
HAL Id: hal-00909845
https://hal.science/hal-00909845

Submitted on 27 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Snake like light beam propagation in Multimode
Periodic Segmented Waveguide

Pierre Aschieri, Valérie Doya

To cite this version:
Pierre Aschieri, Valérie Doya. Snake like light beam propagation in Multimode Periodic Seg-
mented Waveguide. Journal of the Optical Society of America B, 2013, 30 (12), pp.3161.
�10.1364/JOSAB.30.003161�. �hal-00909845�

https://hal.science/hal-00909845
https://hal.archives-ouvertes.fr


Snake like light beam propagation in Multimode

Periodic Segmented Waveguide

Pierre Aschiéri1, ∗ and Valérie Doya1

1Univ. Nice Sophia Antipolis, CNRS,

LPMC, UMR 7336, 06100 Nice, France

(Dated: October 17, 2013)

Abstract

In this article it is shown that for specific initial conditions an input beam injected in a Multimode Periodic

Segmented Waveguides (MPSW) does not diffract and remains collimated all along the waveguide whereas

a speckle like pattern is expected at the output of a multimode structure. This nonintuitive behavior can

be explained with the help of ray and wave chaos properties. A modal analysis developed in this article

reveals that this nondiffractive beam regime is due to a specific superposition of modes with regularly spaced

propagation constants. A discrepancy with the commonly used Equivalent Continuous Waveguide model

(ECWG) is also identified.
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1. Introduction

A Periodic Segmented Waveguide (PSW) is characterized by an array of high refractive

index regions in a low refractive index substrate along the direction of propagation. It has

been shown that this kind of waveguides exhibits several interesting properties for many

practical purpose. They have been used in linear applications to make tapers or mode filters

[1–8], exploiting the fact that the mode size and the propagation constant can be adjusted by

varying the duty-cycle (defined as the ratio of the high index segment over the period ΛPSW ).

Elsewhere, these waveguides have been used to achieve efficient nonlinear guided wave inter-

action using the Quasi Phase Matching (QPM) or Balanced Phase Matching (BPM) schemes

[9–11] that take advantage of a periodic reversal of the nonlinear coefficient associated with

such waveguides. PSW also exhibits interesting properties that can be useful for optical

power managing applications [12]. More recently, MPSW have been proved to be responsi-

ble for the emergence of a genuine chaotic behavior of rays [13, 14]. In many optical systems

such as asymmetric optical billiards, deformed microcavities or corrugated waveguides [15–

27], ray chaos comes from the waveguide geometry, for MPSW that we consider here, ray

chaos comes from the waveguide geometry characterized by a longitudinal periodic modula-

tion (segmentation) and by the transverse index profile characterized by a Gaussian index

profile (non harmonic). Light propagation in MPSW can then be described by a nonlinear

Mathieu-like equation which is intrinsically chaotic. The geometrical approach of light prop-

agation in MPSW reveals complex Poincaré sections associated to a typical mixed dynamics

[13] where stable and chaotic regions coexist. The extension of the analysis of the system

to the wave domain leads that what is commonly called the wave chaos which is devoted

to the study of wave motion when the geometrical limit of rays is chaotic. Imprints of ray

chaos may be found on spatial properties of modes and usually shows reminiscence of the

complexity of the classical Poincaré section. Thus, we have demonstrated that, depending

on input illumination, an incident optical beam launched in a MPSW remains collimated

all along the propagation in the waveguide if its associated trajectory is constructed on a

resonance of the Poincaré section otherwise it disperses on different modes of the structure

[28]. The non diffraction behavior is explained by a modal analysis which reveals that a set

of particular modes with a regularly spaced constant of propagation is responsible for the

beam propagation without diffraction. Moreover, it is shown that propagation constants
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Fig. 1. Schematic of the investigated longitudinally periodic waveguide with a period Λ and the

transverse gaussian index profile of the high index segments. Everywhere else, the index is constant

and is equal to the substrate index n2 and an oscillating ray path with a period of 2× Λ.

distribution does not coincide with the one expected for the Equivalent Continuous Waveg-

uide (ECWG) model which is commonly used for many purposes [1, 2, 6, 7, 11, 29]. The

paper is organized as follows. In the next section, waveguide description is given and the

geometric approach of light propagation in the system is outlined. In section 3, methods of

analysis used for MPSW are briefly described, section 4 concerns numerical results of the

modes analysis and wave propagation, a comparison with ECWG model is given in section 5

and finally, a conclusion is drawn in section 6.

2. Waveguide description and classical ray approach

The analysis has been developed using a 2D structure for simplicity. A typical MPSW

sketched in figure 1 is formed by an array of high refractive index segments embedded in

a low refractive index substrate. PSW are mostly used in a single mode configuration for

practical purpose but a highly multimode structure is required to generate wave chaos. The

shape of the transverse index profile of high index segments plays a key role in the ray

dynamics. Previous work has shown that it has to be non-harmonic in order to generate

complex rays behavior [13]. The gaussian index profile, naturally encountered with some

well known waveguide fabrication technologies [30, 31] is then used for high index segments.

The index profile of high index segments is given by :

n (x) = n2 + δne−
x
2

w2 , (1)
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where w is the width of the waveguide, δn = n1−n2, n2 is the substrate index and n1 is the

maximum refractive index value induced by the waveguide fabrication process. In low index

segments, the index is constant n(x) = n2. The Duty-Cycle (DC) of a PSW is commonly

defined as the ratio of the length d of the high index segment over the segmentation period

Λ, DC = d/Λ. A step index profile is assumed along the propagation direction z as it has

been done in previous works [13, 32, 33] (a smoother profile will not change qualitatively

the results). The ray path can be calculated by analyzing high and low index segments

separately using the following equation [13]

d2x

dz2
=







−2n2δn
β2ω2 xe

− x
2

ω2 ; (p− 1)Λ ≤ z ≤ (DC + p− 1)Λ

0 ; (DC + p− 1)Λ < z < pΛ
(2)

where p is the segment number, β = n (x0) cos θ0 is the invariant of the ray path, x0 being

the initial position of the ray and θ0 being the incident angle of the ray respect to z axis [34].

Equation (2) is periodic with z and nonlinear respect to x, it is a nonlinear Mathieu-like

equation, then it may exhibits nonlinear resonances, frequency locking, as well as a chaotic

behavior as will be seen subsequently. It has to be mentioned that the dynamics of a such

system is comparable to an undamped nonlinear pendulum forced by a periodic motion of

the suspension point. A typical ray trajectory is superimposed on the waveguide sketched in

figure 2 and the corresponding Poincaré section is given in figure 2 (a). Poincaré section is

constructed by a projection of the trajectory (x, θ, z) onto the phase plane (x, θ) at positions

z = nΛ, n = 1, 2, 3, ... for an ensemble of various initial conditions. Non diverging trajectories

are constructed on KAM (Kolmogorov-Arnold-Moser) torus characterized by close curve

circle whereas diverging trajectories are represented by dots. Waveguides parameters are

chosen so that the ray dynamics exhibits interesting feature. For example, the ray trajectory

in figure 1 is oscillating with a period of 2× Λ and refers to resonances in which the period

of the trajectory is synchronized with the period of the segmentation. Resonances of the

system can be clearly identified with the help of Poincaré section as it is shown in figure 2

(a) where the two stable resonances are surrounded by a chaotic sea represented by dots.

Resonances generate stable periodic trajectories while rays that belong to the chaotic sea

exhibit ergodic trajectories. The coexistence of regular and chaotic regions on the Poincaré

section is the signature of a mixed dynamics. An other waveguide configuration leads to a

different Poincaré section as it can be seen with figure (2) (b) which exhibits a central main
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Fig. 2. Poincaré section of the waveguide that exhibits 2 resonances surrounded by a chaotic sea

(a). Waveguide parameters are δn = 0.024, Λ = 300µm, the waveguide width is w = 12.3µm and

the DC = 0.8. Poincaré section for a different waveguide configuration that exhibits 4 periph-

eral resonances surrounded by closed curves corresponding to stable trajectories (b). Waveguide

parameters are δn = 0.05, Λ = 146µm, the waveguide width is w = 15µm and the DC = 0.8.

resonance surrounded by 4 peripheral resonances and KAM torus.

3. Numerical modal analysis

In this section, we extend our analysis to the wave domain and we briefly outline useful

methods which help to get a better insight into effects involved in light wave propagation in

MPSW. Light propagation in a MPSW can be described by the scalar Helmholtz equation :

∆Ψ + k0n
2(x, z)Ψ = 0 (3)

where Ψ is the e.m. field, k0 = 2π/λ, n(x, z + Λ) = n(x, z) and a time harmonic fields

ejωt dependence is assumed. Backward propagating waves can be neglected because the

index contrast δn ≪ 1 and the segmentation period Λ is more than two orders of magnitude

greater than the pitch of a Bragg grating [13, 32, 33, 35]. Using the classical assumptions of

the slowly envelope variation and considering a TE polarization, equation (3) for the electric

field E, is reduced to the parabolic wave equation :

2jk0n0
∂E
∂z

− ∂2E
∂x2 − k2

0 (n
2 (x, z)− n2

2)E = 0 (4)

The transverse field evolution along the longitudinal direction is calculated using the nu-

merical scheme FD-BPM and the propagation losses are also estimated. The propagation
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constants of modes of the waveguide are computed. The classical method proposed by Feit

and Fleck [36] to get fiber modes properties which has also been successfully applied to seg-

mented waveguides [35] is used to compute propagation constants of the waveguide modes.

The principle is to cross-correlate the input field E(x, 0) with the propagating field along

the waveguide E(x, z)

c(z) =

∫ +∞

−∞

E∗(x, 0)E(x, z)dx (5)

Then, the Fourier transform of the cross correlation function :

C(β) =

∫ L

0

c(z)h(z) exp (−iβz) dz, (6)

where h(z) is a Hanning window and L is the waveguide length, leads to the discrete modal

spectrum of the waveguide where peak values are proportional to the weight of each mode

actually excited by the input field. The propagating field computed by FD-BPM allows

also to get Husimi [37] distribution which is widely used in wave chaos domain. Husimi

distribution is the quantum wave counterpart of the classical phase space

H(x, k) =
N
∑

n=1

H(x, k, z = nΛ) (7)

The Husimi distribution H(x, k) consists in ”scanning” the optical field by a Gaussian wave

packet and is defined here at periodic positions z such as z = nΛ, with n = 1, 2, 3, .... The

Husimi H(x, k, z = nΛ) function for MPSW is given by :

H(x, k, z = nΛ) =

∣

∣

∣

∣

∣

1

(πσ2)
1

4

∫ +∞

−∞

exp (ikx′) exp

(

−
(x′ − x)2

2σ2

)

E(x′, z)dx′

∣

∣

∣

∣

∣

2

where k is the wave number and σ represents the width of the scanning gaussian wave packet

.

4. Numerical results

Optical wave propagation has been computed in a MPSW using FD-BPM, for all the calcu-

lations, the wavelength is set at λ = 0.4µm. A Gaussian input field of 1.5µm-width is firstly

injected such that its parameters reported in the Poincaré section coincide with a resonance

(noted 1 on figure 2(a)). Secondly, it is injected outside of the resonance (noted 2 on figure

2 (a)). The intensity distribution along the waveguide, the Husimi representation and the
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mode spectrum are also calculated in both cases. Results are reported in figure (3) and in

figure (4). The injection of a gaussian beam located inside a resonance leads to a snake like

beam propagation as shown in figure 3(a) whereas a spreading of the beam is expected in

this multimode waveguide, and calculated propagation losses are almost zero. The beam

propagation is built upon a set of oscillating rays trajectories that belong to resonances of

the Poincaré section (see figure 2(a)). This is confirmed by the Husimi distribution (figure

3(b)) that exhibits 2 spots matching with the 2 main resonances of the Poincaré sections.

The corresponding mode spectrum analysis (figure 3(c)) displays a set of 9 modes excited by

the gaussian input. The mode spectrum shows that all the 9 modes are regularly spaced by

∆β which gives a beating length Lc =
π
∆β

≃ 600µm which is 2×Λ. The factor 2 corresponds

to the 2nd order resonance visible in the Poincaré and Husimi representation. The beating

length can also be evaluate by computing the length spectrum which is the fourier transform

of the mode spectrum. The length spectrum represented on figure 3(d) exhibits only the

600µm optical path length and its harmonics. Roughly speaking, the non diffraction beam

is constructed on a coherent superposition of specific modes which are periodically in phase

every 600µm -eg every two segmentation period length. The input beam excitation is now

modified so that it is located in the chaotic sea ((noted 2 in figure 2 (a)). The field does

not remain collimated during the propagation as previously and spreads over the waveguide

width as it is shown in figure 4 (a), the calculated propagation losses are 42dB/cm. The

corresponding Husimi distribution (figure 4 (b)) shows that the field is present on many

spatial positions and with many direction of the wave vectors. Unlike the previous colli-

mated beam propagation, the corresponding mode spectrum shown in figure 4(c) exhibits

strong coulping with radiation modes (for β < 33.57) and a large set of modes which are

no longer regularly spaced. This can also be seen by the use of the Fourier transform of the

mode spectrum given by figure 4(d). For a different waveguide configuration whose Poincaré

section is given in figure 2 (b), similar analysis has been performed. Figure 5 (a) correspond

to an injection of the input gaussian beam in one of the 4 resonances of the system (noted

1 on figure 2(b)). Then, a snake like beam propagation all along the waveguide occurs.

The corresponding Husimi distribution given in figure 5 (b) shows 4 spots corresponding to

the 4 peripheral resonances of Poincaré section. The mode spectrum analysis (figure 5 (c))

displays a large set of modes excited by the gaussian input compared to the previous case

(figure 3(c)) but they are still regularly spaced by a constant value of ∆β. The calculated
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Fig. 3. Field distribution with a schematic of the waveguide segments for an incident gaussian beam

launched in a resonance of the Poincaré section of the MPSW, high index segments are schematically

represented by rectangles (a), Husimi representation (b). On figure (c) it is represented the modal

spectrum distribution which shows that a set of modes regularly spaced are excited. The figure

(d) is the length spectrum of the modal spectrum in the case of the collimated beam.

beating length gives Lc =
π
∆β

≃ 584µm which is 4×Λ. The factor 4 now corresponds to the

4nd order resonance visible in the Poincaré and Husimi representation. This beating length

is confirmed by the length spectrum represented on figure 5(d) that exhibits only the 584µm

optical path length and sub-harmonics. Like in the previous waveguide configuration, if

the injection is outside the resonance (noted 2 in figure 2 (b)), the input beam is again

quickly dispersed in many waveguide modes as it can be seen with figure 6 (a). The profile

of the Husismi distribution (figure 6 (b)) is comparable to the shape of the main central

resonance of the Poincaré section (2 (b)). The spectrum distribution and the corresponding

8



33.22

(d)

Period length (µm)

Fig. 4. Field distribution (a), Husimi representation (b) and modal spectrum (c) for an incident

gaussian beam launched outside of the resonance of the Poincaré section. The field is spread on

many waveguides modes which is confirmed by the Husimi distribution and the modal spectrum.

The figure (d) is the corresponding length spectrum

length spectrum (figure 6 (c) and (d)) show that excited modes are not regularly spaced. In

contrast, propagation losses are almost zero compared to the previous case where the beam

was dispersed (figure 4 (a)), the reason is that gaussian input is in a region of the Poincaré

section which is surrounded by a KAM torus which acts as a barrier that cannot be crossed

by a ray trajectory and then the light remains confined in the waveguide.
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(a)
(d)

33.44

(d)

Fig. 5. Field distribution for an incident gaussin beam launched in a resonance (noted 1 in the

figure (2)(a)) of the Poincaré section of the MPSW. Because of the large number of periods for this

waveguide configuration, the high index segments are not superimposed on the field distribution

in order to keep a clear picture (a). Husimi representation on figure (b), figure (c) represents the

modal spectrum distribution which shows a large set of modes compared to figure 3 (c)) but they

are still regularly spaced which is confirmed by the length spectrum shown in figure (d) that only

exhibits the period of 584µm and its harmonics.

5. Comparison with the equivalent continuous waveguide model

Modes of PSW can be rigorously calculated with the help of Floquet-Bloch theorem which

expresses the modes of the structure in terms of Spatial Harmonics (SH) [38, 39] or using

modal method of diffraction grating [40]. Both methods remain efficient even in the case

of a high index contrast between the segments and the substrate. Thus, an eigenfunction

of a PSW is formally a Bloch function. Nevertheless, it has been shown that the simple
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(a)
(d)

33.44

(d)

Fig. 6. Field distribution for an incident gaussian beam launched outside of a resonance (noted

2 in the figure (2)(a)) of the Poincaré section of the MPSW (a), Husimi representation (b). On

figure (c) it is represented the modal spectrum distribution which shows a large set of modes but,

unlike the previous case, modes are not regularly spaced as it can be seen with figure (d) where

the Fourier transform of the spectrum exhibits a non harmonic distribution of periods length

equivalent continuous waveguide model (ECWM) constitutes a good approximation of a

PSW. ECWG model has been widely used with success in many PSW device design [1, 2, 5–

7, 11, 29] and validated by different approaches [32, 33, 40, 41]. The refractive index of the

ECWG neq is the weighted average of the index of the PSW along the propagation direction

and is given by :

δneq = DC × δn (8)

This assumption strongly simplifies modes calculation for a PSW. The variation of the index

of refraction along the propagation is then removed and the problem is reduced to a trans-

verse waveguide modes calculation. In the case of uniform waveguide approximation, the
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general solutions can be expressed as the transverse normal-mode eigenfunction expansions

:

E(x, z) =
∑

n

Anun(x)exp(−iβnz) (9)

where An is the mode amplitude of the mode n, un(x) is the transverse mode profile and βn

is the propagation constant of the mode n. Then, using a standard modes solver, it is easy to

get the modal spectrum of the ECWM. The total modal distribution of the ECWG associated

with the MPSW defined in section 2 is given in figure 7 for the two waveguide configuration

and propagation constants are compared to the modal distribution of a MPSW obtained

previously in the case of a collimated beams propagation. The β values of MPSW excited

modes do not correspond to β values of the ECWG for both waveguides configurations and

this means that the use of the equivalent waveguide model for the β calculation is no longer

valid in the case of chaotic MPSW. Previous work based on ray dispersion has already

mentioned that this feature may occur in MPSW [14] and strong deviations of the ECWG

model has already been predicted. The ECWG mode based on a refractive index average

cannot take into account the complexity of the dynamics which comes from the transverse

index profile combined with the periodicity in the direction of the propagation.

Furthermore, it is interesting to nentionned that a regularly spaced spectral distribution

that occurs here in the case of collimated beams propagation corresponds to a well known

characteristic property of parabolic index continuous waveguides.

6. Conclusion

In this article, light propagation in a MPSW that exhibits a chaotic dynamics in the classical

ray approach, has been investigated with the help of a modal analysis. Depending on initials

conditions, light can follow a snake like propagating pattern all along the waveguide or may

be spread over the entire cross section of the waveguide. The modal analysis revels that

the snake like propagation is due to a superposition of specific regularly spaced eigenmodes

of the MPSW. The beating length Lc of adjacent modes given by Lc = π
|βi−βi+1|

is then

commensurable with the period Λ of segmentation of the waveguide. The modal analysis

highlights also that the values of propagation constants of a MPSW do not matched with

those obtained for the ECWG. Therefore, the widely used ECWG model is no longer valid

in the case of a chaotic MPSW.

12



Fig. 7. Total modal spectrum of the ECWG (in blue) and the modes excited when an incident

gaussian beam is launched in a resonance of the Poincaré section (a) for the first waveguide con-

figuration. The distribution of the excited modes of the MPSW does not match with the modal

distribution of the ECWG. In figure (b), due to a larger number of modes and in order to have a

clear picture, it is compared only one part of the spectrum of the ECWG and modes excited when

an incident gaussian beam is launched in a resonance. The mismatched is still present.

Besides a merely academic interest, the coexistence of collimated and dispersed regimes

of light propagation in a waveguide could be of interest in the field of integrated optics.
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