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A CURIOUS POLYNOMIAL INTERPOLATION OF CARLITZ-RIORDAN'S q-BALLOT NUMBERS

We study a polynomial sequence C n (x|q) defined as a solution of a q-difference equation. This sequence, evaluated at q-integers, interpolates Carlitz-Riordan's q-ballot numbers. In the basis given by some kind of q-binomial coefficients, the coefficients are again some q-ballot numbers. We obtain in a combinatorial way another curious recurrence relation for these polynomials.

Introduction

This paper was motivated by a previous work of the first author on flows on rooted trees [START_REF] Chapoton | Flows on rooted trees and the Menous-Novelli-Thibon idempotents[END_REF], where the well-known Catalan numbers and the closely related ballot numbers played an important role. In fact, one can easily introduce one more parameter q in this work, and then Catalan numbers and ballots numbers get replaced by their q-analogues introduced a long time ago by Carlitz-Riordan [START_REF] Carlitz | Two element lattice permutation numbers and their qgeneralization[END_REF], see also [START_REF] Carlitz | Sequences, paths, ballot numbers[END_REF][START_REF] Fürlinger | q-Catalan numbers[END_REF].

These q-Catalan numbers have been recently considered by many people, see for example [START_REF] Cigler | q-Catalan numbers and q-Narayana polynomials[END_REF][START_REF] Butler | A note on log-convexity of q-Catalan numbers[END_REF][START_REF] Haglund | The q,t-Catalan numbers and the space of diagonal harmonics[END_REF][START_REF] Blanco | Counting Dyck paths by area and rank[END_REF], including some work by Reineke [START_REF] Reineke | Cohomology of noncommutative Hilbert schemes[END_REF] on moduli space of quiver representations.

Inspired by an analogy with another work of the first author on rooted trees [START_REF] Chapoton | Sur une série en arbres à deux paramètres[END_REF], it is natural to try to interpolate the q-ballot numbers. In the present article, we prove that this is possible and study the interpolating polynomials.

Our main object of study is a sequence of polynomials in x with coefficients in Q(q), defined by the q-difference equation: ∆ q C n+1 (x|q) = qC n (q 2 x + q + 1|q), (1.1) where ∆ q f (x) = (f (1 + qx) -f (x))/(1 + (q -1)x) is the Hahn operator.

After reading a previous version of this paper, Johann Cigler has kindly brought the two related references [START_REF] Cigler | Operatormethoden für q-Identitäten. IV. Eine Klasse von q-Gould-Polynomen[END_REF][START_REF] Cigler | Operatormethoden für q-Identitten. VI. Geordnete Wurzelbäume und q-Catalan-Zahlen, Österreich[END_REF] to our attention, where a sequence of more general polynomials G n (x, r) was introduced through a q-difference operator for qinteger x and positive integer r. Comparing these two sequences one has G n (qx + 1, 2) = C n+1 (x|q).
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In the next section we recall classical material on Carlitz-Riordan's q-analogue for Catalan and ballot numbers and define our polynomials. In the third section, we evaluate our polynomials at q-integers in terms of q-ballot numbers and prove a product formula when q = 1. In the fourth section, we find their expansion in a basis made of a kind of q-binomial coefficients and obtain another recurrence for these polynomials. This recurrence is not usual even in the special x = q = 1 case and we have only a combinatorial proof in the general case. We conclude the paper with some open problems.

Nota Bene: Figures are best viewed in color.

2. Carlitz-Riordan's q-ballot numbers

Recall that the Catalan numbers

C n = 1 n+1 2n
n may be defined as solutions to

C n+1 = n k=0 C k C n-k , (n ≥ 0), C 0 = 1. (2.1)
The first values are n 0 1 2 3 4 5 6 7 8 C n 1 1 2 5 14 42 132 429 1430 It is well known that C n is the number of lattice paths from (0, 0) to (n, n) with steps (1, 0) and (0, 1), which do not pass above the line y = x. As a natural generalization, one considers the set P(n, k) of lattice paths from (0, 0) to (n + 1, k) with steps (1, 0) and (0, 1), such that the last step is (1, 0) and they never rise above the line y = x. Let f (n, k) be the cardinality of P(n, k). The first values of f (n, k) are given in Table 1. These numbers are called ballot numbers and have a long history in the literature of combinatorial theory. Moreover, one (see [START_REF] Comtet | Advanced Combinatorics[END_REF]) has the explicit formula

f (n, k) = n -k + 1 n + 1 n + k k (n ≥ k ≥ 0). (2.2)
Carlitz and Riordan [START_REF] Carlitz | Two element lattice permutation numbers and their qgeneralization[END_REF] introduced the following q-analogue of these numbers

f (n, k|q) = γ∈P(n,k) q A(γ) , (2.3)
where A(γ) is the area under the path (and above the x-axis). The first values of f (n, k|q) are given in Table 2. Furthermore, Carlitz [START_REF] Carlitz | Sequences, paths, ballot numbers[END_REF] uses a variety of elegant techniques to derive several basic properties of the f (n, k|q), among which the following is the basic recurrence relation 

f (n, k|q) = qf (n, k -1|q) + q k f (n -1, k|q) (n, k ≥ 0), (2.4) n\k 0 1 2 3 4 5 6 0 1 1 1 1 2 1 2 2 3 1 3 5
n\k 0 1 2 3 4 0 1 1 1 q 2 1
q + q 2 q 2 + q 3 3 1 q + q 2 + q 3 q 2 + q 3 + 2q 4 + q 5 q 3 + q 4 + 2q 5 + q 6 4 1 q + q 2 + q 3 + q 4 q 2 + q 3 + 2q 4 + 2q 5 + 2q 6 + q 7 q 3 Y q 4 Y Table 2. The first values of q-ballot numbers f (n, k|q) with Y = q 6 + 3q 5 + 3q 4 + 3q 3 + 2q 2 + q + 1 where f (n, k|q) = 0 if n < k and f (0, 0|q) = 1. It is also easy to see that the polynomial f (n, k|q) is of degree kn -k(k -1)/2 and satisfies the equation f (n, n|q) = qf (n, n -1|q). If one defines the q-Catalan numbers by

C n+1 (q) = n k=0 f (n, k|q) = q -n-1 f (n + 1, n + 1|q)
(n ≥ 0), (2.5) then, one obtains the following analogue of (2.1) for the Catalan numbers

C n+1 (q) = n i=0 C i (q)C n-i (q)q (i+1)(n-i) , (2.6) where C 0 (q) = 1. Setting C n (q) = q ( n 2 ) C n (q -1
), one has a simpler q-analog of (2.1)

C n+1 (q) = n i=0 q i C i (q) C n-i (q). (2.7)
The first values are C 1 (q) = 1, C 2 (q) = 1 + q, C 3 (q) = 1 + q + 2q 2 + q 3 and C 4 (q) = 1 + q + 2q 2 + 3q 3 + 3q 4 + 3q 5 + q 6 . No explicit formula is known for Carlitz-Riordan's q-Catalan numbers. However, Andrews [START_REF] Andrews | Identities in combinatorics. II. A q-analog of the Lagrange inversion theorem[END_REF] proved the following recurrence formula

C n (q) = q n [n + 1] q 2n n q + q n-1 j=0 (1 -q n-j )q (n+1-j)j 2j + 1 j q C n-1-j (q), (2.8)
where [x] q = q x -1 q-1 . Recall that the q-shifted factorial (x; q) n is defined by

(x; q) n = (1 -x)(1 -xq) • • • (1 -xq n-1 ) (n ≥ 1) and (x; q) 0 = 1.
The two kinds of q-binomial coefficients are defined by

n k q := (q; q) n (q; q) k (q; q) n-k , x k q := x(x -1) . . . (x -[k -1] q ) [k] q ! , with x 0 q = 1. Note that [n] q k q = q ( k 2 ) n k q , [-n] q k q = (-1) k q -kn k + n -1 k q .
The q-derivative operator D q and Hahn operator ∆ q are defined by

D q f (x) = f (qx) -f (x) (q -1)x and ∆ q f (x) = f (1 + qx) -f (x) 1 + (q -1)x . (2.9) Definition 1. The sequence of polynomials {C n (x|q)} n≥1 is defined by the q-difference equation (1.1) or equivalently C n+1 (x|q) -C n+1 (q -1 x -q -1 |q) 1 + (q -1)x = C n (qx + 1|q) (n ≥ 1), (2.10) with the initial condition C 1 (x|q) = 1 and C n (-1 q |q) = 0 for n ≥ 2.
For example, we have

C 2 (x|q) = 1 + q x 1 q , C 3 (x|q) = (1 + q) + (q + q 2 + q 3 ) x 1 q + q 4 x 2 q ,
C 4 (x|q) = (q 3 + q 2 + 2q + 1) + (q 6 + q 5 + 2q 4 + 2q 3 + 2q 2 + q) x 1 q + (q 9 + q 8 + q 7 + q 6 + q 5 )q -1 x 2 q + q 9 x 3 q .

It is clear that

C n (x|q) is a polynomial in Q(q)[x] of degree n -1 for n ≥ 1.

Some preliminary results

We first show that the evaluation of the polynomials C n (x|q) at q-integers is always a polynomial in N[q]. Note that formulae (3.1) and (3.4) were implicitly given in [START_REF] Cigler | Operatormethoden für q-Identitäten. IV. Eine Klasse von q-Gould-Polynomen[END_REF].

Proposition 2. When x = [k] q we have C n+1 ([k] q |q) = q kn+ n(n+1) 2 f (k + n, n|q -1 ) (n, k ≥ 0). (3.1) Proof. When x = [k] q Eq. (2.10) becomes C n+1 ([k] q |q) = q k C n ([k + 1] q |q) + C n+1 ([k -1] q |q). (3.2)
It is easy to see that (3.1) is equivalent to (2.4).

Corollary 3. We have

C n+1 (0|q) = C n (1|q) and C n+1 (1|q) = C n+1 (q). (3.3) Proof. Letting x = 0 in (2.10) we get C n+1 (0|q) = C n (1|q). Letting k = 1 in (3.1) we have C n+1 (1|q) = q n+ n(n+1) 2 f (1 + n, n|q -1 ) = q n+1+ n(n+1) 2 f (n + 1, n + 1|q -1 ) = q n(n+1) 2 C n+1 (q -1 ),
which is equal to C n+1 (q) by definition.

The shifted factorial is defined by

(x) 0 = 1 and (x) n = x(x + 1) • • • (x + n -1), n = 1, 2, 3, . . . , and (x) -n = 1/(x -n) n .
Proposition 4. When q = 1 we have the explicit formula

C n+1 (x|1) = (x + 1)(x + n + 2) n-1 n! = x + 1 x + 1 + n x + 2n n (n ≥ 0). (3.4)
Proof. When q = 1 the equation (2.10) reduces to

C n+1 (x|1) = C n+1 (x -1|1) + C n (x + 1|1). (3.5) Since C n+1 (x|1
) is a polynomial in x of degree n, it suffices to prove that the righthand side of (3.4) satisfy (3.5) for x being positive integers k. By Proposition 2 and (2.2) it suffices to check the following identity

k + 1 k + 1 + n k + 2n n = k k + n k -1 + 2n n + k + 2 k + 1 + n k + 2n -1 n -1 . (3.6)
This is straightforward.

To motivate our result in the next section we first prove two q-versions of a folklore result on the polynomials which take integral values on integers (see [START_REF] Stanley | The Wadsworth & Brooks/Cole Mathematics Series[END_REF]p. 38]). Introduce the polynomials p k (x) by

p 0 (x) = 1 and p k (x) = (-1) k q -( k 2 ) (x -1)(x -q) • • • (x -q k-1 ) (q; q) k , k ≥ 1.
So p k (q n ) = n k q for n ∈ N. Proposition 5. The following statements hold true.

(i) The polynomial f (x) of degree k assumes values in Z[q] at x = 1, q, . . . , q k if and only if

f (x) = c 0 + c 1 p 1 (x) + • • • + c k p k (x), (3.7) where c j = q ( j 2 ) (1 -q) j D j q f (1) are polynomials in Z[q] for 0 ≤ j ≤ k. (ii) The polynomial f (x) of degree k assumes values in Z[q] at x = 0, [1] q , . . . , [k] q
if and only if

f (x) = k j=0 cj q -( j 2 ) x j q , (3.8)
where cj = q ( j 2 ) ∆ j q f (0) are polynomials in Z[q] for 0 ≤ j ≤ k.

Proof. Clearly we can expand any polynomial f (x) of degree k in the basis {p j (x)} 0≤j≤k as in (3.7). Besides, it is easy to see that

D q p k (x) = q 1-k 1 -q p k-1 (x) =⇒ D j q p k (x) =
q ( j+1 2 )-jk (1 -q) j p k-j (x). (3.9) Hence, applying D j q to the two sides of (3.7) we obtain

D j q f (1) = c j q -( j 2 ) (1 -q)j =⇒ c j = q ( j 2 ) (1 -q) j D j q f (1).
Since D j q f (1) involves only the values of f (x) at x = 0, [1], . . . , [k] q for 0 ≤ j ≤ k, the result follows. In the same manner, since

∆ q x k q = x k -1 q ,
we obtain the expansion (3.8).

Remark.

(1) We can also derive (3.8) from (3.7) as follows. Let y = x-1 q-1 . For any polynomial f (x) define f (y) = f (1 + (q -1)y). Since

q n = 1 + (q -1)[n] q , it is clear that f (q n ) ∈ Z[q] ⇐⇒ f ([n] q ) ∈ Z[q]. Writing 1 + qx -[j] q = q(x -[j -1] q ) we see that fj (x) = q -( j 2 ) x j q .
The expansion (3.8) follows from (3.7) immediately. (2) When f (x) = x n , it is known (see, for example, [START_REF] Zeng | The Akiyama-Tanigawa algorithm for Carlitz's q-Bernoulli numbers[END_REF]) that ck = ∆ q 0 n = [k] q !S q (n, k),

where [k] q ! = [1] q • • • [k] q
and S q (n, k) are classical q-Stirling numbers of the second kind defined by

S q (n, k) = S q (n -1, k -1) + [k] q S q (n -1, k) for n ≥ k ≥ 1,
with S q (n, 0) = S q (0, k) = 0 except S q (0, 0) = 1. (3) The two formulas (3.7) and (3.8) are special cases of the Newton interpolation formula, namely, for any polynomial f of degree less than or equal to n one has

f (x) = n k=0 k j=0 f (b j ) k r=0,r =j (b j -b r ) (x -b 0 ) • • • (x -b k-1 ), (3.10)
where b 0 , b 1 , . . . , b n-1 are distinct complex numbers. Some recent applications of (3.10) in the computation of moments of Askey-Wilson polynomials are given in [GITZ].

Main results

In the light of Propositions 2 and 5, it is natural to consider the expansion of C n+1 (x|q) and C n+1 (qx + 1|q) in the basis x j q (j ≥ 0). It turns out that the coefficients in such expansions are Carlitz-Riordan's q-ballot numbers. Note that formula (4.2) was implicitly given in [START_REF] Cigler | Operatormethoden für q-Identitäten. IV. Eine Klasse von q-Gould-Polynomen[END_REF].

Theorem 6. For n ≥ 0 we have

C n+1 (x|q) = n j=0 f (n + j, n -j|q -1 )q jn+ 1 2 (n-j)(n+j+1) x j q , (4.1) C n (qx + 1|q) = n-1 j=0 f (n + j, n -1 -j|q -1 )q jn+ 1 2 n(n+1)-1 2 (j+1)(j+2) x j q . (4.2)
Proof. It is sufficient to prove the theorem for x = [k] q with k = 0, 1, . . . , n. By Proposition 2, the two equations (4.1) and (4.2) are equivalent to

f (k + n, n|q -1 ) = k j=0 f (n + j, n -j|q -1 )q jn-kn-j k j q , (4.3) f (k + n, n -1|q -1 ) = k j=0
f (n + j, n -j -1|q -1 )q jn-kn-2j+k k j q , (4.4) for n ≥ k ≥ j. Replacing q by 1/q and using k j q -1 = q -j(k-j) k j q we get

f (n + k, n|q) = k j=0 f (n + j, n -j|q)q (n-j)(k-j)+j k j q , (4.5) f (k + n, n -1|q) = k j=0 f (n + j, n -j -1|q)q (n-j-1)(k-j)+j k j q . (4.6)
We only prove (4.5). By definition, the left-hand side f (n+k, n|q) is the enumerative polynomial of lattice paths from (0, 0) to (n + k + 1, n) with (1, 0) as the last step. Each such path γ must cross the line y = -x + 2n. Suppose it crosses this line at the point (n + j, n -j), 0 ≤ j ≤ k. Then the path corresponds to a unique pair (γ 1 , γ 2 ), where γ 1 is a path from (0, 0) to (n + j, n -j) and γ 2 is a path from (n + j, n -j)

s s s s s s s s n n -j n + j γ 1 γ 2 Figure 1. The decomposition γ → (γ 1 , γ 2 ) to (n + k, n).
It is clear that the area under the path γ is equal to S 1 + S 2 + S 3 + j, where

• S 1 is the area under the path γ ′ 1 , which is obtained from γ 1 plus the last step (n + j, n -j) → (n + j + 1, n -j); • S 2 is the area under the path γ 2 and above the line y = n -j; • S 3 is the area of the rectangle delimited by the four lines y = 0, y = n -j, x = n + j + 1 and

x = n + k + 1, i.e., (n -j)(k -j).
This decomposition is depicted in Figure 1. Clearly, summing over all such lattice paths gives the summand on the right-hand side of (4.5). This completes the proof.

Remark. When q = 1, by (2.2), the above theorem implies that

x + 1 x + n + 1 x + 2n n = n j=0 2j + 1 n + j + 1 2n n -j x j , (4.7) x + 2 x + n + 1 x + 2n -1 n -1 = n-1 j=0 2j + 2 n + j + 1 2n -1 n -j -1 x j . (4.8)
Note that the two sequences

{f (n + j, n -j|1)} and {f (n + j, n -j -1|1)} (0 ≤ j ≤ n)
correspond, respectively, to the (2n -1)-th and 2n-th anti-diagonal coefficients of the triangle {f (n, k)} 0≤k≤n , see Table 1.

Theorem 7. The polynomials C n (x|q) satisfy C 1 (x|q) = 1 and

[n] q C n+1 (x|q) = ([2n -1] q + xq 2n-1 )C n (x|q) (4.9) + n-2 j=0 [n -j -1] q C j (q)C n-j (x|q)q 2j+1 .
Proof. Since C n+1 (x|q) is a polynomial in x of degree n, it suffices to prove (4.9) for x = [k] q , where k is any positive integer, namely,

[n] q C n+1 ([k] q |q) = [2n + k -1] q C n ([k] q |q) (4.10) + n-2 j=0 [n -j -1] q C j (q)C n-j ([k] q |q)q 2j+1 . Let m ≥ n and f (m, n|q) = q (m-n)n+( n+1 2 ) f (m, n|q -1 ). (4.11) In view of the definition (2.3) it is clear that f (m, n|q) = γ∈P(m,n) q A ′ (γ) ,
where A ′ (γ) denotes the area above the path γ and under the line y = x and y = n. Since C j (q) = q ( j 2 ) C j (q -1 ) = q ( j+1 2 ) f (j, j|q -1 ) = f (j, j|q), using Proposition 2 and (4.11) with m = k + n, we can rewrite (4.10) as

[n] q f (m, n|q) = [n + m -1] q f (m -1, n -1|q) (4.12) + n-2 j=0 q j [n -j -1] q f (j, j|q)q j+1 [n -j -1] q f (m -j -1, n -j -1|q).
A pointed lattice path is a pair (α, γ) such that α ∈ {(1, 1), . . . , (n, n)} and γ ∈ P(m, n). If α = (i, i) we call i the height of α and write h(α) = i. Let P * (m, n) be the set of all such pointed lattice paths. It is clear that the left-hand side of (4.12) has the following interpretation

[n] q f (m, n|q) = (α,γ)∈P * (m,n) q h(α)-1+A ′ (γ) . (4.13)
Now, we compute the above enumerative polynomial of P * (m, n) in another way in order to obtain the right-hand side of (4.12). We distinguish two cases.

n α γ 1 γ 2 ✉ j + 1 j + 1 Figure 2. (α, γ) → (γ 1 , (α ′ , γ 2 ))
• Let P * 1 (m, n, j) be the set of all pointed lattice paths (α, γ) in P * (m, n) such that h(α) ∈ {j+2, . . . , n}, where j is the smallest integer such that (j+1, j) → (j + 1, j + 1) is a step of γ, i.e., the first step of γ touching the line y = x. If (α, γ) ∈ P * 1 (m, n, j), then we have the correspondence (α, γ) → (γ 1 , (α ′ , γ 2 )), where γ 1 is a lattice path from (0, 0) to (j + 1, j + 1) which touches the line y = x only at the two extremities, and (α ′ , γ 2 ) is a pointed lattice path from (0, 0) to (m -j, n -j -1) with h(α ′ ) = h(α) -j -1. This decomposition is depicted in Figure 2.

Thus the corresponding enumerative polynomial of such paths for the fixed j is (α,γ)∈P * 1 (m,n,j) q h(α)-1+A(γ) = q j f (j, j|q)

• q j+1 [n -j -1] q f (m -j -1, n -j -1|q).
Summing over all j (0 ≤ j ≤ n -2) we obtain the second term on the right-hand side of (4.12). • Let P * 2 (m, n) be the set of all pointed lattice paths (α, γ) in P * (m, n) such that h(α) ∈ {1, . . . , n} and h(α) ≤ j + 1 where j (if any) is the smallest integer such that (j + 1, j) → (j + 1, j + 1) is a step of γ, i.e., the first step of γ touching the line y = x. If (α, γ) ∈ P * 2 (m, n), where γ = (p 0 , . . . , p m+n+1 ) with p 0 = (0, 0) and p m+n+1 = (m + n + 1, n), we can associate a pair (i, γ ′ ) where γ ′ ∈ P(m -1, n -1) is obtained from γ by deleting the vertical step (x, h(α) -1) → (x, h(α)) and the first horizontal step (0, 0) → (1, 0), i.e., γ ′ = (p ′ 1 , . . . , p ′ i , p ′ i+2 , . . . , p ′ n+m+1 )

where i = x + h(α) -1, p ′ k = p k -(1, 0) if k = 1, . . . , i and p ′ k = p k -(0, 1) if k = i + 2, . . . , m + n + 1. It is easy to see that the mapping (α, γ) → (i, γ ′ ) is a bijection, which is depicted in Figure 3. 

n α m ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ✲ n ✉ m ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅
q h(α)+A ′ (γ) = m+n-1 i=1 q i-1 γ ′ q A ′ (γ ′ ) = [n + m -1] q f (m -1, n -1|q).
Summing up the two cases we obtain the right-hand side of (4.12).

When q = 1 we have an alternative proof of Theorem 7.

Another proof of the q = 1 case. When q = 1 Eq. (4.9) reduces to 

Figure 3 .

 3 Figure 3. (α, γ) → (i, γ ′ ) with m = 15, n = 8, α = (6, 6) and i = 15

  nC n+1 (x|1) = (2n -1 + x)C n (x|1) + n-2 j=0 (n -j -1)C j C n-j (x|1) (n ≥ 2). (4.14) This yields immediately C 1 (x|1) = 1, C 2 (x|1) = x + 1, C 3 (x|1) = (x + 1)(x + 4)/2,in accordance with the formula (3.4). For n ≥ 3, letting k = n -j -3, N = n -3 and z = x + 3, by (3.4), the recurrence (4.14) is equivalent to the following identity(z + N + 2) N N ! = N k=0 4 N -k (3/2) N -k (z + k) k (3) N -k k! (N ≥ 0).

Figure 4 .

 4 Figure 4. Newton polytope of the numerator of C n (x|q) for n = 6

Table 1 .

 1 The first values of ballot numbers f (n, k)

	5
	4 1 4 9 14 14
	5 1 5 14 28 42 42
	6 1 6 20 48 90 132 132

Notice that we can rewrite the right-hand side as

Invoking Pfaff-Saalschütz formula [AAR99, Theorem 2.2.6] we obtain

Substituting this in the previous expression yields (z+N +2) N N ! after simplification.

When x = 1 Eq. (4.14) reduced to the following identity for Catalan numbers:

Concluding remarks

We conclude this paper with a few open problems. By Theorem 6 it is clear that C n+1 (x|q) is a polynomial in x of degree n with leading coefficient

Conjecture 8. One can write C n (x|q) as an irreducible fraction

where P n has only positive coefficients.

This has been checked up to n = 27. The similar conjecture is true when q = 1 by Proposition 4.

Finally, the Newton polytope of the numerator of C n (x|q) seems to have a nice shape. This is illustrated in Figure 4, where the horizontal axis is associated with powers of q and the vertical axis with powers of x. The slopes of the upper part seems to be given in general by the odd integers 1, 3, . . . , 2n -3.