To do this, we have compared the images quality obtained with a Nd microchip 

laser when its  temporal dynamics is free (corresponding to a long laser time response R ) and 

when it is controlled by a stable electronic feedback loop using a differentiator (giving a shorter 

laser time response RR
~   ). Experimentally, the use of a differentiator circuit allows comparing 

two lasers (i.e. the free running laser and the controlled laser) with the same output power and 

the same relaxation frequency, but having two different values of the laser response time and 

therefore two different values of the LOFI gain.  

This paper is organized as follows. Firstly, after a basic description of our LOFI setup with an 

electronic feedback loop, we briefly recall the LOFI SNR for different values of the experimental 

acquisition time ( intT ) compared to the laser dynamical response time ( R ). Secondly, the open 

loop transfer function of the electronic feedback is experimentally characterized and the stability 

of the closed loop is experimentally verified. Finally we determine the equivalent laser time 

response induced by the electronic differentiator. Thirdly, the LOFI SNRs experimentally 
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obtained with the free running laser and with the electronically controlled laser are compared. 

We finally determine the best experimental condition for high speed LOFI imaging.   

 

2. LOFI WITH AN ELECTRONIC FEEDBACK LOOP  

A. LOFI setup 

A schematic diagram of the LOFI experimental setup (i.e. the autodyne experimental 

interferometer) is shown in Fig. 1. Typically the laser is an optically pumped CW microchip 

laser with an output power outP  of several milliwatts and a typical relaxation oscillation 

frequency RF  in the megahertz range and a damping rate of the relaxation oscillation ( R1 ) in 

the kilohertz range [19, 21]. The laser is therefore a class-B laser ( RRF 1 ). The microchip 

laser beam is sent on the target, through a frequency shifter. A part of the light diffracted and/or 

scattered by the target is then reinjected inside the laser cavity after a second pass through the 

frequency shifter. Therefore, the optical frequency of the reinjected light is shifted by 

 2F ee . This frequency can be adjusted and is typically of the order of the laser relaxation 

frequency  2F RR . The laser beam waist and the laser focal spot on the target under 

investigation are optically conjugated. At this point, one can already notice that, compared to a 

conventional heterodyne setup, the autodyne setup shown here does not require complex 

alignment. Indeed, the LOFI setup is even always self-aligned because the laser simultaneously 

fulfills the function of the source (i.e. photons-emitter) and of the photo-detector (i.e. photons-

receptor). 
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The optical feedback is characterized by the electric field complex reflectivity 

(  eee jRr exp ) of the target, where the phase e describes the optical round trip between the 

laser and the target, while the effective power reflectivity (
2

ee rR  ) takes into account the 

target albedo, the numerical aperture of the collection optics, the frequency shifters efficiencies 

and the transmission of all optical components (except for the beam splitter which is addressed 

separately) and the overlap of the retro-diffused field with the Gaussian cavity beam (confocal 

feature). 

 The coherent interaction (beating) between the lasing electric field and the frequency-shifted 

reinjected field leads to a modulation of the laser output power at eF . For the detection purpose, 

a fraction of the output beam of the microchip laser is sent to a photodiode by means of a beam 

splitter characterized by a power reflectivity bsR . The photodiode is assumed to have a quantum 

efficiency of 100%. The voltage delivered by the photodiode is finally analyzed by a lock-in 

amplifier which gives the LOFI signal (i.e. the magnitude and the phase of the retro-diffused 

electric field) at the demodulation frequency eF  [15,16]. The lock-in amplifier is characterized 

by its integration time intT . Experimentally, the LOFI images are obtained pixel by pixel (i.e. 

point by point, line after line) by a full 2D galvanometric scanning and the necessary time 

needed to obtain an image composed of N pixels is roughly given by: intTN  . For high speed 

imaging (i.e. high cadence imaging), one needs to use a value of intT  as small as possible. To 

determine the SNR of the obtained LOFI images, intT  needs to be compared with the response 

time of the class-B laser (i.e. R ).In this paper, whatever the temporal values of intT  (in the 
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millisecond or microsecond range), we refer to a fast response time laser when: intTR   and to 

a slow response time laser when: intTR  .  

In the present study, the laser dynamics (and more particularly the laser time response) can be 

controlled by an electronic feedback loop using a differentiator and acting on the pumping power 

by the way of an AOM (Acousto-Optic Modulator). More precisely, the AOM is supplied by a 

RF voltage which is proportional to the temporal derivative of the laser outpout power 

fluctuation. With this electronic control, the pumping power decreases (respectively increases) 

when the laser power increases (respectively decreases) which stabilize the laser power 

fluctuations. Experimentally, the use of an electronic differentiator allows the comparison of two 

kinds of laser dynamics. The free running laser, when the feedback loop is off (i.e. inactive), and 

the dynamically controlled laser, when the feedback loop is on (i.e. active). Due to the use of a 

differentiator, the two studied lasers have the same average output power and the same relaxation 

frequency, but have two different values of the laser response time and therefore two different 

values of the LOFI gain.  

B. LOFI Modeling 

In the case of weak ( 1eR ) frequency shifted optical feedback, the dynamical behavior of a re-

injected solid-state laser can be described by the following set of equations [10, 17,18]:  

    tFINBNtNN
dt

dN
N10101  , (1a) 

        tFtF2cosIR1R2IBN
dt

dI
Ieebsecc  , (1b) 
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where, N is the population inversion, I  is the intra-cavity laser intensity (photon unit), B is 

related to the Einstein coefficient, 1  is the decay rate of the population inversion, c  is the laser 

cavity decay rate, 01N  is the pumping rate and  tN01  describes the pumping rate 

modification induced by the electronic feedback loop. Regarding the noise, the laser quantum 

fluctuations are described by the Langevin noise functions  tFN  and  tFI , which have a zero 

mean value and a white noise type correlation function [22-24]. In the set of Eqs. (1), the cosine 

function expresses the beating (i.e. the coherent interaction) between the lasing and the optical 

feedback electric field.    

The laser model presented here can be applied to three levels or four levels lasers with the 

condition that the lifetime of the upper level of the pumping transition is very short compared to 

the lifetime of the upper level of the laser transition. For example, this is condition is satisfied in 

a three levels laser such as erbium lasers as well as for a four levels laser such as neodymium 

laser. In the LOFI modeling presented here, the feedback time delay ( ), linked to the optical 

round trip between the laser and the target is completely neglected.  It means, that we only 

consider the case where the round trip time is much shorter than the inverse of the frequency 

shift ( 12  eF ). 

To investigate the small fluctuations of the laser intensity and of the population inversion, 

Eqs.(1) are linearized around the steady state given by:  

 
B

N c
s

  (2a) 

  1A
B

I 1
s  

,  (2b) 
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where 
S

0

N

N
A   is the normalized pumping parameter. Using Eq. (2b) the average photon output 

rate of the laser (number of photons per second) is defined by: scout Ip  . After the linearization 

of Eqs. (1), we take their Fourier Transforms, which converts the differential equations into 

algebraic equations. One obtains:  

           Nc011 FINNANi  (3a) 

             I
e

eSbsecS F
2

iexpIR1R2NBIIi  (3b) 

The use of the algebraic Eqs. (3), allows to determine the laser fluctuations  I . Let us call 

  LOFII : the laser fluctuations induced by the optical feedback ( eR ),   noiseI : the laser 

fluctuations induced  by the laser quantum noise (  IF and  NF ) and   pumpI : the laser 

fluctuations induced by the pump fluctuations (   0N ).) One finally easily obtains: 

           pumpnoiseLOFI IIII  (4a) 

with:  

          eeSbseLOFILOFI iexpIR1RGI    (4b) 

       0pumppump NGI   (4c) 

           
N

1

1pumpI

1

cLOFInoise FGFGI   (4d) 
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where the complex LOFI gain and the complex pumping gain are respectively given by : 

    
Ai

Ai
G

1

22

R

1c
LOFI 

   (5) 

  
AiAi

BI
G

1

22

R

2

R

c

1

1

22

R

S1
pump 





 , (6) 

where  1ABI c1Sc

2

R   is linked to the laser relaxation frequency  2F RR .   

C. The Electronic Feedback Loop (EFL)  

Due to the electronic feedback loop, the pump fluctuations   0N  and the laser fluctuations 

 I  are linked through the following equation:   

         IGGRgN EFLAOMbs0   (7) 

where  AOMG  is the transfer function of the AOM which control the pumping power,  EFLG  

is the transfer function of the electronic differentiator and g is a proportionality constant which 

allows to convert  the fluctuations of photons   I  to the fluctuations of atoms    0N .  At 

this point, one can also notice that a minus sign is applied in Eq. (7) in order that the feedback 

loop allows to decrease the fluctuations of the laser intensity [25].  Indeed, by combining Eqs. 

(4) and (7), one obtains: 

       g,G1

II
g,I

ofl

noiseLOFI 
 , (8) 

where the gain of the open feedback loop is given by [26]: 
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         pumpEFLAOMbsofl GGGgRg,G .  (9)  

At this point, one can notice that 0g   (i.e.   00,Gofl  ) allows to describe the 

conventional LOFI setup using a free running laser, while 0g   (i.e.   0g,Gofl  ) allows to 

describe a LOFI imager controlled (i.e. stabilized) by the electronic feedback loop. 

 

By using the photons output rate instead of the number of photons:    g,Ig,p cout  , 

the RF power spectrum  g,PSout   of the laser output power in presence of electronic feedback 

loop can be easily calculated using the usual definition of the spectral density function [17, 22, 

23]:  

        g,pg,pg,PS2 '

outout

'

out   (10) 

Straightforward calculations give [27]: 

        2

ofl

noiseLOFI
out

g,G1

PSPS
g,PS 

   (11a) 

with for a strong class–B laser  ( A1R  ) [17,18]:   

        e

2

LOFI

2

out

2

bseLOFI GpR1RPS   (11b) 

     2

LOFIoutnoise Gp2PS  ,  (11c) 

and therefore:  
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    
    oute

2

oute2

ofl

2

LOFI

out p2pR
g,G1

G
g,PS 

 . (12) 

To make physics interpretation of this result, let us look at the ideal situation, where in the open 

loop gain  g,Gofl   defined by Eq. (9), the transfer function of the AOM controlling the 

pumping power is a pure normalized real function (i.e. a pure amplitude function introducing no 

phase shift):    

   1GAOM   (13) 

and where the electronic feedback loop uses a perfect RC differentiator,  i.e. a high pass filter 

working far below the cut-off frequency c : 

    
cc

EFL i
i

i
G

c




 

 (14) 

By combining Eqs. (5) (6), (9) (13) and (14), one obtains easily, the square modulus of the 

equivalent LOFI gain: 

        
  2

c

2

R

c

1
bs1

2222

R

2

1

22

c

2

ofl

2

LOFI
2

LOFI

gRA

A

g,G1

G
g,G

~

c 











 

 (15) 

Without the electronic feedback loop (i.e. 0g  ), one obtains:  

              21

2

R

2

c

A2

1

222

R

2

2

1

22

c2

LOFI

2

LOFI
A4A

A
G0,G

~

1R 


  , (16) 
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which corresponds the conventional LOFI Lorentzian gain profile with a resonance width given 

by  A1R  , corresponding to a laser response time [20]:  

 

1

1
R

2

A




   (17). 

With the electronic feedback loop (i.e. 0g  ), Eq. (15) shows that the resonance width is larger:  

 
c

2

R

c

1
bs1R gRAg

~





  and therefore the laser response time is shorter: 

  
1

c

2

R

c

1
bs1

R
2

gRA

g~






















  (18) 

Finally, we conclude this section by reminding that the electronic feedback loop using a 

differentiator allows controlling the laser response time without any modification of the laser 

relaxation oscillations frequency and of the average value of laser output power. 

D. LOFI SNR with the electronic feedback loop  

Using a lock-in amplifier with an integration time intT , the LOFI signal   g,R,FS
~

eeLOFI  and the 

LOFI noise    g,T,FN
~

inteLOFI  at the demodulation frequency eF  are given by    

         
 dFT,FF2F

g,F2G1

F2PS
R2g,R,FS

~ 2

inteint2

ofl

LOFI2

bsee

2

LOFI  (19) 
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        



 dFT,FF2F

g,F2G1

F2PS
R2g,T,FN

~ 2

inteint2

ofl

noise
bsinte

2

LOFI  (20) 

where for an integration time intT : 

  
2

2

int

2

int

2

intint

T

1T

1
T,F


   (21) 

is assumed to be a first order power filter. 

By combining Eqs. (19) and (20) with Eq. (21), one finally obtains for a class-B laser 

(  g~1F RR  ) the following analytical expressions of the LOFI signal and of the LOFI noise: 

       2

eLOFI

2

out

2

bse

2

bsee

2

LOFI g,F2G
~

pR1RR2g,R,FS
~    (22) 

      
    2Re

2

Rint

2

c

Rintint

R
outbsinte

2

LOFI

FF2
g~

1

T

1g~
1

T

1

T

g~

2

1
pRg,T,FN











 .  (23) 

Finally, by using Eqs. (22) and (23), one can determine the stationary LOFI SNR:   

     g,T,FN

g,R,FS
g,T,R,FSNR

inteLOFI

eeLOFI
intee  . (24) 

Fig. 2 shows the evolution of the stationary LOFI SNR ( LaserLOFI NS ) versus the normalized 

shift frequency ( Re FF ) for different values of the lock-in integration time ( intT ) compared to the 

laser response time ( R ).  Fig. 2(a) shows that the stationary LOFI SNR ( LaserLOFI NS ) is 
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frequency independent and above all shot noise limited for a laser with a short response time 

( RT int ):  

     intoutbsbseRintee TpRR1Rg,T,R,FSNR   (25) 

On the other hand, for a laser with a long response time ( RT int ), the stationary LOFI SNR is 

frequency dependent [Fig. 2(c)]. It is larger than the LOFI shot-noise limit, near the relaxation 

frequency and smaller than the LOFI shot-noise limit, far away from the relaxation frequency. 

More precisely we have already demonstrated in [20] that the LOFI SNR is larger (by a factor 

given by 1
int


T

R ) than the LOFI shot noise limit when working at the resonance frequency and 

lower (by a factor given by 1int 
R

T

 ) when working very far away from the resonance 

frequency. Therefore by controlling the effective laser response time  g~
R  by means of the 

electronic feedback loop, we are able to control the LOFI SNR.  

 

Fig.2 also allows a comparison of the LOFI SNR obtained with two lasers having the same 

relaxation frequency, the same laser output power, but different laser response times. 

As we can see, the LOFI SNR is higher, with the slowest laser (i.e. the laser with the longest 

response time) when working at the relaxation frequency and with the fastest laser (i.e. the laser 

with the shortest response time) when working far away from the relaxation frequency.  

In the following of the present manuscript, only this last case has been experimentally study, 

because it corresponds to conventional condition  for LOFI experiments (  2FF RRe ) 

which allows to avoid saturation effects and also the signal perturbations induced by the laser 
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transient dynamics [20]. More precisely, our experimental study has been made by adjusting the 

frequency shift to: Re F05.1F  . Looking at Fig. 4, this frequency seems to be a good 

compromise between the conventional LOFI experimental condition mentioned above, the 

observation of a significant difference between the SNR of the lasers with the fast and the slow 

response time and also the measurement of sufficient SNR (>2), even for a short integration time 

[see Fig. 4(c)].  

 

3. EXPERIMENTAL AND NUMERICAL RESULTS 

A. The electronic feedback loop 

To verify the stability of the electronic feedback loop, we have firstly evaluated the open loop 

gain  g,Gofl   which appears in the denominator of Eq. (11a). As explained previously [Eq. 

(9)],  g,Gofl   is the product of three different transfer functions,  pumpG , the transfer 

function of the pump modulation,  EFLG , the transfer function of the electronic differentiator, 

and  AOMG  the transfer function of the AOM which controls the pumping power. By using a 

lock-in amplifier, gain and phase of the different transfer functions are experimentally 

determined for RF frequencies (  2F ) between 100 kHz and 2.2 MHz. By fitting our 

experimental data, we have determined:  

    
AiAi

BI
G

1

22

R

2

R

c

1

1

22

R

S1
pump 





  (26a) 

    AAOM iexpG   (26b) 
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      E

c

EFL iexp
i

i
G 

 , (26c) 

with: 6

c

1 105 


, kHz9502R  , 14

1R s104A  , µs55.1A  , 

kHz17502c   and  µs125.0E  . 

 

By looking at the above parameters, one can notice, that our free running laser is a class-B laser 

( RR  ), with a high LOFI gain (   1G
1

c
RLOFI 

 ) and with a relaxation frequency 

below the cut-off frequency of the electronic differentiator ( cR  ). In Eq. (26c), the 

electronic time delay E , is principally due to the electric links, before, inside (mainly the 

operational amplifier) and after the electronic differentiator. This time delay induces a relatively 

small phase shift in the feedback loop ( 24.075.0ER  ). On the other hand, the acoustic 

time delay A  is much longer. It is the time needed by the acoustic wave to go from the electrode 

of the AOM to the laser pump beam inside the quartz crystal. This long time delay induces a 

larger phase shift, depending on the pump beam position in the AOM 

( 8.49.149.10.6 AR  ). To compensate for these phase shifts, the AOM position 

has been adjusted to µs55.1A  , so that    3AER . A minus sign has also be added in 

the electronic differentiator [compare Eq. (26c) with Eq. (14)], by simply inverting its output 

voltage, to finally obtain:    1jexp AER  .  

 

In Eq. (9), the proportionality constant bsgR allows to take into account all the optical losses and 

the electronic amplifications (or attenuations) which occur in the loop. When working with the 
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best experimental conditions to obtain a stable and robust loop, we have experimentally 

determined:  

 4

bs 105gR   (26d) 

At this point, using Eq. (17) and improperly Eq. (18) obtained for a perfect differentiator, one 

can estimate the response time of the free running laser, µs50R  , and of the laser controlled 

by the stable loop using a perfect differentiator,   µs4.2g~
R  . By using the electronic feedback 

loop, we can therefore expect to decrease the laser response time by a factor with a maximum 

value of 20. 

 

Figs 3(a) and 3(b) show the experimental Bode diagrams of the open loop gain (gain and phase 

versus frequency). As we can see, the electronic feedback loop principally acts at the laser 

relaxation frequency and in its vicinity, and the experimental results agree with the product of the 

fitted transfer function given, by Eqs. (26). As it is well known in the standard theory of 

electronic control,  the maximum phase shift at the two unity gain points has to be less than 2 in 

order to have a stable feedback loop [27,28]. This task which is naturally difficult to realize 

because of the relaxation oscillations that introduce a  phase shift, is further complicated in our 

case, due to the relatively high value of the relaxation frequency of the microchip lasers which 

lies in the megahertz range (in contrast with the usual kilohertz range for the standard laser 

cavities). The bode diagram is a useful tool in designing the electronic control loop [27,28], 

however, it does not easily show us the stability of the loop mentioned above. On the other hand, 

the Nyquist diagram (imaginary part of the open loop gain versus its real part, for different 

frequencies) allows us to analyze the stability in a simpler way. Figs 3(c) and 3(d) show that the 
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instability point  0,1   is not circled by the loop, hence the loop is stable. It also shows that the 

loop is very near the instability point and enters the unity circle [only shown on Fig. 3(d)] around 

the instability point, for different frequencies and consequently there will be a noise increase for 

these frequencies. The stability of our loop is rather critical and this prevents one from using a 

larger value of the open feedback loop gain, i.e. a higher value of g [see Eq. (9)]. 

Now we present the experimental results obtained with our Nd microchip laser operating with 

the feedback loop described previously. Fig. 4 shows the dynamical behavior of the free running 

laser ( 0g  ) and of the laser controlled by the electronic feedback loop ( 0g  ). The comparison 

of Figs. 4(a) and 4(b) shows how the temporal behavior of the laser is stabilized by the electronic 

feedback loop. Indeed, one can observe a significant reduction of the laser temporal fluctuations.  

Figs. 4(c) and 4(d) show the corresponding RF power spectrum. In agreement with the Bode 

diagram, one can see that the electronic feedback loop mainly acts at the laser relaxation 

frequency and its vicinity. Indeed, when reducing the height of the power spectrum, one can 

observe an increase of the resonance width, which finally corresponds to a reduction of the laser 

response time.  

 

In these figures, the experimental noise power spectra have been adjusted by using Eq. (12) with 

0R e   and respectively,   00g,Gofl   for the free running laser [Fig. 4(c)] and 

  00g,Gofl   for the controlled laser [Fig. 4(d)]. In Fig. 4(c), the discrepancies between the 

analytical and experimental curves, at low and high frequencies, come respectively from 

polarization mode coupling [29,30] and nonlinear noise laser dynamics, not included in our 

analytical development of Sec. II B [27]. Nevertheless, Fig. 4(c) allows us to determine the free 

laser dynamics parameters: kHz9502R   and µs50R  .     
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One can see in Fig. 4(d), that the noise power spectrum of the controlled laser has been adjusted 

two times. Firstly, by using the real feedback loop, where  g,Gofl    is defined by using Eqs. 

(26) and secondly by using an ideal feedback loop (corresponding to an ideal differentiation), 

where  g,Gofl   leads to Eq.(15). In the real case, one can observe a good (but not perfect) 

agreement between the experimental result and the analytical prediction. As mentioned 

previously, the difference can be explained by the fact that our loop is very near the instability 

point and that its stability is rather critical [27,28]. Finally, using Eq. (18), the ideal case allows 

us to determine, the response time of the controlled laser:   µs3g~
R  . As expected, this time is 

shorter than the response time of the free running laser:   17g~
RR  . This laser response time 

is the shortest that we have been able to obtain with our electronic feedback loop. As already 

mentioned, this technical limit comes from the critical stability of our feedback loop, which 

prevents one from using a larger value of the open feedback loop gain, i.e. a higher value of g 

[see Eq. (9)]. At this point, one can notice that the obtained minimum value of   µs3g~
R    is 

very far away the physical limit of the LOFI method.  

Indeed, as it is already explained in [20], the shortest possible value of the laser response time is 

given by:  

 
 

outcbsopt

optR

p

hcNEP

Rr 



2

22

1

, 


 , (27) 

Where the detection noise level is characterized by its noise equivalent power: NEP 

( HzW ),For example, for a laser with an output power mW10Pout   

( s/photons105p 16

out   at nm1064 ), a cavity damping rate 19

c s105   and for a 
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setup with a beam splitter reflectivity 5.0R bs   and a noise equivalent power 

HzW106NEP 9  , one obtains finally   10000~ns58 Ropt,R  . With our feedback loop 

we are therefore very far the ultimate limit of the LOFI method.  

 Finally, one can also observe on Fig. 4(d) an experimental increase (by comparison with 

the case of the ideal feedback loop) of the noise   on the left shoulder of the noise power 

spectrum (typically in the vicinity of 8.0FF R    ). As previously mentioned, this noise excess 

comes from the fact that our feedback loop enters the unity circle around the instability point [see 

Fig. 3(d)]. 

 

B. LOFI images with an electronic feedback loop   

 To show the effect of the electronic feedback loop on LOFI imaging, we have compared 1D 

scans obtained for different experimental conditions (i.e. for different values of the integration 

time intT  compared with the laser response time  g~
R . More precisely, we have compared in 

Fig. 5, the LOFI signals obtained by using the free running laser ( 0g  ), with a laser response 

time:   µs500~
RR  , and by using the controlled laser ( 0g  ), with a shorter response time: 

  µs3g~
R  . The two lasers have the same output power ( outp ) and the same relaxation 

frequency ( RF ). Here, our aim is to determine the best laser, for high quality imaging (i.e. large 

LOFI SNR). Our study has been made outside the resonance frequency ( Re FF  ), which 

corresponds to typical experimental conditions to avoid LOFI saturation effect and also the 

perturbations induced by the laser transient dynamics [18-20]. 
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Fig.5 shows a comparison between numerical (left column) and experimental (right 

column) results. The numerical results have been obtained by using a Runge-Kutta method to 

solve the set of differential equations (1). The target under investigation is a reflectivity slab with 

0R e    only in the central part of the 1D scans (pixel 26 to 50). For the current numerical study, 

the value of the effective reflectivity ( 10

e 104R  ) has been chosen to obtain a good 

agreement between the experimental and the numerical results. Moreover, this very low value 

allows studying the LOFI sensitivity under ultimate conditions: 

  s/photons105pR1R 6

out

2

bse   ( pW06.0 ), i.e. near the shot noise limit, for the 

shortest integration time (   photonsµspRR outbse 251
2  ).  

 For the experimental study, the target under investigation is a diffusive object. To avoid 

any signal fluctuation induced by some differences between the effective reflectivity of two 

adjacent points of the target, the focal spot of the beam is kept fixed on the target. Then, the 

reflectivity slab is simulated by using a mechanical chopper in front of the diffusive target. The 

experimental scan is therefore a temporal scan (i.e. a virtual scan compared to a conventional 

spatial scan) where the beam position is kept fixed and the target reflectivity is time dependent 

due to the mechanical chopper.  

Although the experimental scan is virtual, one can observe on Fig. 5 a similarity between 

the experimental and the numerical graphs. The results of Fig. 5 also show, a good agreement 

with the theoretical predictions [Eq. (25) and the resulting Fig. 2]. Indeed, whatever the 

integration time, the LOFI SNR is always better (i.e. the reflectivity slab is easier to see) when 

we work with the laser controlled by our electronic feedback loop (i.e. with the laser having the 

shortest response time).  The quality difference (i.e. the SNR) between the 1D images obtained 
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with the two lasers is much more important when the integration time is short (i.e. when the 

imaging speed is fast).  

Table 1 shows the LOFI SNR obtained from the numerical and the experimental results 

of Fig. 5. For comparison, this table also gives the LOFI SNR analytically calculated from Eq. 

(24) and the corresponding shot noise limit [Eq. (25)]. 

As we can see, the LOFI SNR obtained with the controlled laser (i.e. with   µs3g~
R  ) 

is always higher than the LOFI SNR obtained with the free running laser (i.e. with µs50R  ). 

One can also point out that with the controlled laser, the experimental condition:  g~T Rint   is 

satisfied, and therefore the LOFI SNR is near the shot noise limit. On the other hand, with the 

controlled laser, one has: RintT  ,  and the LOFI SNR is always below the shot noise limit.  

Even if the result of table 1 seems to less significant than the visual effect given by the 

observation of Fig. 5, one can finally conclude that when the laser response time is shorter, the 

image quality can be better (i.e. the LOFI SNR can be higher). Therefore, the use of an adapted 

electronic feedback loop can allow high speed LOFI Imaging (i.e. imaging with a short 

integration time) with a shot-noise limited sensitivity, when working under typical LOFI 

experimental conditions (i.e. Re FF  ) 

 To confirm the previous results, but this time with a conventional spatial scan of the laser 

beam on the target (i.e. not a virtual temporal scan with a mechanical chopper), Fig. 6 shows two 

LOFI images of the edge of a metallic ruler. The first one is obtained with the free running laser 

and the second one with the laser controlled by the electronic feedback loop. One can easily 

observe that the SNR obtained with the controlled laser ( dB17SNR b  ) is higher than the SNR 

obtained with the free running laser ( dB11SNR a  ). The effective reflectivity of the ruler is 



 24

estimated to be: 10

e 102R  , which corresponds to the detection of:  

  photons160µs50pR1R out

2

bse   for each pixel of the bright part of the ruler.     

 

5. CONCLUSION 

In a LOFI setup, the beating between the reference beam and the signal beam takes place inside 

the laser cavity and therefore the laser fulfills simultaneously the roles of emitter and detector of 

photons. In these conditions, the laser relaxation oscillations play a leading role both in the laser 

quantum noise which determines the SNR and in the laser transient dynamics which determines 

the response time of the LOFI setup. In the present study, we have experimentally compared the 

stationary LOFI SNR of two lasers. The first one is a free running microchip laser while the 

second one is the same laser, dynamically controlled by an electronic feedback loop. More 

precisely, by using an electronic differentiator acting on the pumping power by the way of an 

AOM, the pumping power decreases (respectively increases) when the laser power increases 

(respectively decreases), which stabilizes the laser power fluctuations. Experimentally, the use of 

an electronic differentiator allows the comparison between two kinds of lasers. The free running 

laser, when the feedback loop is off (i.e. inactive), and the dynamically controlled laser, when the 

feedback loop is on (i.e. active). Thanks to the use of a differentiator, the two studied lasers have 

the same average output power and the same relaxation frequency, but have two different 

response time values.  

Firstly, we have analytically shown that the LOFI SNR is higher with the slowest laser (i.e. the 

laser with the longest response time) when working at the relaxation frequency or with the fastest 

laser (i.e. the laser with the shortest response time) when working far away from the relaxation 
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frequency. Therefore, by controlling the effective laser response time  g~
R  with the electronic 

feedback loop, we are able to control the LOFI SNR.  

Secondly, using a Nyquist diagram, we have experimentally shown that our electronic feedback 

loop using an electronic differentiator is stable, but rather critical. This limits the open loop gain 

value and consequently, the laser response time can only be decreased by a factor with a 

maximum value of the order of 20 (     200~g~
RR  ). This laser response time is the shortest 

that we have been able to obtain due to the critical stability of our electronic feedback loop. The 

obtained response time is still far away the physical limit of the LOFI method.  

Despite this technical limit, LOFI images (1D and 2D) obtained with and without the electronic 

feedback loop have been compared to determine the best laser conditions for high quality 

imaging (i.e. large LOFI SNR). To avoid LOFI saturation effect and also the perturbations 

induced by the laser transient dynamics, our experimental study has been made, not at the 

relaxation frequency, but in its neighborhood ( Re F05.1F  ) which roughly corresponds to 

conventional LOFI experimental condition. In agreement with the analytical predictions, our 

experimental study clearly shows that whatever the lock-in integration time, the LOFI SNR is 

always better when using the laser controlled by the electronic feedback loop i.e. the laser with 

the shortest laser response time. 

 One can also notice that with the controlled laser, the experimental condition:  g~T Rint   

is satisfied and therefore the LOFI SNR is near the shot noise limit while for the free running 

laser, one has: RintT   and the LOFI SNR is always lower than the shot noise limit.  

One can finally conclude that when the laser response time is shorter, the image quality 

can be better (i.e. the LOFI SNR can be higher). Therefore, the use of an adapted electronic 

feedback loop can allow high speed LOFI Imaging (i.e. imaging with a short integration time) 
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with a shot-noise limited sensitivity, when working under typical LOFI experimental conditions 

(i.e. Re FF  ). 
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FIGURE CAPTIONS 

Fig. 1. Schematic diagram of the LOFI setup with an electronic feedback loop using a 

differentiator. L1, L2 , L3, L4 and L5: Lenses, AOM: Acousto-Optic Modulator, BS: Beam Splitter 

with a power reflectivity Rbs, GS: Galvanometric Scanner, FS Frequency Shifter with a round 

trip frequency-shift Fe, PD: Photodiode. The lock-in amplifier is characterized by its integration 

time intT . The Nd
3+

: microchip-laser is characterized by its output power outp  (photons/s), its 

relaxation frequency RF  and its dynamical response time R . The optical feedback from the 

target is characterized by the effective reflectivity 1R e  .  

 

Fig. 2. Stationary LOFI SNR ( LaserLOFI NS ) versus the normalized shift-frequency ( Re FF ) for 

different values of the lock-in integration time: a) µsT 500int  , b) µsT 50int  , c) µsT 5int  . For 

each integration time, the dotted line and the solid line show the exact value of the LOFI SNR 

[Eq. (24)], when respectively µsR 50  and µsR 3 , while the dashed line shows the 

corresponding LOFI shot-noise limit [Eq. (25)]. The calculation conditions are: 
10104 eR  

and 2/1R bs  . The laser is a class-B laser with: sphotonspout /105 16  ( mWPout 10   at 

nm1064 ) and  kHz950FR  . The vertical dash-dotted line ( Re FF  05.1 ) corresponds to 

the working frequency for the remainder of this manuscript. 

 

Fig. 3. Open-loop transfer function   eofl FG : (a) Bode diagram for the gain (i.e. the modulus); 

(b) Bode diagram for the phase; (c) Nyquist diagram in the complex plane; (d) Zoom of the left 

part of the Nyquist diagram near the instability point   0,1 . ○: experimental results; Solid 

lines: fitted transfer function; Dashed line: unity circle around the instability point. 

 

Fig. 4. Dynamical behavior of the free running laser (left column: Figs. (a) and (c)) and of the 

laser with the electronic feedback control (right column: Figs. (b) and (d)).  Top row: temporal 

behavior; Bottom row: corresponding RF power spectra with kHz950FR  .The RF power 

spectra are fitted by using [Eq. (12)] with 0R e  . Fig. 4(c), dashed line: 0Gofl  , i.e. no 

feedback loop, µs50R  . Fig. 4(d): dashed line: 0Gofl   and calculated with the parameter of 

the ideal feedback loop,   µs3g~
R  . Fig. 3(d), dash-dotted line: 0Gofl    calculated with the 

parameter of the real feedback loop, i.e. experimentally determined) [Eqs. 26]. 

 

Fig. 5. Numerical (left column) and experimental (right column) 1D LOFI scans, for different 

values of the lock-in integration time: a) & e) µsT 50int  , b) & f) µsT 20int  , c) & g) 

µsT 10int  , d) & h) µsT 5int  . Curves with circles (○): results obtained with the free running 

laser   (i.e. µsR 50 ); Solid curves results obtained  with the electronic feedback control (i.e. 

µsR 3 ). Experimental conditions: mWPout 10  (i.e. sphotonspout /105 16  at 

nm1064 ); kHz950FR  ; Re FF  05.1 ; 5.0R bs  ;  the target is a reflectivity block with 
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0eR (pixels 1-25 & 51-70) and 10104 eR  (pixels 26-50) with 

  pWsphotonspRR outbse 06.0/1051 62  . 

 

Fig. 6. LOFI images of the edge of a metallic ruler.  (a)  image obtained with the free running 

laser (i.e. µsR 50 ) and giving a signal to noise ratio of: dBSNRa 11 ;  (b) image obtained 

with the laser controlled by the electronic feedback loop (i.e. µsR 3 ) and giving 

dBSNRb 17 .  Experimental conditions: mWPout 10  (i.e. sphotonspout /105 16  at 

nm1064 ), kHz950FR  ; Re FF  05.1 ;  5.0bsR  and µsT 50int  . The SNR have been 

calculated by dividing the mean values of the measured signals on the ruler (right rectangle) and 

outside the ruler (left rectangle). The effective reflectivity of the ruler is estimated to be : 
10

e 102R  , which corresponds to the detection of:  

  photons160µs50pR1R out

2

bse   for each pixel of the bright part of the ruler. 
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Fig. 1. Schematic diagram of the LOFI setup with an electronic feedback loop using a 

differentiator. L1, L2 , L3, L4 and L5: Lenses, AOM: Acousto-Optic Modulator, BS: Beam Splitter 

with a power reflectivity Rbs, GS: Galvanometric Scanner, FS Frequency Shifter with a round 

trip frequency-shift Fe, PD: Photodiode. The lock-in amplifier is characterized by its integration 

time intT . The Nd
3+

: microchip-laser is characterized by its output power outp  (photons/s), its 

relaxation frequency RF  and its dynamical response time R . The optical feedback from the 

target is characterized by the effective reflectivity 1R e  .  
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Fig. 2. Stationary LOFI SNR ( LaserLOFI NS ) versus the normalized shift-frequency ( Re FF ) for 

different values of the lock-in integration time: a) µsT 500int  , b) µsT 50int  , c) µsT 5int  . For 

each integration time, the dotted line and the solid line show the exact value of the LOFI SNR 

[Eq. (24)], when respectively µsR 50  and µsR 3 , while the dashed line shows the 

corresponding LOFI shot-noise limit [Eq. (25)]. The calculation conditions are: 
10104 eR  

and 2/1R bs  . The laser is a class-B laser with: sphotonspout /105 16  ( mWPout 10   at 

nm1064 ) and  kHz950FR  . The vertical dash-dotted line ( Re FF  05.1 ) corresponds to 

the working frequency for the remainder of this manuscript. 
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Fig. 3. Open-loop transfer function   eofl FG : (a) Bode diagram for the gain (i.e. the modulus); 

(b) Bode diagram for the phase; (c) Nyquist diagram in the complex plane; (d) Zoom of the left 

part of the Nyquist diagram near the instability point   0,1 . ○: experimental results; Solid 

lines: fitted transfer function; Dashed line: unity circle around the instability point. 
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Fig. 4. Dynamical behavior of the free running laser (left column: Figs. (a) and (c)) and of the 

laser with the electronic feedback control (right column: Figs. (b) and (d)).  Top row: temporal 

behavior; Bottom row: corresponding RF power spectra with kHz950FR  .The RF power 

spectra are fitted by using [Eq. (12)] with 0R e  . Fig. 4(c), dashed line: 0Gofl  , i.e. no 

feedback loop, µs50R  . Fig. 4(d): dashed line: 0Gofl   and calculated with the parameter of 

the ideal feedback loop,   µs3g~
R  . Fig. 3(d), dash-dotted line: 0Gofl    calculated with the 

parameter of the real feedback loop, i.e. experimentally determined) [Eqs. 26].    
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Fig. 5. Numerical (left column) and experimental (right column) 1D LOFI scans, for different 

values of the lock-in integration time: a) & e) µsT 50int  , b) & f) µsT 20int  , c) & g) 

µsT 10int  , d) & h) µsT 5int  . Curves with circles (○): results obtained with the free running 

laser   (i.e. µsR 50 ); Solid curves results obtained  with the electronic feedback control (i.e. 

µsR 3 ). Experimental conditions: mWPout 10  (i.e. sphotonspout /105 16  at 

nm1064 ); kHz950FR  ; Re FF  05.1 ; 5.0R bs  ;  the target is a reflectivity block with 

0eR (pixels 1-25 & 51-70) and 10104 eR  (pixels 26-50) with 

  pWsphotonspRR outbse 06.0/1051 62  . 
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(a)

(b)

 
Fig. 6. LOFI images of the edge of a metallic ruler.  (a)  image obtained with the free running 

laser (i.e. µsR 50 ) and giving a signal to noise ratio of: dBSNRa 11 ;  (b) image obtained 

with the laser controlled by the electronic feedback loop (i.e. µsR 3 ) and giving 

dBSNRb 17 .  Experimental conditions: mWPout 10  (i.e. sphotonspout /105 16  at 

nm1064 ), kHz950FR  ; Re FF  05.1 ;  5.0bsR  and µsT 50int  . The SNR have been 

calculated by dividing the mean values of the measured signals on the ruler (right rectangle) and 

outside the ruler (left rectangle). The effective reflectivity of the ruler is estimated to be : 
10

e 102R  , which corresponds to the detection of:  

  photons160µs50pR1R out

2

bse   for each pixel of the bright part of the ruler. 
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Table 1. LOFI SNR for the free running laser (i.e. µsR 50 );  and for the laser with the 

electronic feedback control (i.e. µsR 3 ); The laser is a class-B laser with: 

sphotonspout /105 16  ( mWPout 10   at nm1064 ) and  kHz950FR  .  The 

experimental conditions are: Re FF  05.1 , 5.0R bs  ,  and 10104 eR .  

 

intT : 5 µs 10 µs 20 µs 50 µs 

Numerical simulations: (Fig. 4)  

SNRLOFI  for µsR 50  

SNRLOFI for µsR 3  
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Experimental  results: (Fig. 4) 

SNRLOFI  for µsR 50  

SNRLOFI for µsR 3  
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Analytical expression: [Eq. (24)]  

SNRLOFI  for µsR 50  

SNRLOFI for µsR 3  

 

2.4 

4.5 

 

3.1 

5.1 

 

4.5 

7.8 

 

8.6 

11.8 

LOFI shot-noise limit : [Eq. (25)]   
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