
HAL Id: hal-00909815
https://hal.science/hal-00909815v1

Submitted on 26 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Creation and protection of entanglement in systems out
of thermal equilibrium
Bruno Bellomo, Mauro Antezza

To cite this version:
Bruno Bellomo, Mauro Antezza. Creation and protection of entanglement in systems out of thermal
equilibrium. New Journal of Physics, 2013, 15, pp.113052. �10.1088/1367-2630/15/11/113052�. �hal-
00909815�

https://hal.science/hal-00909815v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

This content was downloaded by: antezza

IP Address: 78.226.147.228

This content was downloaded on 26/11/2013 at 20:34

Please note that terms and conditions apply.

Creation and protection of entanglement in systems out of thermal equilibrium

View the table of contents for this issue, or go to the journal homepage for more

2013 New J. Phys. 15 113052

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/15/11
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Creation and protection of entanglement in systems

out of thermal equilibrium

Bruno Bellomo1,2 and Mauro Antezza1,2,3
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Abstract. We investigate the creation of entanglement between two quantum

emitters interacting with a realistic common stationary electromagnetic field out

of thermal equilibrium. In the case of two qubits we show that the absence

of equilibrium allows the generation of steady entangled states, which is

inaccessible at thermal equilibrium and is realized without any further external

action on the two qubits. We first give a simple physical interpretation of the

phenomenon in a specific case and then we report a detailed investigation on the

dependence of the entanglement dynamics on the various physical parameters

involved. Sub- and super-radiant effects are discussed, and qualitative differences

in the dynamics concerning both creation and protection of entanglement

according to the initial two-qubit state are pointed out.
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1. Introduction

Quantum systems may present correlations of both quantum and classical nature. Entanglement

captures quantum correlations due to the non-separability of the system state [1–3]. The

presence of these correlations is connected to the rise of non-local effects in quantum theory [4]

and has been recognized as a key resource in several fields of quantum technology, including

quantum computing [5], quantum cryptography [6], quantum teleportation [7] and quantum

metrology [8]. A main obstacle to the concrete exploitation of quantum features in the above

applications is the detrimental effect of environmental noise [9]. The unavoidable coupling with

degrees of freedom of the surrounding environment generally leads to a decay of quantum

coherence properties [10], preventing the possible exploitation of quantum correlations present

in the system.

Considerable effort has been made to understand the effects of environmental noise on the

dynamics of correlations present in an open quantum system [11–14], and to contrast the natural

fragility of quantum coherence properties [15–17]. Reservoir engineering methods have pointed

out the possibility of changing the perspective from reducing the coupling with the environment

to modifying the environmental properties in order to manipulate the system of interest, thanks

to its proper dissipative dynamics [18–20]. Other approaches exploit the effect of measurements

and feedback to drive the systems toward a target state [21, 22].

A possible way to create quantum correlations between two systems is to make them

interact with a common environment [23], which can also cause a revival of entanglement [24].
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In the case of two emitters in a common vacuum or thermal electromagnetic field, in the absence

of matter close to them, the mediated interaction plays a role over distances of the order of

the common transition wavelength [25, 26]. It has been found that the presence of plasmonic

waveguides near the emitters can allow a mediated interaction over larger distances [27] whose

effect on the entanglement dynamics has been discussed [28]. However, at thermal equilibrium,

the dynamic creation of entanglement eventually ceases at some time and the system thermalizes

toward a thermal state which is a classical mixture. Steady entanglement can be instead

generated by adding the action of an external driving laser [29].

The influence of several independent reservoirs at different temperatures, whose emission

does not depend on their internal structure (material or geometry), has been considered in several

contexts, including generation of entanglement in non-equilibrium steady states, both in the case

of a few spins [30–32] and of a chain of spins [33–35] and in the context of quantum thermal

machines [36, 37].

However, in a realistic configuration, the actual reflection and transmission properties of

the bodies surrounding the quantum emitters should be taken into account, and may become

particularly relevant if the emitters are placed close to the bodies (near-field effects). New

possibilities emerging in such realistic systems out of thermal equilibrium have been recently

pointed out in different contexts ranging from heat transfer [38, 39], to Casimir–Lifshitz

forces [40–45]. There, radiation fields out of thermal equilibrium in configurations of a quite

general nature have been characterized in terms of the correlators of the total field depending

on the scattering matrices of the bodies composing the total system [46, 47]. In the case of

single emitters in such environments, new tools exploiting the absence of thermal equilibrium to

manipulate the atomic dynamics realizing inversion of population and cooling of internal atomic

temperature have been pointed out [48, 49]. Recently, the case of two quantum emitters has also

been analyzed, pointing out a new remarkable mechanism to generate and protect entanglement

in a steady way in systems out of thermal equilibrium [50].

In this paper, we report a detailed investigation of this phenomenon by studying the internal

dynamics of a system composed of two quantum emitters (real atoms or artificial ones such as

quantum dots or superconducting qudits) placed in front of an arbitrary body embedded in a

thermal radiation whose temperature is different from that of the body. The paper is organized

as follows. In section 2, we describe the physical model under investigation and we derive a

master equation for the general case of two N -level emitters. In section 3, we derive closed-

form expressions for the functions governing the dynamics, in terms of the scattering matrices

of the body and valid for arbitrary geometrical and material properties. In section 4, we develop

these expressions in the case when the body is a slab of finite thickness. From section 5 onwards

we specialize our analysis to the case of a two-qubit system, comparing cases in and out

of thermal equilibrium. We point out the occurrence of peculiar phenomena emerging out of

thermal equilibrium such as the generation of steady entanglement and a simple interpretation

for this phenomenon is presented for a particularly interesting case. The general case of arbitrary

values of the parameters is then discussed in section 6. In section 7, we draw our conclusions.

2. The model

We consider a system made of two quantum emitters q = 1, 2 interacting with an environment

consisting of an electromagnetic field which is stationary and out of thermal equilibrium. This

is generated by the field emitted by a body (M) at temperature TM of arbitrary geometry and
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Figure 1. Physical configuration: two quantum emitters close to an arbitrary

body whose temperature TM is kept fixed and different from that of the

surrounding walls TW. The two emitters are placed at R1 = (r1, z1) and R2 =
(r2, z2), where r1 and r2 are vectors in the xy plane. In the figure, we choose the

x-axis along the direction r1 − r2 and x2 = 0, naming r12 = |r1 − r2| = x1 (this

choice of the reference system is used in section 4 in the specific case when the

body is a slab).

dielectric response and by the field emitted by the far surrounding walls (W) at temperature TW,

which is eventually transmitted and reflected by the body itself (see figure 1).

TM and TW are kept fixed in time, realizing a stationary configuration for the

electromagnetic field. The surrounding walls have an irregular shape and are distant enough

from the body and the emitters so that their field can be treated at the emitters’ locations,

in the absence of the body, as blackbody radiation independent of their composition. This is

not true for the field emitted by the body M which cannot be treated as a blackbody since its

radiation depends on its actual properties such as its geometry and its dielectric function. The

total Hamiltonian has the form

H = HS + HE + HI, (1)

where HS and HE are the free Hamiltonians of the two emitters and of the environment.

The interaction between the emitters and the field, in the multipolar coupling and in dipole

approximation, is [51]

HI = −
∑

q

Dq · E(Rq), (2)

where Dq is the electric-dipole operator of emitter q and E(Rq) is the electric field at its position

Rq .

We first consider the general case in which each emitter has Nq internal levels |n〉q where

n ∈ {1, . . . , Nq} of frequency ωq
n (ordered by increasing energy). Given two arbitrary levels

n and m, their frequency difference is indicated by ωq
nm = ωq

n − ωq
m and the transition matrix

element of the dipole operator by dq
mn =q 〈m|Dq |n〉q . The free Hamiltonian of the two emitters

is

HS =
2

∑

q=1

Hq =
∑

q,ǫ
q
n

ǫq
n 5(ǫq

n ), (3)
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where 5(ǫq
n ) = |n〉qq〈n| are the projectors associated with each eigenvalue ǫq

n = h̄ωq
n (possibly

degenerate) of Hq . The dipole operator of emitter q in the interaction picture, Dq(t) =
exp( i

h̄
HSt)Dq exp(− i

h̄
HSt), results in

Dq(t) =
∑

m,n
n>m

(dq
mn σ q

mn e−iω
q
nm t + h.c.), (4)

where σ q
mn = |m〉qq〈n| and ωq

nm > 0. By moving to the interaction picture, we obtain for HI

HI(t) = −
∑

q

Dq(t) · E(Rq, t), (5)

where the time-dependent electric field is given by E(Rq, t) = exp( i

h̄
HEt)E(Rq) exp(− i

h̄
HEt).

In the following each mode of the field is identified by the frequency ω, the transverse

wave vector k = (kx , ky), the polarization index p (taking the values p = 1, 2 corresponding

to transverse-electric (TE) and transverse-magnetic (TM) polarizations respectively) and the

direction of propagation φ = ±1 (shorthand notation φ = ±) along the z-axis (see figure 1). In

this approach, the total wavevector takes the form Kφ = (k, φkz), where the z component of

the wavevector kz is a dependent variable given by kz =
√

ω2

c2 − k2, where k = |k|. The explicit

expression of the field at an arbitrary point R is

E(R, t) = 2Re

[ ∫ +∞

0

dω

2π
e−iωtE(R, ω)

]

, (6)

where a single-frequency component reads

E(R, ω) =
∑

φ,p

∫

d2k

(2π)2
eiKφ ·R

ǫ̂
φ

p(k, ω)Eφ
p(k, ω), (7)

where Eφ
p(k, ω) is the field amplitude operator associated with the mode (ω, k, p, φ). For the

TE and TM polarization vectors appearing in (7), we adopt the following standard definitions:

ǫ̂
φ

TE(k, ω) = ẑ × k̂ = 1

k
(−ky x̂ + kx ŷ),

ǫ̂
φ

TM(k, ω) = c

ω
ǫ̂

φ

TE(k, ω)× Kφ = c

ω
(−kẑ + φkzk̂),

(8)

where x̂, ŷ and ẑ are the unit vectors along the three axes and k̂ = k/k.

2.1. Master equation

The starting point to study the dynamics of the two emitters is, in the interaction picture, the

von Neumann equation for the total density matrix ρtot(t):

d

dt
ρtot(t) = − i

h̄
[HI(t), ρtot(t)]. (9)

The reduced density matrix of the two emitters is given by ρ = TrE[ρtot], where TrE denotes the

trace over the degrees of freedom of the environment. To derive a master equation for ρ we

follow the procedure described in [9] for the case of one emitter by extending it to our system

made of two emitters. We name ωq an arbitrary transition frequency of emitter q (positive and

negative). In general, several transitions can be characterized by the same frequency ωq both
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because of degeneracy and/or the occurrence of equidistant levels. We rewrite each Cartesian

component of the dipole operator, [Dq]i (i = {x, y, z}), as

[Dq]i =
∑

ωq

∑

{ǫq
n ,ǫ

q
m }

ǫ
q
n −ǫ

q
m=h̄ωq

5(ǫq
m)[Dq]i5(ǫq

n ) =
∑

ωq

A
q

i (ωq), (10)

where A
q

i (ωq) and A
q †

i (ωq) turn out to be the eigenoperators of Hq with frequencies −ωq and

+ωq , respectively, i.e. [Hq, A
q

i (ωq)] = −ωq A
q

i (ωq) and [Hq, A
q †

i (ωq)] = +ωq A
q †

i (ωq). It also

holds A
q †

i (ωq) = A
q

i (−ωq) and exp( i

h̄
HSt)A

q

i (ωq) exp(− i

h̄
HSt) = e−iωq t A

q

i (ωq). In the central

term of (10), the first sum is over all of the frequencies ωq while the second is over all of the

couples of energy eigenvalues ǫq
n and ǫq

m of Hq such that ǫq
n − ǫq

m = h̄ωq . Following [9], it is

useful to rewrite HI(t) of (5) in terms of the eigenoperators A
q

i (ωq) as

HI(t) = −
∑

q

∑

i,ωq

e−iωq t A
q

i (ωq)Ei(Rq, t). (11)

From (10) it follows that the vector Aq(ωq) = {Aq
x(ωq), Aq

y(ωq), Aq
z (ωq)} is given by

Aq(ωq) =
∑

{m,n}
ω

q
nm=ωq

dq
mnσ

q
mn = Aq †(−ωq), (12)

where the sum is over all of the couples n and m such that ωq
nm = ωq . By applying to the case of

two emitters the standard procedure for the microscopic derivation of a master equation reported

in [9], under Born, Markovian and rotating-wave approximations4, one can obtain (by using also

the condition 〈Ei(R, t)〉 = 0) in the Schrödinger representation

d

dt
ρ = − i

h̄
[HS, ρ] − i

∑

q,q ′,ω

∑

i,i ′

{sqq ′

i i ′ (ω)[A
q †

i (ω)A
q ′

i ′ (ω), ρ]

+γ
qq ′

i i ′ (ω)(A
q ′

i ′ (ω)ρ A
q †

i (ω) − 1

2
{A

q †

i (ω)A
q ′

i ′ (ω), ρ})}, (13)

where ω R 0, being terms with positive or negative ω associated, respectively, with downward

and upward transitions. In the above equation, for q 6= q ′ the sum
∑

q,q ′,ω is over all

of the common frequencies ωq = ωq ′ = ω (this condition derives from the rotating wave

approximation) while for q = q ′ it is over all of the transition frequencies of each emitter, and

γ
qq ′

i i ′ (ω), and s
qq ′

i i ′ (ω) are defined by

γ
qq ′

i i ′ (ω) = 4
qq ′

i i ′ (ω) + 4
q ′q ∗
i ′i (ω), s

qq ′

i i ′ (ω) = 4
qq ′

i i ′ (ω) − 4
q ′q ∗
i ′i (ω)

2i
,

4
qq ′

i i ′ (ω) = 1

h̄2

∫ ∞

0

ds eiωs〈Ei(Rq, t)Ei ′(Rq ′, t − s)〉,
(14)

where the field correlation functions enter in the function 4
qq ′

i i ′ (ω). It follows that 4
qq ′

i i ′ (ω) =
1

2
γ

qq ′

i i ′ (ω) + is
qq ′

i i ′ (ω), [γ
qq ′

i i ′ (ω)]∗ = γ
q ′q
i ′i (ω) and [s

qq ′

i i ′ (ω)]∗ = s
q ′q
i ′i (ω).

4 The Born–Markov approximation is typically valid in the weak coupling regime when the bath correlation time

is small compared to the relaxation time of the system. Under rotating wave approximation, rapidly oscillating

terms can be neglected when the inverse of frequency differences involved in the problem are small compared to

the relaxation time of the system (see appendix A of [49] for a more detailed discussion).
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The initial state of the total system in (13) is assumed to be factorized, ρtot(0) = ρ(0)ρE. In

the case ρE is a stationary state of the environment ([HE, ρE] = 0) the correlation functions are

homogeneous in time, that is 〈Ei(Rq, t)Ei ′(Rq ′, t − s)〉 = 〈Ei(Rq, s)Ei ′(Rq ′, 0)〉, so that

γ
qq ′

i i ′ (ω) = 1

h̄2

∫ ∞

−∞
ds eiωs〈Ei(Rq, s)Ei ′(Rq ′, 0)〉 (15)

does not depend on time. The functions defined in (14) appearing in the master equation (13)

depend thus only on the field correlation functions 〈Ei(Rq, s)Ei ′(Rq ′, 0)〉, whose computation

out of thermal equilibrium will be the subject of sections 3 and 4.

We now explicitly write the master equation (13) in the case of absence of degenerate and

equidistant levels in each emitter, when the definition of the eigenoperators Aq(ωq) (12) reduces

to Aq(ωq) = dq
mnσ

q
mn (each ωq corresponds to only one couple of energy eigenvalues {ǫq

m, ǫq
n }).

For this purpose, we develop the sum over ω in (13), which for each |ω| runs over ω (downward

transitions) and −ω (upward transitions), as
∑

ω f (ω) =
∑

ω>0 f (ω) +
∑

ω>0 f (−ω). From

now on ω always indicates a positive frequency and we drop ‘> 0’ in the sums over ω. By

introducing this new convention and using the explicit form for A
q

i (ω) (12), we can recast (13)

as

d

dt
ρ = − i

h̄
[HS, ρ] − i

∑

q,ω

{Sqq(ω)[σ q
nn, ρ] + Sqq(−ω)[σ q

mm, ρ]}

−i
∑

q 6=q ′,ω

3qq ′
(ω)[σ q †

mn σ
q ′

m′n′, ρ] +
∑

q,q ′,ω

{

Ŵqq ′
(ω)(σ

q ′

m′n′ρσ q †
mn

−1

2
{σ q †

mn σ
q ′

m′n′, ρ}) + Ŵqq ′
(−ω)(σ

q ′†
m′n′ρσ q

mn − 1

2
{σ q

mnσ
q ′ †

m′n′, ρ})
}

, (16)

where the sum
∑

q,q ′,ω in the second line is relative to all of the transition frequencies of each

emitter for q = q ′ and only to the common transition frequencies for q 6= q ′, (m, n) and (m ′, n′)
individuate, respectively, the transition of each emitter corresponding to the frequency ω, and

we have defined the functions

Sqq(ω) =
∑

i,i ′

s
qq

ii ′ (ω)[dq
mn]∗i [dq

mn]i ′, Sqq(−ω) =
∑

i,i ′

s
qq

ii ′ (−ω)[dq
mn]i [d

q
mn]∗i ′,

3qq ′
(ω) =

∑

i,i ′

[dq
mn]∗i [d

q ′

m′n′]i ′[s
qq ′

i i ′ (ω) + s
q ′q
i ′i (−ω)], (17)

Ŵqq ′
(ω) =

∑

i,i ′

γ
qq ′

i i ′ (ω)[dq
mn]∗i [d

q ′

m′n′]i ′, Ŵqq ′
(−ω) =

∑

i,i ′

γ
qq ′

i i ′ (−ω)[dq
mn]i [d

q ′

m′n′]
∗
i ′ .

We remark that it holds [3qq ′
(ω)]∗ = 3q ′q(ω) and [Ŵqq ′

(ω)]∗ = Ŵq ′q(ω). In (16), function

3qq ′
(ω) represents a coherent (dipole–dipole) interaction between the emitters mediated by

the field while dissipative effects enter through the Ŵ functions. In particular, Ŵqq ′
(±ω) are

individual (q = q ′) and common field-mediated collective (q 6= q ′) emitter transition rates,

related to both quantum and thermal fluctuations of the electromagnetic field at the emitters’

position.
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Figure 2. E± are the total field in the zone on the right of the body M. E (M)+ is the

field emitted by the body toward the right, while E (W)+ and E (W)− are the fields

emitted by the surrounding walls (not shown in the picture) coming, respectively,

from the left and from the right, eventually impinging on the body.

3. Emitters close to an arbitrary body

Here, we derive the field correlation functions needed to compute the functions in (17) for

non-equilibrium configurations in the case of an arbitrary body and multilevel emitters. These

functions will depend on the two temperatures TM and TW and on the material and geometrical

properties of the body as well. We follow the derivation discussed in [47] in the more general

case of two bodies and three temperatures and the derivation relative to a single quantum

emitter in the presence of a single body and two temperatures [49]. Here, we extend the latter

derivation to the case of two quantum emitters. Some of the computations involved are reported

in appendix A.

The starting point is to decompose on the right side of the body where the emitters are

located, the amplitude operators of total field modes propagating in the two directions z > 0 and

z < 0 in terms of the fields emitted by the surrounding walls (W) and by the body (M). For a

given set (ω, k, p), we have for the two directions

E+ = E (M)+ + T E (W)+ +RE (W)−, E− = E (W)−, (18)

where we made the dependence on ω, k and p implicit. The total field E− propagating toward

the body (i.e. toward the left) is equal to the field emitted by the walls E (W)− coming from the

left, while the total field E+ propagating toward the right results from the field E (M)+ directly

produced by the body, the transmission through the body of the field E (W)+ emitted by the walls

coming from the left and the reflection by the body of the field E (W)− coming from the right

(see figure 2).

The operators R and T are the reflection and transmission scattering operators associated

with the right side of the body, whose explicit definition can be found for example in [47]. They

connect any outgoing (reflected or transmitted) mode of the field to the entire set of incoming

modes. By using (18) one can write the total field correlators in terms of the correlators of the

fields emitted by each source.
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The source fields have been characterized as in [47] by assuming that for the body M

and the walls W a local temperature that remains constant in time can be defined and that

the emission process of the body is essentially not influenced by the presence of the external

radiation impinging on the body itself. This assumption leads to the hypothesis that the part

of the total field emitted by the body is the same as it would be if the body were at thermal

equilibrium with the environment at its own temperature so that the correlators of the field

emitted by each body can still be deduced by using the fluctuation–dissipation theorem at its

local temperature.

Under this assumption, the following symmetrized correlation functions [〈AB〉sym =
(〈AB〉 + 〈B A〉)/2] have been derived

〈E (M)+
p (k, ω)E

(M)+†

p′ (k′, ω′)〉sym = ω

2ǫ0c2
N (ω, TM)2πδ(ω − ω′)〈p, k|

(

P
(pw)

−1

−RP (pw)

−1 R
† +RP

(ew)

−1 −P (ew)

−1 R
† − T P (pw)

−1 T
†
)

|p′, k′〉,

〈E (W)φ
p (k, ω)E

(W)φ′†
p′ (k′, ω′)〉sym = ω

2ǫ0c2
N (ω, TW)2πδ(ω − ω′)δφ,φ′〈p, k|P (pw)

−1 |p′, k′〉, (19)

where we have introduced

N (ω, T ) = h̄ω

2
coth

(

h̄ω

2kBT

)

= h̄ω

[

1

2
+ n(ω, T )

]

, n(ω, T ) = (e
h̄ω

kBT − 1)−1,

〈p, k|P (pw/ew)
n |p′, k′〉 = kn

z 〈p, k|5(pw/ew)|p′, k′〉.
(20)

In the above equation 5(pw) and 5(ew) are the projectors on the propagative (c k < ω,

corresponding to a real kz) and evanescent (c k > ω, corresponding to a purely imaginary kz)

sectors respectively. By combining (18) and (19), in appendix A a general expression for the

total correlation functions in frequency space has been derived in (A.7). This expression can

be used to compute the functions γ
qq ′

i i ′ (ω), γ
qq ′

i i ′ (−ω) and s
qq ′

i i ′ (ω) entering in (17), by exploiting

their connection with the correlation functions between frequency components of the total field

given in (A.8).

To move to the final expression of the functions in (17), we first rewrite the antinormally

ordered correlation functions (A.7) as

〈Ei(Rq, ω)E
†
i ′(Rq ′, ω)〉 = h̄ω3

3πǫ0c3
{[1 + n(ω, TW)][α

qq ′

W (ω)]i i ′ + [1 + n(ω, TM)][α
qq ′

M (ω)]i i ′},

(21)

from which the normally ordered correlation functions are obtained by replacing [1 + n(ω, Ti)]

with n(ω, Ti) and by taking the complex conjugate (this procedure derives from Kubo’s

prescription as explained in appendix A)

〈E
†
i (Rq, ω)Ei ′(Rq ′, ω)〉 = h̄ω3

3πǫ0c3
{n(ω, TW[α

qq ′

W (ω)]∗i i ′ + n(ω, TM)][α
qq ′

M (ω)]∗i i ′}, (22)

and where we have introduced two α functions which do not depend on the temperatures and

on the dipoles, and do depend on the geometrical and material properties of the body through
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the operators R and T :

[α
qq ′

W (ω)]i i ′ = 3πc

2ω

∑

p,p′

∫

d2k

(2π)2

∫

d2k′

(2π)2
ei(k·rq−k′·rq′ )〈p, k|{ei(kz zq−k

′∗
z zq′ )

×[ǫ̂
+

p(k, ω)]i [ǫ̂
+

p′(k
′, ω)]∗i ′(T P

(pw)

−1 T
† +RP

(pw)

−1 R
†)

+ei(kz zq +k
′∗
z zq′ )[ǫ̂

+

p(k, ω)]i [ǫ̂
−
p′(k

′, ω)]∗i ′RP
(pw)

−1

+e−i(kz zq +k
′∗
z zq′ )[ǫ̂

−
p (k, ω)]i [ǫ̂

+

p′(k
′, ω)]∗i ′P

(pw)

−1 R
†

+e−i(kz zq−k
′∗
z zq′ )[ǫ̂

−
p (k, ω)]i [ǫ̂

−
p′(k

′, ω)]∗i ′P
(pw)

−1 }|p′, k′〉,

[α
qq ′

M (ω)]i i ′ = 3πc

2ω

∑

p,p′

∫

d2k

(2π)2

∫

d2k′

(2π)2
ei(k·rq−k′·rq′ )〈p, k|{ei(kz zq−k

′∗
z zq′ )

×[ǫ̂
+

p(k, ω)]i [ǫ̂
+

p′(k
′, ω)]∗i ′[(P

(pw)

−1 −RP (pw)

−1 R
† +RP

(ew)

−1

−P (ew)

−1 R
† − T P (pw)

−1 T
†) }|p′, k′〉. (23)

Functions [α
qq ′

W (ω)]i i ′ and [α
qq ′

M (ω)]i i ′ are real for q = q ′, while in general they are complex for

q 6= q ′ satisfying Im[α
qq ′

W (ω)]i i ′ = −Im[α
qq ′

M (ω)]i i ′ . The last property ensures that the function

[α
qq ′

W (ω)]i i ′ + [α
qq ′

M (ω)]i i ′ is real as expected, being proportional to the imaginary part of the

Green function (see (C.3)).

Now we can compute the transition rates in (17), by using (A.8), (21) and (22),

Ŵqq ′
(ω) =

√

Ŵ
q

0 (ω)Ŵ
q ′

0 (ω){[1 + n(ω, TW)]α
qq ′

W (ω) + [1 + n(ω, TM)]α
qq ′

M (ω)},

Ŵqq ′
(−ω) =

√

Ŵ
q

0 (ω)Ŵ
q ′

0 (ω)[n(ω, TW)α
qq ′

W (ω)∗ + n(ω, TM)α
qq ′

M (ω)∗],

(24)

where Ŵ
q

0 (ω) = |dq
mn |2ω3

3h̄πǫ0c3 is the vacuum spontaneous-emission rate of transition |n〉q → |m〉q of

emitter q and we have introduced the new functions

α
qq ′

W (ω) =
∑

i,i ′

[d̃q
mn]∗i [d̃

q ′

m′n′]i ′[α
qq ′

W (ω)]i i ′, α
qq ′

M (ω) =
∑

i,i ′

[d̃q
mn]∗i [d̃

q ′

m′n′]i ′[α
qq ′

M (ω)]i i ′, (25)

being [d̃q
mn]i = [dq

mn]i/|dq
mn|. Differently from [α

qq ′

W(M)(ω)]i i ′ , the functions α
qq ′

W(M)(ω) depend

on the choice of emitters’ dipoles. In the case of two qubits, which will be treated

in sections 5 and 6, there is only one transition for each emitter and the above

equations (24) and (25) hold with the notation dq
mn = dq .

With regards to the function 3qq ′
(ω) we obtain, by using (A.8), (21) and (22),

3qq ′
(ω) =

√

Ŵ
q

0 (ω)Ŵ
q ′

0 (ω)

ω3

∑

i,i ′

[d̃q
mn]∗i [d̃

q ′

m′n′]i ′P

∫ +∞

−∞

ω′3 dω′

2π

[α
qq ′

W (ω′)]i i ′ + [α
qq ′

M (ω′)]i i ′

ω − ω′ , (26)

where we used the properties [α
qq ′

W(M)(ω
′)]i i ′ = [α

q ′q
W(M)(ω

′)]∗i ′i and [α
qq ′

W(M)(−ω′)]i i ′ =
[α

qq ′

W(M)(ω
′)]∗i i ′ . It follows that 3qq ′

(ω) does not depend on the presence or the absence of thermal
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Figure 3. Two quantum emitters in front of a slab of thickness δ at a fixed

temperature TM, surrounded by walls kept at a temperature TW.

equilibrium, being independent of the temperatures. By using the relation between α functions

of (23) and the Green’s function of the system in (C.3) derived in appendix C, the integration

over frequencies in (26) can be achieved by using the Kramers–Kronig relations connecting

real and imaginary parts of Green’s function:

3qq ′
(ω) = − 1

h̄

∑

i,i ′

[dq
mn]∗i [d

q ′

m′n′]i ′P

∫ +∞

−∞

dω′

π

Im G i i ′(Rq, Rq ′, ω′)

ω′ − ω

= − 1

h̄

∑

i,i ′

[dq
mn]∗i [d

q ′

m′n′]i ′Re G i i ′(Rq, Rq ′, ω). (27)

4. Emitters close to a slab

We now specialize the derivation of the previous section to the case when the body is a

slab of finite thickness δ, defined by the two interfaces z = 0 and −δ (see figure 3). In this

simple case, explicit expressions for the transmission and reflection operators can be exploited

[46, 47]. Owing to the translational invariance of a planar slab with respect to the xy plane, the

slab reflection and transmission operators, R and T , are diagonal and equal to

〈p, k|R|p′, k′〉 = (2π)2δ(k − k′)δpp′ρp(k, ω),

〈p, k|T |p′, k′〉 = (2π)2δ(k − k′)δpp′τp(k, ω),
(28)

where the Fresnel reflection and transmission coefficients modified by the finite thickness δ are

given by (we recall that p = 1, 2 corresponding to the TE and TM polarizations)

ρp(k, ω) = rp(k, ω)
1 − e2ikzmδ

1 − r 2
p(k, ω)e2ikzmδ

,

τp(k, ω) = tp(k, ω)t̄p(k, ω)ei(kzm−kz)δ

1 − r 2
p(k, ω)e2ikzmδ

.

(29)

In the previous equations we have introduced the z component of the K vector inside the medium

kzm =
√

ε(ω)
ω2

c2
− k2, (30)
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ε(ω) being the dielectric permittivity of the slab, the ordinary vacuum–medium Fresnel

reflection coefficients

rTE = kz − kzm

kz + kzm

, rTM = ε(ω)kz − kzm

ε(ω)kz + kzm

, (31)

as well as both the vacuum–medium (denoted with t) and medium–vacuum (denoted with t̄)

transmission coefficients

tTE = 2kz

kz + kzm

, tTM = 2
√

ε(ω)kz

ε(ω)kz + kzm

,

t̄TE = 2kzm

kz + kzm

, t̄TM = 2
√

ε(ω)kzm

ε(ω)kz + kzm

.

(32)

After replacing the matrix elements (28) in (23) we obtain for the α functions (we choose

the x-axis along the vector r1 − r2 whose coordinates in the plane xy are then (r12, 0), being

r12 = |r1 − r2|),

[α
qq ′

W (ω)]i i ′ = 3c

8πω

∑

p

{ ∫ ω
c

0

dk k

kz

[eikz(zq−zq′ )[N qq ′

p (k, ω)]++
i i ′ (|ρp(k, ω)|2 + |τp(k, ω)|2)

+eikz(zq +zq′ )[N qq ′

p (k, ω)]+−
i i ′ ρp(k, ω) + e−ikz(zq +zq′ )[N qq ′

p (k, ω)]−+
i i ′ ρp(k, ω)∗

+e−ikz(zq−zq′ )[N qq ′

p (k, ω)]−−
i i ′ ]

}

,

[α
qq ′

M (ω)]i i ′ = 3c

8πω

∑

p

{ ∫ ω
c

0

dk k

kz

eikz(zq−zq′ )[N qq ′

p (k, ω)]++
i i ′ (1 − |ρp(k, ω)|2 − |τp(k, ω)|2)

−i

∫ ∞

ω
c

dk k

Im(kz)
e−Im(kz)(zq +zq′ )[N qq ′

p (k, ω)]++
i i ′

[

ρp(k, ω)− ρp(k, ω)∗]
}

(33)

where, using the fact that ρp(k, ω) and τp(k, ω) are independent of θ (the angle formed by k

and the x-axis in the plane xy), we have introduced the angular integrals

[N qq ′

p (k, ω)]
φφ′

i i ′ =
∫ 2π

0

dθ

π
[ǫ̂

φ

p(k, ω)]i [ǫ̂
φ′

p (k, ω)]∗i ′ eikrqq′ cos θ , (34)

where r21 = −r12. The matrix elements different from zero are, for p = 1, [N
qq ′

1 ]
φφ′

11 =
2

krqq′
J1(krqq ′), [N

qq ′

1 ]
φφ′

22 = 2

krqq′
J1(krqq ′) − 2J2(krqq ′), while for p = 2 are

[N
qq ′

2 ]
φφ′

11 = 2φφ′c2|k2
z |

krqq ′ω2
[J1(krqq ′) − krqq ′ J2(krqq ′)], [N

qq ′

2 ]
φφ′

13 = −iφ
2c2kkz

ω2
J1(krqq ′),

[N
qq ′

2 ]
φφ′

22 = 2φφ′c2|k2
z |

krqq ′ω2
J1(krqq ′), [N

qq ′

2 ]
φφ′

31 = −iφ′ 2c2kk∗
z

ω2
J1(krqq ′), (35)

[N
qq ′

2 ]
φφ′

33 = 2c2k2

ω2
J0(krqq ′),
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where Jn(x) is the nth-order Bessel function of the first kind. For x → 0, it is J0(x) → 1,

J1(x) → 0, J2(x) → 0 and J1(x)/x → 1/2, so that [N
qq ′

1(2)(k, ω)]
φφ′

i i ′ become diagonal and reduce

to the vectors defined in (55) of [49] in the case of a single emitter.

To simplify the functions [α
qq ′

W (ω)]i i ′ and [α
qq ′

M (ω)]i i ′ in (33) we exploit the fact that the

quantities [N
qq ′

1 (k, ω)]
φφ′

i i ′ do not depend on φ and φ′ and are real, and that in the propagative

sector [N
qq ′

2 (k, ω)]++
i i ′ = [N

qq ′

2 (k, ω)]−− ∗
i i ′ and [N

qq ′

2 (k, ω)]+−
i i ′ = [N

qq ′

2 (k, ω)]−+ ∗
i i ′ . By using the

angular integrals (34), equation (33) can thus be rewritten as

[α
qq ′

W (ω)]i i ′ = [Aqq ′
(ω)]∗i i ′ + [Bqq ′

(ω)]i i ′ + 2[Cqq ′
(ω)]i i ′

2
,

[α
qq ′

M (ω)]i i ′ = [Aqq ′
(ω)]i i ′ − [Bqq ′

(ω)]i i ′ + 2[Dqq ′
(ω)]i i ′

2
,

(36)

where we have introduced the integral matrices

[Aqq ′
(ω)]i i ′ = 3c

4ω

∑

p

∫ ω
c

0

k dk

kz

eikz(zq−zq′ )[N qq ′

p (k, ω)]++
i i ′ ,

[Bqq ′
(ω)]i i ′ = 3c

4ω

∑

p

∫ ω
c

0

k dk

kz

eikz(zq−zq′ )[N qq ′

p (k, ω)]++
i i ′ (|ρp(k, ω)|2 + |τp(k, ω)|2), (37)

[Cqq ′
(ω)]i i ′ = 3c

4ω

∑

p

∫ ω
c

0

k dk

kz

Re[eikz(zq +zq′ )[N qq ′

p (k, ω)]+−
i i ′ ρp(k, ω)],

[Dqq ′
(ω)]i i ′ = 3c

4ω

∑

p

∫ +∞

ω
c

k dk

Im(kz)
e−Im(kz)(zq +zq′ )[N qq ′

p (k, ω)]++
i i ′ Im[ρp(k, ω)].

For q = q ′, α
qq

W (ω) and α
qq

M (ω) coincide with the functions defined in (56) of [49] in the case of a

single emitter. For q 6= q ′, in the limit Rq ′ → Rq , [α
qq ′

W (ω)]i i ′ and [α
qq ′

M (ω)]i i ′ tend to their values

in the case of a single emitter placed in Rq . In the limit, the distance between the two emitters

goes to infinity, both α
qq ′

W (ω) and α
qq ′

M (ω) go to zero. In the limit of |rqq ′| → ∞, this is due to the

fact that the functions [N qq ′
p (k, ω)]φφ′

go to zero (for |x | → ∞, it is J0(x) → 0, J1(x) → 0 and

J2(x) → 0). In the limit |zq − zq ′| → ∞, this is due to the presence of an oscillating function

whose frequency goes to infinity in the integrals A(ω), B(ω) and C(ω) (this can be seen

explicitly by integrating by parts) and to the presence of the exponential function going to zero

in the integral D(ω).

Concerning the function 3qq ′
(ω), in order to develop its expression in (27) one has to

compute the real part of the Green function in terms of the scattering operatorsR and T . This is

done in appendix C where a free term 3
qq ′

0 (ω) (see (C.11)) remaining in the absence of matter

has been isolated from a reflected part 3
qq ′

R (ω) (see (C.12)), 3qq ′
(ω) = 3

qq ′

0 (ω) + 3
qq ′

R (ω). By

using the expressions forR and T in the case of a slab and the angular integrals in (34), one can
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derive, starting from (C.12):

Re G
(R)

i i ′ (Rq, Rq ′, ω) = iω2

4ǫ0c2

1

4π

∑

p

{∫ ω
c

0

k dk

kz

[eikz(zq +zq′ )[N qq ′

p (k, ω)]+−
i i ′ ρp(k, ω)

−e−ikz(zq +zq′ )[N qq ′

p (k, ω)]−+
i i ′ ρp(k, ω)∗ − i

∫ ∞

ω
c

dk k

Im(kz)
e−Im(kz)(zq +zq′ )

×[N qq ′

p (k, ω)]++
i i ′ (ρp(k, ω) + ρp(k, ω)∗)]

}

. (38)

Equation (27) can be thus cast in the form

3qq ′
(ω) = 3

qq ′

0 (ω) +

√

Ŵ
q

0 (ω)Ŵ
q ′

0 (ω)
∑

i,i ′

[d̃q
mn]∗i [d̃

q ′

m′n′]i ′([C
qq ′

2 (ω)]i i ′ − [D
qq ′

2 (ω)]i i ′), (39)

where we have introduced the integral matrices

[C
qq ′

2 (ω)]i i ′ = 3c

8ω

∑

p

∫ ω
c

0

k dk

kz

Im[eikz(zq +zq′ )[N qq ′

p (k, ω)]+−
i i ′ ρp(k, ω)],

[D
qq ′

2 (ω)]i i ′ = 3c

8ω

∑

p

∫ +∞

ω
c

k dk

Im(kz)
e−Im(kz)(zq +zq′ )[N qq ′

p (k, ω)]++
i i ′ Re[ρp(k, ω)].

(40)

We observe that the limit case when the body is absent is discussed in appendix B, where

known expressions for Ŵqq ′
(ω) and 3qq ′

(ω) are retrieved.

5. Two-qubit system

From now on we specialize our investigation to the case of two emitters (qubits) characterized

by two internal levels |1〉 ≡ |g〉 and |2〉 ≡ |e〉 with the same transition frequency ω = ω1
e − ω1

g =
ω2

e − ω2
g. In this case, master equation (16) reduces to

d

dt
ρ = − i

h̄
[HS + δS, ρ] − i

∑

q 6=q ′

3qq ′
(ω)[σ q †

ge σ q ′

ge, ρ] +
∑

q,q ′

Ŵqq ′
(ω)

(

σ q ′

geρσ q †
ge

−1

2
{σ q †

ge σ q ′

ge, ρ}
)

+
∑

q,q ′

Ŵqq ′
(−ω)

(

σ q ′†
ge ρσ q

ge − 1

2
{σ q

geσ
q ′ †
ge , ρ}

)

, (41)

where we used [σ q
gg, ρ] = −[σ q

ee, ρ], so that

δS =
∑

q

h̄[Sqq(ω) − Sqq(−ω)]σ q
ee, (42)

and where the functions Sqq(±ω), 3qq ′
(ω) and Ŵqq ′

(±ω) are defined in (17) for the specific

case {m, n} = {1, 2} (in the following we use the notation d
q

12 = dq).

We observe that master equation (41) can also describe the case in which the emitters’

frequencies are close enough (but not identical) so that rotating wave approximation used in

the derivation of (13) still holds. This typically occurs when the frequency difference is much
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smaller than the average frequency [26]. The operator δS (42) represents a shift of energy levels,

the renormalized transition frequencies being equal to ω̃1
e − ω1

g = ω + S11(ω) − S11(−ω) and

ω̃2
e − ω2

g = ω + S22(ω) − S22(−ω). In the following, these shifts will not play any role.

To discuss the properties of (41), we will use two different bases, the decoupled

basis {|1〉 ≡ |gg〉, |2〉 ≡ |eg〉, |3〉 ≡ |ge〉, |4〉 ≡ |ee〉} and the coupled basis {|G〉 ≡ |1〉, |A〉 ≡
(|2〉 − |3〉)/

√
2, |S〉 ≡ (|2〉 + |3〉)/

√
2, |E〉 ≡ |4〉}, where we have introduced the collective

antisymmetric |A〉 and symmetric states |S〉. The coupled basis is the one diagonalizing the

effective Hamiltonian, HS + δS +
∑

q 6=q ′ h̄3qq ′
(ω)σ q †

ge σ q ′
ge, appearing in the first line of (41).

In particular, the sign of 312(ω) inverts the role of |A〉 and |S〉 in the eigenstates of the

above effective Hamiltonian. The eigenvalues associated with |G〉, |A〉, |S〉, |E〉, are {−h̄ω,

−h̄|312(ω)|, h̄|312(ω)|, h̄ω}, with respect to the energy E0 = h̄[ω1
e + S11(ω) − S11(−ω) + ω2

e +

S22(ω) − S22(−ω) − ω].

5.1. X states

In the decoupled basis we can distinguish elements along the two main diagonals of the two-

qubit density matrix from the remaining ones because they are not connected through master

equation (41). We thus focus our attention on the class of X states, having non-zero elements

only along the main diagonal and anti-diagonal of the density matrix (we use the notation

ρi j = 〈i |ρ| j〉),

ρX =













ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ∗
23 ρ33 0

ρ∗
14 0 0 ρ44













. (43)

Bell, Werner and Bell diagonal states belong to this class of states [55]. X-structure density

matrices are found in a wide variety of physical situations and are also experimentally

achievable [56]. For example, X states are encountered as eigenstates in all of the systems with

odd–even symmetry such as in the Ising and the XY models [57]. Moreover, in many physical

evolutions of open quantum systems an initial X structure is maintained in time [58], as it is in

our case. Terms outside the two main diagonals initially populated would be eventually washed

off asymptotically. In the following, the two-qubit state will always have an X structure.

5.2. Concurrence

We shall quantify the entanglement in the two-qubit dynamics by evaluating the concurrence,

C(t) (C = 0 for separable states, C = 1 for maximally entangled states) [59]. For the X states it

takes the form [58]

C(t) = 2 max{0, K1(t), K2(t)},

K1(t) = |ρ23(t)| −
√

ρ11(t)ρ44(t), K2(t) = |ρ14(t)| −
√

ρ22(t)ρ33(t).
(44)

The master equation (41) always induces an exponential decay for ρ14(t), so that in the

steady state only K1(t) could be responsible for having C(∞) > 0.
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To discuss new phenomena emerging out of thermal equilibrium, it will be instructive to

rewrite K1(t) in terms of the populations in the coupled basis (we use the notation ρIJ = 〈I |ρ|J 〉
and ρI = 〈I |ρ|I 〉):

K1(t) = 1

2

√

[ρS(t) − ρA(t)]2 + [ρSA(t) − ρAS(t)]2 −
√

ρG(t)ρE(t). (45)

We will see that out of thermal equilibrium, it is always ρAS(∞) = 0, but ρS(∞) and ρA(∞)

can differ, so that K1(∞) could be positive.

5.3. Thermal equilibrium

When TW = TM ≡ T , master equation (41) describes the thermalization toward the thermal

equilibrium state, which is diagonal with the four steady populations given by










ρ11(∞)

ρ22(∞)

ρ33(∞)

ρ44(∞)











eq

= 1

Zeq











[1 + n(ω, T )]2

n(ω, T )[1 + n(ω, T )]

n(ω, T )[1 + n(ω, T )]

n(ω, T )2











, (46)

where Zeq = [1 + 2n(ω, T )]2. By moving to the coupled basis, the thermal state remains

diagonal with ρS(∞) = ρA(∞) = ρ22(∞) = ρ33(∞).

As a mathematical remark, we note that the thermal state is always reached asymptotically

except if the identities Ŵ11(±ω) = Ŵ22(±ω) = Ŵ12(±ω) = Ŵ21(±ω) ≡ Ŵ(±ω) are strictly

verified. In this peculiar case, both in and out of thermal equilibrium, the steady state depends

upon the initial state and may be entangled. In particular, it is diagonal in the coupled basis with

populations equal to










ρG(∞)

ρA(∞)

ρS(∞)

ρE(∞)











= 1

Z











Ŵ(ω)2[1 − ρA(0)]

ρA(0)

Ŵ(−ω)Ŵ(ω)[1 − ρA(0)]

Ŵ(−ω)2[1 − ρA(0)]











, (47)

where Z = Ŵ(−ω)2 + Ŵ(ω)Ŵ(−ω) + Ŵ(ω)2. Apart from this case, at thermal equilibrium the

steady state is always a thermal state, thus not entangled. We can see it by looking at the

concurrence (44) which is zero being ρ23(∞) = 0. This can also be seen in the coupled basis,

where ρAS(∞) = 0 and ρS(∞) = ρA(∞), so that K1(∞) (45) is negative.

5.4. Out of thermal equilibrium: an instructive case

When TW 6= TM, qualitative differences emerge in the dynamics and in the steady states. To

highlight these new features, we first consider a simple case where a clear physical interpretation

in terms of |S〉 and |A〉 is available. This is the case when Ŵ11(±ω) = Ŵ22(±ω) ≡ Ŵ(±ω) and

Ŵ12(21)(±ω) are real. These conditions are verified, for example, in the case of identical qubits,

with d1 = d2 ≡ d, placed in equivalent positions with respect to the body (in the case of a slab,

z1 = z2) and with d real and having components different from zero either only along the z-axis

or only along the plane xy. In this case, master equation (41) gives in the coupled basis a set of
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Figure 4. Representation of the rate equations (48). The transition rates in the

two channels are Ŵ
p

S(A) = ŴS(A)(1 + nS(A)) and Ŵm
S(A) = ŴS(A) nS(A).

rate equations for the populations, which are decoupled from the other density matrix elements:

ρ̇G = −(ŴA nA + ŴS nS)ρG + ŴA(1 + nA)ρA + ŴS(1 + nS)ρS,

ρ̇A = −ŴA(1 + 2nA)ρA + ŴA nAρG + ŴA(1 + nA)ρE,

ρ̇S = −ŴS(1 + 2nS)ρS + ŴS nSρG + ŴS(1 + nS)ρE,

ρ̇E = −[ŴA(1 + 2nA) + ŴS(1 + 2nS)]ρE + ŴA nAρA + ŴS nSρS.

(48)

Here, the coefficient Ŵ0(ω) has been absorbed by the time variable in the derivative, which is

now dimensionless, and we have used the relations

Ŵ(ω) − Ŵ12(ω) = Ŵ0(ω)ŴA(1 + nA), Ŵ(ω) + Ŵ12(ω) = Ŵ0(ω)ŴS(1 + nS),

Ŵ(−ω) − Ŵ12(−ω) = Ŵ0(ω)ŴA nA, Ŵ(−ω) + Ŵ12(−ω) = Ŵ0(ω)ŴS nS

(49)

with

ŴA = αW(ω) − α12
W (ω) + αM(ω) − α12

M (ω),

ŴS = αW(ω) + α12
W (ω) + αM(ω) + α12

M (ω),

nA = 1

ŴA

{[αW(ω) − α12
W (ω)]n(ω, TW) + [αM(ω) − α12

M (ω)]n(ω, TM)},

nS = 1

ŴS

{[αW(ω) + α12
W (ω)]n(ω, TW) + [αM(ω) + α12

M (ω)]n(ω, TM)},

(50)

where αW(M)(ω) ≡ α11
W(M)(ω) = α22

W(M)(ω). We remark that 3qq ′
(ω) does not enter in the rate

equations (48), which are schematically represented in figure 4. We observe that with each decay

channel from |E〉 to |G〉 we can associate distinct effective temperatures TS and TA confined

between TW and TM in correspondence to the effective number of photons nS and nA, which

have the property of being confined between n(ω, TW) and n(ω, TM) [49].
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Concerning the coherences in the second diagonal:

ρ̇AS = −1

2

[

ŴA(1 + 2nA) + ŴS(1 + 2nS) − 4i312(ω)
]

ρAS,

ρ̇GE = −1

2

[

ŴA(1 + 2nA) + ŴS(1 + 2nS) − 4i312(ω)
]

ρGE,

(51)

which give for each coherence an exponential decay modulating oscillations due to 312(ω). The

stationary solution of (48) is













ρG(∞)

ρA(∞)

ρS(∞)

ρE(∞)













neq

= 1

Zneq























(1 + nA)2(1 + 2nS)ŴA + (1 + 2nA)(1 + nS)
2ŴS

nA(1 + nA)(1 + 2nS)ŴA + [nA(1 + 2nS)

+n2
S(1 + 2nA)]ŴS

nS(1 + nS)(1 + 2nA)ŴS + [nS(1 + 2nA)

+n2
A(1 + 2nS)]ŴA

n2
A(1 + 2nS)ŴA + (1 + 2nA)n2

SŴS























, (52)

where Zneq is the sum of the elements of the vector in the second line of the above equation. Out

of equilibrium ρ23(∞)neq is different from zero and is given by

ρ23(∞)neq = (nS − nA)(ŴS + ŴA)

2Zneq

, (53)

where we see easily how it tends to zero at thermal equilibrium when nS = nA. By using (52)

in (44) and (45), we obtain for the steady concurrence:

C(∞)neq = 2

Zneq

[|nS − nA|(ŴS + ŴA)/2 −
√

(1 + nA)2(1 + 2nS)ŴA + (1 + 2nA)(1 + nS)2ŴS

×
√

n2
A(1 + 2nS)ŴA + (1 + 2nA)n2

SŴS ]. (54)

Simplifying ŴS, C(∞)neq becomes the function of the three dimensionless quantities ŴA/ŴS, nS

and nA. This dependence is discussed in figure 5, where C = C(∞)neq is depicted as a function

of nA for nS = 0.001 and for several values of ŴA/ŴS, as indicated in the legend. We observe

that by decreasing the value of ŴA/ŴS, higher values of C are reachable at higher values of

nA. The maximum value of C is 1/3, which can be obtained in the limits ŴA/ŴS → 0, nS → 0

and nA → ∞. In particular, the corresponding maximally entangled state, which is a statistical

mixture of the ground and of the antisymmetric state with weights, respectively, equal to 2/3

and 1/3, has also been found in [35]. For smaller values of nS the behavior remains almost

identical, while by increasing its value, the values of C decrease progressively. We remark that

identical behavior is found in the opposite case, i.e. when ŴS/ŴA → 0, the case in which the

roles of states |S〉 and |A〉 are inverted. This can be achieved by looking for values of the various

parameters such that α12
M(W)(ω) is negative and very close to αM(W)(ω) in order to make the ratio

ŴS/ŴA very small.

Figure 5 describes the generation of steady entangled states emerging only in the absence

of thermal equilibrium. Two main conditions must be fulfilled, the first being to have small

values for ŴA/ŴS and the second to realize (quite) different effective temperatures for the two

decay channels, which can be achieved only in the absence of thermal equilibrium.
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Figure 5. C = C(∞)neq versus nA for nS = 10−3 for different values of ŴA/ŴS

indicated in the legend.

6. Numerical investigation

Here, we report the numerical investigation concerning the case treated in section 4 when the

body close to the emitters is a slab of finite thickness δ. According to (13), a relevant parameter

involved in our investigation concerning the role of the body is the value of the dielectric

permittivity at the common transition frequency of the two qubits. As a material we choose

silicon carbide (SiC) whose dielectric permittivity ε(ω) is described by using a Drude–Lorentz

model [53]

ε(ω) = ε∞
ω2 − ω2

l + iŴω

ω2 − ω2
r + iŴω

, (55)

characterized by a resonance at ωr = 1.495 × 1014 rad s−1 and where ε∞ = 6.7, ωl = 1.827 ×
1014 rad s−1 and Ŵ = 0.009 × 1014 rad s−1. This model implies a surface phonon–polariton

resonance at ωp = 1.787 × 1014 rad s−1. A relevant length scale in this case is c/ωr ≃ 2 µm

while a reference temperature is h̄ωr/kB ≃ 1140 K. We will assume that ε(ω) does not vary

much in the interval of temperatures considered. In the following study, we explore a region of

parameters much wider than that allowing the analytical description of section 5.4.

6.1. Steady configurations

We first focus on the properties of steady states. In particular, we are interested in the amount of

entanglement present asymptotically, which is quantified by the concurrence (44). This analysis

is supported by an analytical solution of the steady state of (41), which is not reported here,

since it is particularly cumbersome.

In figure 6(a), we plot the maximum of steady concurrence obtained for an interval of

transition frequencies ranging from 0.3 ωr to 1.7 ωr, in the case of δ = 0.01 µm. In our numerical

sample, z1 and z2 may vary between 0.05 and 50 µm and r12 between 0 and 15 µm. The

two temperatures range in an interval such that the associated number of photons is between

0 and 3 (we checked that larger values are not needed). The red curve is relative to the case of

New Journal of Physics 15 (2013) 113052 (http://www.njp.org/)

http://www.njp.org/


20

Figure 6. (a) Cmax versus ω/ωr for δ = 0.01 µm. The red curve concerns the

case of identical electric dipoles oriented along the z-axis and the green along

the x-axis. The solid (red) and dashed (green) lines just connect the sampled

frequencies. Crosses indicate the occurrence of larger values of C at the same

frequency but for different values of δ. The black dotted vertical line concerns

the frequency ωp ≃ 1.2ωr. (b) C versus δ for several values of ω indicated in the

figure in the case of identical electric dipoles oriented along the z-axis.

dipoles oriented along the z-axis, while the green curve to the case of dipoles oriented along the

x-axis (in figure 9 we will show that this is the best choice if we limit ourselves to directions

lying in the xy plane). Higher values of concurrence are obtained immediately before/after

the resonance frequency ωr. The red configuration always gives better results except around

the surface phonon–polariton frequency ωp ≃ 1.2ωr where choosing the dipole directions

along the x-axis is the best choice. The values of the parameters corresponding to each

maximum vary with frequency. The best configuration is always characterized by values of

n(ω, TW) close to zero and n(ω, TM) between 1 and 3. Smaller values of n(ω, TM) are needed

in the green curve. The zone where to place the qubits is around 1 µm from the slab at 0.3ωr,

gradually decreasing (specially after ωr) down to 0.25 µm at 1.7ωr. For the red curve the best

choice is always z1 close to z2 (in our numerical sample, we limit the minimal distance at the

order of 0.1 µm) and r12 = 0, while for the green curve it is z1 = z2 and r12 small (of the order

of 0.01 µm). This means that the best configuration is when the interatomic axis is aligned with

the dipoles direction. For ω around ωp we point out the occurrence of larger values of C for

different values of δ, points indicated with a cross above the green curve. In the absence of

large values of C in correspondence to the canonical choice of the parameters described above,

small values of C become evident for a different set of parameters. This corresponds to larger

values of δ (of the order of 1 µm or more), z1 ≃ 2 µm, z2 ≃ 4 µm and r12 ≃ 0.5 µm. In part

(b), we plot the dependence of C on δ for several values of ω as indicated in the figure. The

maximum of C is always obtained close to δ = 0.01 µm, which is the value chosen in part (a),

except around ωr where much smaller values of δ are required. This explains why in part (a)

concurrence decreases around ωr for δ = 0.01 µm.

In figure 7, we plot the steady concurrence as a function of the position of the second

qubit z2 and of the slab temperature TM for four different values of r12. From (a) to (d) the

two-qubit distance [r 2
12 + (z1 − z2)

2]1/2 increases leading to a progressive decrease of the values

of concurrence generated. A maximum of C ≃ 0.24 is obtained in part (a) for z2 ≃ 1.3 µm and

New Journal of Physics 15 (2013) 113052 (http://www.njp.org/)

http://www.njp.org/


21

Figure 7. Density plot of C versus z2 and TM, for four different values of r12:

0.01 µm (a), 0.25 µm (b), 1 µm (c) and 5 µm (d). The other parameters are z1 =
1 µm, TW = 30 K, ω = 0.3 ωr and δ = 0.01 µm. The white zones correspond to

C = 0. The two electric dipoles are identical and perpendicular to the slab. The

white lines correspond to the case z2 = z1.

TM ≃ 1100 K. The white lines correspond to the case z2 = z1 for which equation (54) holds for

concurrence. In part (a), the maximum along the white curve is C ∼ 0.222 in correspondence

to ŴA/ŴS ∼ 4.6 × 10−7, nS ∼ 0.02 and nA ∼ 1.56 which correspond to effective temperatures

for the two decay channels TS ∼ 90 K and TA ∼ 690 K. We observe that very high temperatures

are considered in this plot only to highlight the entire region where steady entanglement is

present. At unphysical temperatures (e.g. above the melting temperature), the plot is only

indicative of what would occur if a different material was chosen such that similar values of

ε(ω) (for SiC it is ε(0.3 ωr) ∼ 10.3 + 0.00721i) were encountered at lower frequencies. In this

case, similar behavior for steady concurrence at lower temperatures is expected. However, we

remark that in our case values of C higher than 0.14 are already present at TM ≃ 500 K in

part (a).

In figure 8, we discuss the behavior of nS, nA and ŴA/ŴS, appearing in (54), as a function

of z. We plot in part (a) nS and nA as a function of z = z1 = z2 and compare them with the

value of n(ω, T ) computed at the minimal (here TW = 30 K) and maximal (here TM = 1200 K)

temperature considered. The temperatures and the other parameters are equal to the ones giving

the maximum of concurrence in figure 7(b) along the white line. In the inset (part (b)) we plot

ŴA/ŴS as a function of z = z1 = z2. The plot proves that, near z ≃ 1 µm, both conditions to

reach high values of C are satisfied: small values of nS and ŴA/ŴS in correspondence with high

enough values of nA (see also figure 5 for a comparison).
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Figure 8. nS, nA, nmin = n(0.3ωr, TW), nmax = n(0.3ωr, TM) and ŴA/ŴS (inset)

versus z = z1 = z2. Values of parameters: TW = 30 K, TM = 1200 K, δ =
0.01 µm and r12 = 0.25 µm. The two electric dipoles are identical and

perpendicular to the slab. The temperatures corresponding to the values of n

are also indicated.

Figure 9. (a) C versus φ, angle formed between the dipole directions and the

z-axis (see inset), in the case θ = 0 (θ is the angle between the projection of

dipole directions in the xy plane and the x-axis). (b) C versus θ (see inset)

in the case φ = π/2 (dipole directions in the xy plane). Values of parameters:

TW = 30 K, TM = 1200 K, δ = 0.01 µm, z = z1 = z2 = 1 µm and r12 = 0.25 µm.

In figure 9, we analyze the dependence of steady concurrence on dipole orientations. In

general, higher results are obtained when the two dipoles are parallel. We use again the set

of parameters corresponding to the maximum in figure 7(b) along the white line, which is

obtained for dipoles along the z-axis. We show how concurrence decreases by changing the

dipole directions toward the x-axis (part (a)) always lying on the xz plane and then toward the

y-axis (part (b)) always lying on the xy plane (see insets in figures 9(a) and (b)). From part (b) it

emerges that aligning the dipoles direction with the interatomic axis (which here is the x-axis)

is the optimal choice in the xy plane inducing a lack of symmetry in this plane between the x

and y directions.
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Figure 10. C , ρ23, ρG, ρE, ρS and ρA (as indicated in the legend) versus

dimensionless time Ŵ0(ω)t in the case in which the two qubits are initially

prepared in the antisymmetric state |A〉 (part (a)), the symmetric state |S〉 (part

(b)) and the factorized state |2〉 (part (c)). The parameters are fixed as TW =
30 K, TM = 1300 K, δ = 0.01 µm, z1 = 1 µm, z2 = 1.28 µm, r12 = 0.25 µm and

ω = 0.3ωr. The two electric dipoles are identical and perpendicular to the slab.

6.2. Dynamics

Here, we discuss the dynamic behavior of two-qubit density matrix elements and concurrence

out of thermal equilibrium, also making comparisons with the thermal equilibrium case. This

analysis is performed by solving numerically the evolution governed by (41).

In figure 10, we plot several density matrix elements and concurrence as a function of

dimensionless time Ŵ0(ω)t . Parts (a) and (b) concern the case of maximally entangled initial

states, respectively, the antisymmetric state |A〉 in (a) and the symmetric state |S〉 in (b) (see

the values of the parameters in the caption of the figure). Quite different dynamic behavior is

pointed out. While starting from |A〉 entanglement is just preserved at a high value, starting from

|S〉 concurrence first decreases (going to zero) mainly because of the decrease of ρS and then

revives because of the increase of ρA. Dynamic creation of entanglement is yet more evident in

part (c) where the initial state is the factorized state |2〉. In this case, concurrence is initially zero

and increases because of the mediated interaction between qubits. Oscillations of C and ρ23 are

linked to the behavior of ρAS(SA) which rapidly oscillate (see (51)) because of the large value

of 312(ω) which here is equal to 312(ω)/Ŵ0(ω) ≃ −2.3 × 104. The oscillations are present

because ρAS(SA) are initially populated (ρAS(SA) = 1/2) while they are not in the cases plotted

in parts (a) and (b). States |S〉 and |A〉 are initially equally populated and become different

asymptotically.
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Figure 11. Comparison of the dynamics of concurrence in and out of thermal

equilibrium. Concurrence versus dimensionless time Ŵ0(ω)t in the case in which

the two qubits are initially prepared in the antisymmetric state |A〉 (part (a)),

the symmetric state |S〉 (part (b)) and the factorized state |2〉 (part (c)). The red

(dashed) and blue (dot-dashed) lines regard thermal equilibrium configurations

at, respectively, Tmax = TW = TM = 1300 K and Tmin = TW = TM = 30 K while

the yellow (continuous) line the out of thermal equilibrium case TW = 30 K and

TM = 1300 K. The other parameters are fixed as δ = 0.01 µm, z1 = 1 µm, z2 =
1.28 µm, r12 = 0.25 µm and ω = 0.3ωr. The two electric dipoles are identical

and perpendicular to the slab.

In figure 11, we compare the evolution of concurrence out of thermal equilibrium

with the evolutions at equilibrium at the minimal temperature Tmin = TW = TM = 30 K and

at the maximal temperature Tmax = TW = TM = 1300 K. Two initial maximally entangled

configurations are compared, the antisymmetric state |A〉 in part (a) and the symmetric state

|S〉 in part (b). At thermal equilibrium, concurrence vanishes on shorter times by increasing

the temperature, while out of equilibrium steady entanglement is present. At equilibrium, a

larger decay time is observed by starting from the antisymmetric state (see also figure 12

on this subject). In part (b), out of equilibrium, concurrence decays on the same equilibrium

timescale, the two-qubit state becoming separable, but it reemerges successively. Both in (a)

and (b) a large amount of the initial entanglement is thus asymptotically preserved. In part (c)

the initial state is the factorized state |2〉. The main difference here is that concurrence presents

strong oscillations (see comment on part (c) of figure 10). At thermal equilibrium, entanglement

eventually vanishes on a timescale similar to the one of part (a), while out of equilibrium it is

maintained after its creation.

In figure 12, we discuss the dependence of super- and sub-radiant effects from the

presence/absence of thermal equilibrium. Here, super- and sub-radiance are connected to the

occurrence of a decay rate larger or smaller than the one observed in the case of independent

qubits, phenomenon due to the interaction of the qubits with a common environment and which

depend on the nature of their initial state [26]. In particular, we compare the evolution of the

ground state population ρG starting from |S〉 and |A〉 for two different values of r12 (0.25 and

15 µm) at thermal equilibrium at TW = TM = 100 K (part (a)) and at TW = TM = 800 K (part (b))

and out of thermal equilibrium for TW = 100 K, TM = 800 K (part (c)). The figure evidences

super-radiant behavior when the initial state is |S〉 and sub-radiant when it is |A〉. The faster or

slower increase of ρG is due to the role of Ŵ12(±ω) which in the two channel decay rates of (49)
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Figure 12. Evolution of ρG starting from |S〉 and |A〉 for two different

values of r12 (r12 = 0.25 µm or r12 = 15 µm). (a) Thermal equilibrium at TW =
TM = 100 K. (b) Thermal equilibrium at TW = TM = 800 K. (c) Out of thermal

equilibrium, TW = 100 K and TM = 800 K. Other parameters δ = 0.01 µm, z =
z1 = z2 = 1 µm and ω = 0.3ωr. The two electric dipoles are identical and

perpendicular to the slab. The assumptions made in section 5.4 are thus satisfied.

is summed to Ŵ(±ω) in the |S〉 case and subtracted in the |A〉 case. By increasing the value of

r12, Ŵ12(±ω) decreases and the decay rates Ŵ
p(m)

A and Ŵ
p(m)

S , defined in the caption of figure 4,

tend to the same value Ŵ(+(−)ω)/Ŵ0(ω), which is the decay rate in the case of single emitters.

At thermal equilibrium, the asymptotic state is independent of the values of r12 while this is not

the case out of thermal equilibrium, as pointed out in part (c).

We finally remark that relevant differences are expected when the Markovian and the

rotating wave approximation, here adopted, are not valid. In the non-Markovian regime another

source of oscillations in the dynamics of concurrence typically emerges [13], while the effect

of counter-rotating terms is known to modify the creation of entanglement between the two

emitters [60].

7. Conclusions

In this paper, we have investigated a system made of two quantum emitters interacting with a

common stationary electromagnetic field out of thermal equilibrium generated by an arbitrary

body and by the surrounding walls held at fixed different temperatures. The environmental field

is characterized by means of its correlation functions out of equilibrium which also depend on

the scattering properties of the body. We have derived the expressions in the absence of thermal

equilibrium of the various functions governing the dissipative dynamics of the two emitters

and compared them with the ones holding at thermal equilibrium. This has been done in the

case of emitters characterized by an arbitrary number of levels. We have then specialized our

investigation to the case of two qubits discussing the new features emerging out of thermal

equilibrium.

For a restricted parameter region we have analytically shown that the absence of

equilibrium may lead to the generation of steady entangled states. This phenomenon has

been interpreted in terms of different effective temperatures associated with two decay

channels connecting the total excited and ground states via the symmetric and antisymmetric

states, respectively. The two-qubit dynamics can be directed toward mixed states where the

antisymmetric contribution is larger than the symmetric one (or vice versa), resulting in the
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presence of steady entanglement. In this specific case a value of 1/3 has been found as maximum

for the concurrence, quantifying the steady entanglement.

We have then numerically investigated the general dependence of steady states and

dynamics on the various parameters, without any restriction on the decay rates, in the case

the body placed in proximity of the two qubits is a slab made of SiC. The dependence of steady

entanglement on the two-qubit distance, their common transition frequency with respect to the

slab resonances, the slab thickness, the dipoles orientations and the two involved temperatures

have been discussed. Values of concurrence up to 0.24 have been found. Protection and/or

generation of entanglement according to the nature of the two-qubit initial state, entangled or

not, has been pointed out, also comparing entanglement dynamics in the presence or absence of

thermal equilibrium. Higher values of steady concurrence are found for transition frequencies

far from the slab resonances (ω/ωr = 0.3) and small thickness (δ ≃ 0.01 µm). Remarkably,

steady entanglement can be obtained by starting from configurations at thermal equilibrium

and by increasing one of the two temperatures involved in the environment of the two qubits.

The possibility to observe the effects we discussed could be explored, for example,

for emitters made by trapped atoms [42] or by artificial atoms such as quantum dots or

superconducting qubits, placed in proximity to a substrate held at a temperature different from

that of the cell surrounding the emitters and the substrate.
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Appendix A. Correlation functions

Here, we connect the correlation functions to TM and TW and to the properties of the body as

well. To this purpose, we first develop the connection between (14) and the correlation functions

in frequency space. By using (6) and homogeneity in time, we have

4
qq ′

i i ′ (ω) = 1

h̄2

∫ ∞

0

ds

∫ +∞

0

dω′

2π

∫ +∞

0

dω′′

2π
[e−i(ω′′−ω)s〈Ei(Rq, ω

′′)E
†
i ′(Rq ′, ω′)〉

+ei(ω+ω′′)s〈E
†
i (Rq, ω

′′)Ei ′(Rq ′, ω′)〉], (A.1)

where we have used 〈Ei(Rq, ω
′′)Ei ′(Rq ′, ω′)〉 = 〈E

†
i (Rq, ω

′′)E
†
i ′(Rq ′, ω′)〉 = 0. By using

∫ ∞
0

ds exp(−iǫs) = πδ(ǫ) − iP 1

ǫ
(whereP indicates the principal part of the integral), we obtain

from the previous equation and (14) (we assume ω > 0)

γ
qq ′

i i ′ (ω) = 1

h̄2

∫ +∞

0

dω′

2π
〈Ei(Rq, ω)E

†
i ′(Rq ′, ω′)〉,

γ
qq ′

i i ′ (−ω) = 1

h̄2

∫ +∞

0

dω′

2π
〈E

†
i (Rq, ω)Ei ′(Rq ′, ω′)〉,

s
qq ′

i i ′ (ω) = 1

h̄2
P

∫ +∞

0

dω′

2π

∫ +∞

0

dω′′

2π

[〈Ei(Rq, ω
′′)E

†
i ′(Rq ′, ω′)〉

ω − ω′′

+
〈E

†
i (Rq, ω

′′)Ei ′(Rq ′, ω′)〉
ω + ω′′

]

. (A.2)
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By using the decomposition in (7), we obtain

〈Ei(Rq, ω)E
†
i ′(Rq ′, ω′)〉 =

∑

φ,φ′,p,p′

∫

d2k

(2π)2

∫

d2k′

(2π)2
ei(Kφ ·Rq−K′φ′∗·Rq′ )

×[ǫ̂
φ

p(k, ω)]i [ǫ̂
φ′

p′(k
′, ω′)]∗i ′〈Eφ

p(k, ω)E
φ′†
p′ (k′, ω′)〉 (A.3)

and

〈E
†
i (Rq, ω)Ei ′(Rq ′, ω′)〉 =

∑

φ,φ′,p,p′

∫

d2k

(2π)2

∫

d2k′

(2π)2
e−i(Kφ∗·Rq−K′φ′

·Rq′ )

×[ǫ̂
φ

p(k, ω)]∗i [ǫ̂
φ′

p′(k
′, ω′)]i ′〈Eφ†

p (k, ω)E
φ′

p′ (k
′, ω′)〉, (A.4)

where ω > 0. We observe that the last equation can be obtained by taking the

complex conjugate of (A.3) after having interchanged the operators Eφ
p(k, ω) and

E
φ′†
p′ (k′, ω′).

We now combine equations (18) and (19) to obtain the symmetrized correlation functions

of the amplitude operator of the total field in the region of interest

〈E+
p(k, ω)E

+†
p′ (k

′, ω′)〉sym = 2πδ(ω − ω′)
ω

2ǫ0c2
〈p, k|[N (ω, TM)(P

(pw)

−1 −RP (pw)

−1 R
†

+RP
(ew)

−1 −P (ew)

−1 R
† − T P (pw)

−1 T
†) + N (ω, TW)(T P

(pw)

−1 T
† +RP

(pw)

−1 R
†)]|p′, k′〉,

〈E+
p(k, ω)E

−†
p′ (k′, ω′)〉sym = 2πδ(ω − ω′)

ω

2ǫ0c2
N (ω, TW)〈p, k|RP (pw)

−1 |p′, k′〉,

〈E−
p (k, ω)E

+†
p′ (k

′, ω′)〉sym = 2πδ(ω − ω′)
ω

2ǫ0c2
N (ω, TW)〈p, k|P (pw)

−1 R
†|p′, k′〉,

〈E−
p (k, ω)E

−†
p′ (k′, ω′)〉sym = 2πδ(ω − ω′)

ω

2ǫ0c2
N (ω, TW)〈p, k|P (pw)

−1 |p′, k′〉. (A.5)

However, in order to develop equations (A.3) and (A.4) we need the non-symmetrized versions

of these correlation functions. To compute them, we first remark that the source correlation

functions reported in (19) have been derived by using thermal-equilibrium techniques at the

temperature of each source individually (see [47] for a detailed discussion). It follows that we

can use Kubo’s prescription [52], according to which in order to obtain 〈AB〉 from 〈AB〉sym

the replacement N (ω, Ti) → h̄ω[1 + n(ω, Ti)] must be performed, while 〈B A〉 results from the

replacement N (ω, Ti) → h̄ω n(ω, Ti).

By using (A.5) in (A.3) we obtain for the antinormally ordered correlation functions, the

form

〈Ei(Rq, ω)E
†
i ′(Rq ′, ω′)〉 = 2πδ(ω − ω′)〈Ei(Rq, ω)E

†
i ′(Rq ′, ω)〉, (A.6)
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being

〈Ei(Rq, ω)E
†
i ′(Rq ′, ω)〉 = h̄ω2

2ǫ0c2

∑

p,p′

∫

d2k

(2π)2

∫

d2k′

(2π)2
ei(k·rq−k′·rq′ )

×〈p, k|{ei(kz zq−k
′∗
z zq′ )[ǫ̂

+

p(k, ω)]i [ǫ̂
+

p′(k
′, ω)]∗i ′[[1 + n(ω, TM)]

×(P
(pw)

−1 −RP (pw)

−1 R
† +RP

(ew)

−1 −P (ew)

−1 R
† − T P (pw)

−1 T
†) + [1 + n(ω, TW)]

×(T P
(pw)

−1 T
† +RP

(pw)

−1 R
†)] + [1 + n(ω, TW)][ei(kz zq +k

′∗
z zq′ )

×[ǫ̂
+

p(k, ω)]i [ǫ̂
−
p′(k

′, ω)]∗i ′RP
(pw)

−1 + e−i(kz zq +k
′∗
z zq′ )[ǫ̂

−
p (k, ω)]i [ǫ̂

+

p′(k
′, ω)]∗i ′

×P (pw)

−1 R
† + e−i(kz zq−k

′∗
z zq′ )[ǫ̂

−
p (k, ω)]i [ǫ̂

−
p′(k

′, ω)]∗i ′P
(pw)

−1 ]}|p′, k′〉. (A.7)

We observe that the normally ordered correlation functions 〈E
†
i (Rq, ω)Ei ′(Rq ′, ω′)〉

of (A.4) are obtained from the two previous equations by replacing [1 + n(ω, Ti)] with n(ω, Ti)

and by taking the complex conjugate. Equation (A.2) finally becomes

γ
qq ′

i i ′ (ω) = 1

h̄2
〈Ei(Rq, ω)E

†
i ′(Rq ′, ω)〉, γ

qq ′

i i ′ (−ω) = 1

h̄2
〈E

†
i (Rq, ω)Ei ′(Rq ′, ω)〉,

s
qq ′

i i ′ (ω) = 1

h̄2
P

∫ +∞

0

dω′

2π

[〈Ei(Rq, ω
′)E

†
i ′(Rq ′, ω′)〉

ω − ω′ +
〈E

†
i (Rq, ω

′)Ei ′(Rq ′, ω′)〉
ω + ω′

]

.

(A.8)

Appendix B. Absence of matter

Here, we treat explicitly the case when there is no body close to the two emitters. In this

case, we have in (A.5) T = 1, R= 0, or equivalently in (28) ρp(k, ω) = 0 and τp(k, ω) = 1

[ε(ω) = 1]. It follows that the integral matrices in (37) reduce to [Aqq ′
(ω)]i i ′ = [Bqq ′

(ω)]i i ′ and

[Cqq ′
(ω)]i i ′ = [Dqq ′

(ω)]i i ′ = 0, so that [α
qq ′

M (ω)]i i ′ = 0 and [α
qq ′

W (ω)]i i ′ (we choose the x-axis

along the inter-atomic axis so that in (33) zq = zq ′ = 0 and Rq − Rq ′ = {rqq ′, 0, 0}):

[α
qq ′

W (ω)]i i ′ = 3c

4ω

∑

p

∫ ω
c

0

k dk

kz

Re[N ++
p (k, ω)]i i ′ = (α

qq ′

W )‖ẽ‖ + (αW )⊥(ẽ⊥(y) + ẽ⊥(z)), (B.1)

where ẽ‖, ẽ⊥(y) and ẽ⊥(z) are, respectively, unit vectors along the parallel and the perpendicular

directions to the inter-atomic axis (x) and

(α
qq ′

W )‖ = 3

(

sin r̃

r̃ 3
− cos r̃

r̃ 2

)

, (α
qq ′

W )⊥ = 3

2

(

sin r̃

r̃
+

cos r̃

r̃ 2
− sin r̃

r̃ 3

)

, (B.2)

where r̃ = (Rq − Rq ′)ω/c and r̃ = |r̃|. By using the two previous equations and (A.8) and (21),

Ŵqq ′
(ω) of (17) can be cast in the form

Ŵqq ′
(ω) =

√

Ŵ
q

0 (ω)Ŵ
q ′

0 (ω)[1 + n(ω, TW)]{(d̃q ∗
mn · r̃)(d̃

q ′

m′n′ · r̃)(α
qq ′

W )‖

+[d̃q ∗

mn · d̃
q ′

m′n′ − (d̃q ∗
mn · r̃) (d̃

q ′

m′n′ · r̃)](α
qq ′

W )⊥} (B.3)
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which does not depend anymore on the reference system chosen to derive (B.2). In order to

compare the previous result with the known expressions, let us consider the case of two qubits

in vacuum with dipoles parallel between them (direction d̃) with different modulus |dq | 6= |dq ′|.
In this case, the previous equation reduces to the form (see for instance [25, 26])

Ŵqq ′
(ω) =

√

Ŵ
q

0 (ω)Ŵ
q ′

0 (ω)[1 + n(ω, TW)]
3

2

{

[1 − (d̃ · r̃)2]
sin r̃

r̃
[1 − 3(d̃ · r̃)2]

(

cos r̃

r̃ 2
− sin r̃

r̃ 3

)}

.

(B.4)

Appendix C. Green’s function

Here, we connect the approaches based on field correlations functions and on Green’s function

in order to develop the expression for 3qq ′
(ω) of (26). At thermal equilibrium the correlators

of the total electromagnetic field outside the body follow from the fluctuation–dissipation

theorem [54]

〈E
(tot)
i (Rq, ω)E

(tot)†

i ′ (Rq ′, ω′)〉 = 2πδ(ω − ω′)2h̄[1 + n(ω, T )]Im G i i ′(Rq, Rq ′, ω). (C.1)

In (C.1) G i i ′(Rq, Rq ′, ω) is the i i ′ component of the Green function of the system, solution of

the differential equation (for two arbitrary points R and R′)
[

∇R × ∇R − ω2

c2
ε(ω, R)

]

G(R, R′, ω) = ω2

ǫ0c2
I δ(R − R′) (C.2)

I being the identity dyad and ε(ω, R) the dielectric function of the medium. The property (C.1)

does not hold in the case of a non-equilibrium configuration. The comparison between (A.6)

and (21) at equilibrium TW = TM = T , and (C.1) gives

Im G i i ′(Rq, Rq ′, ω) = ω3

3πǫ0c3

[α
qq ′

W (ω)]i i ′ + [α
qq ′

M (ω)]i i ′

2
. (C.3)

Once we state this connection, which is used in (26), we need to compute the real part of

the Green function to develop equation (27). Following appendix C of [47], the i i ′ component

of the Green function for two arbitrary points R = {r, z} and R′ = {r′, z′} on the right side of the

body reads like

G i i ′(R, R′, ω) = G
(0)

i i ′ (R, R′, ω) + G
(R)

i i ′ (R, R′, ω),

G
(0)

i i ′ (R, R′, ω) = iω2

2ǫ0c2

∑

p

∫

d2k

(2π)2
exp[ik · (r − r′)]

1

kz

[θ(z − z′)[ǫ̂
+

p(k, ω)]i

×[ǫ̂
+

p(k, ω)]i ′ exp[ikz(z−z′)] + θ(z′ − z)[ǫ̂
−
p (k, ω)]i [ǫ̂

−
p (k, ω)]i ′ exp[ikz(z

′−z)]],

G
(R)

i i ′ (R, R′, ω) = iω2

2ǫ0c2

∑

pp′

∫

d2k

(2π)2

∫

d2k′

(2π)2
exp[i(k · r − k′ · r′)]

× 1

k ′
z

[ǫ̂
+

p(k, ω)]i [ǫ̂
−
p′(k

′, ω)]i ′ exp[i(kzz + k ′
zz

′)]〈k, p|R|k′, p′〉, (C.4)

where θ is the Heaviside step function (θ(x) = 1 for x > 0 and θ(x) = 0 elsewhere) and

G i i ′(R, R′, ω) has been divided into a free term, G
(0)

i i ′ (R, R′, ω), independent of the scattering
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operators, and a reflected one, G
(R)

i i ′ (R, R′, ω), proportional toR. With regards to the imaginary

part of G i i ′(Rq, Rq ′, ω) it is possible to check starting from (C.4) that equation (C.3) is verified.

Concerning the real part of G i i ′(Rq, Rq ′, ω), to derive its expression we will make use of

the properties of the polarization unit vectors

ǫ̂
φ

TE(−k, ω) = −ǫ̂
φ

TE(k, ω), ǫ̂
−φ

TE (k, ω) = ǫ̂
φ

TE(k, ω), (ǫ̂
φ

TE(k, ω))∗ = ǫ̂
φ

TE(k, ω),

ǫ̂
φ

TM(−k, ω) = ǫ̂
−φ

TM(k, ω), (ǫ̂
φ

TM(k, ω))∗ =
{

ǫ̂
φ

TM(k, ω), kz ∈ R,

ǫ̂
−φ

TM(k, ω), kz /∈ R (C.5)

and of the reciprocity relations of the scattering operators presented in appendix D of [47]

1

k
′∗
z

(−1)p+p′〈−k′, p′|Rφ†| − k, p〉 = 1

k∗
z

〈k, p|Rφ†|k′, p′〉. (C.6)

Starting from the free term G
(0)

i i ′ in (C.4), its real part can be written as the sum of two terms

coming, respectively, from the propagative and evanescent sectors (a change of variable from

k to −k is done in the terms obtained by complex conjugation, we make use of (C.5) and we

choose the interatomic axis along the z direction):

Re G
(0)

i i ′ (R, R′, ω)PW = iω2

4ǫ0c2

1

(2π)2

∫ ω
c

0

k dk

kz

[R(k, ω)]i i ′{θ(z − z′)[exp[ikz(z − z′)]

− exp[−ikz(z − z′)]] + θ(z′ − z)[exp[ikz(z
′ − z)] − exp[−ikz(z

′ − z)]]},

Re G
(0)

i i ′ (R, R′, ω)EW = iω2

4ǫ0c2

2

(2π)2

∫ +∞

ω
c

k dk

kz

[R(k, ω)]i i ′

×{θ(z − z′) exp[ikz(z − z′)] + θ(z′ − z) exp[ikz(z
′ − z)]}, (C.7)

where we have used the angular integrals

[R(k, ω)]i i ′ =
∑

p

∫ 2π

0

dθ [ǫ̂
+(−)

p (k, ω)]i [ǫ̂
+(−)

p (k, ω)]i ′, (C.8)

being the matrix R(k, ω) diagonal with [R(k, ω)]11 = [R(k, ω)]22 = π(2 − c2k2/ω2) and

[R(k, ω)]33 = 2πc2k2/ω2. The integral in Re G
(0)

i i ′ (R, R′, ω)PW gives two terms, one erasing

exactly the integral in Re G
(0)

i i ′ (R, R′, ω)EW, and the second being equal to (we distinguish

diagonal elements perpendicular and parallel to the interatomic axis)

Re G
(0)

⊥ (R, R′, ω) = 1

4π

ω3

ǫ0c3

[

(r̃ 2 − 1) cos r̃ − r̃ sin r̃

r̃ 3

]

,

Re G
(0)

‖ (R, R′, ω) = 1

2π

ω3

ǫ0c3

[

cos r̃ + r̃ sin r̃

r̃ 3

]

,

(C.9)

where r̃ = |R − R′|ω/c and we named Re G(0)
xx = Re G(0)

yy = Re G
(0)

⊥ and Re G(0)
zz = Re G

(0)

‖ .

Function 3qq ′
(ω) of (27) can be thus decomposed into two parts, 3qq ′

(ω) = 3
qq ′

0 (ω) +

3
qq ′

R (ω), connected to G(0)(Rq, Rq ′, ω) and G(R)(Rq, Rq ′, ω), 3
qq ′

0 (ω) being

3
qq ′

0 (ω) = −
√

Ŵ
q

0 (ω)Ŵ
q ′

0 (ω)
3

4

{

[d̃q ∗
mn · d̃

q ′

m′n′ − (d̃q ∗
mn · r̃) (d̃

q ′

m′n′ · r̃)]

×
[

(r̃ 2 − 1) cos r̃ − r̃ sin r̃

r̃ 3

]

+ 2(d̃q ∗

mn · r̃) (d̃
q ′

m′n′ · r̃)

[

cos r̃ + r̃ sin r̃

r̃ 3

]}

, (C.10)
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which has been put in a form which does not depend anymore on the reference system chosen to

derive equation (C.9). In the case of two qubits in a vacuum field in the absence of matter with

electric dipoles parallel between them (direction d̃) with |dq | 6= |dq ′|, 3
qq ′

0 (ω) of (C.10) reduces

to the known form [25, 26]

3
qq ′

0 (ω) =
√

Ŵ
q

0 (ω)Ŵ
q ′

0 (ω)
3

4

{

[1 − 3(d̃ · r̃)2]

(

sin r̃

r̃ 2
+

cos r̃

r̃ 3

)

− [1 − (d̃ · r̃)2]
cos r̃

r̃

}

, (C.11)

where we used d̃ · r̃ = d̃z and d̃2
x + d̃2

y = 1 − (d̃z)
2.

We now consider the remaining part of the Green function in (C.4). By making a change

of variable in the terms obtained by complex conjugation, (k, k′) → (−k, −k′), and using the

reciprocity relations of scattering operators in (C.6) and the properties of the polarization unit

vectors (C.5), one can obtain

Re G
(R)

i i ′ (R, R′, ω) = iω2

4ǫ0c2

∑

p,p′

∫

d2k

(2π)2

∫

d2k′

(2π)2
ei(k·r−k′·r′)〈p, k|{ei(kz z+k

′∗
z z′)

×[ǫ̂
+

p(k, ω)]i [ǫ̂
−
p′(k

′, ω)]∗i ′RP
(pw)

−1 − e−i(kz z+k
′∗
z z′)[ǫ̂

−
p (k, ω)]i [ǫ̂

+

p′(k
′, ω)]∗i ′P

(pw)

−1 R
†

+ei(kz z−k
′∗
z z′)[ǫ̂

+

p(k, ω)]i [ǫ̂
+

p′(k
′, ω)]∗i ′(RP

(ew)

−1 +P
(ew)

−1 R
†)}|p′, k′〉. (C.12)
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