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In spite of such a complicated problem, quite coarse models

have been so far adopted. They mostly concern initially flat mem

branes in adhesive state with a solid, while few papers have been

devoted to closed membranes impacting a solid. Here, a short over

view of these latter is given. In Ligarò and Barsotti (2008), an effec

tive method has been proposed for determining the equilibrium

shapes of closed pressurized membranes under various inhomoge

neous boundary conditions. By referring to new high performance

textile materials, an idealized two state behavior is postulated, for

which the membrane is inextensible when in traction and free to

contract when in compression. Both the planar and the axisym

metric problems have been addressed. The axisymmetric contact

problem of a pressurized spherical membrane interposed between

two (large) rigid plates has been first studied in Feng and Yang

(1973), where the material is assumed nonlinear elastic, obeying

to the Mooney law, and the stability problem is addressed. Very re

cently, the problem has been reconsidered in Nadler (2010), where

the contact problem has been formulated in regime of large defor

mations, by accounting for general elastic isotropic strain energy,

and general enclosed fluid. In that paper, the wrinkling phenome

non, which possibly occurs on a part of the contact area, has also

been investigated. Successively, the model has been generalized

in Sohail and Nadler (2011), to study large deformations generated

by a rigid frictionless conical indenter. There, fluid has been as

sumed incompressible. In all these works, numerical methods have

been used to integrate the resulting set of nonlinear ordinary dif

ferential equations governing the problem.

In this paper the planar problem is addressed, with the follow

ing aims: (1) to formulate a simple model, able to give insights into

the physics of the phenomenon, via analytical or semi analytical

solutions; (2) to account for visco elastic properties of the material,

to be described at different levels of refinement; (3) to account

both for flattening and indentation of the balloon, as sequential

stages. To this end, a long cylindrical balloon under internal pres

sure is considered, interposed between two rigid plates, slowly

approaching each other normally. External pressure is assumed

zero. By ignoring boundary effects, the problem is studied as pla

nar, in the plane orthogonal to the cylinder axis. The contact is as

sumed to be frictionless. Due to the prescribed motion of the

plates, quasi static variations of geometry, tension, and internal

pressure occur. The configuration history is sketched in Fig. 1, for

both cases of ‘long’ (Fig. 1a) and ‘short’ (Fig. 1b) plates. Contact ini

tially occurs at one point on each plate (phase I in Fig. 1a and b),

then it extends over a segment during the loading process (phases

II in Fig. 1a and b), while the free part of the membrane keeps its

circular shape, with modified unknown radius. Phases I, II are com

mon to both kind of plates, and will be referred to as the flattening

of the balloon. If plates are long, the process, in principle, ends with

a complete adhesion of the membrane to the plates (phase III), in

which the balloon degenerates in a segment. Since this occurrence

is physically not realizable, a configuration close to (but not at) the

complete adhesion has been represented in Fig. 1a. If, in contrast,

plates are short, a transition configuration is observed (phases III

in Fig. 1b), in which the adherent part of the membrane entirely

cover the plates, while a part is free, but with the balloon still lying

in the region delimited the two plates. Successively, a puncture of

the deformable body occurs, in which a part of the balloon bulges

behind the plates (phase IV in Fig. 1b), ending with a complete

puncture (phase V in Fig. 1b). Phases IV and V will be referred to

as indentation of the balloon.

The whole analysis is carried out in quasi static regime, by

accounting for visco elastic behavior. The balloon is assumed to

be made of polymeric material (e.g., Mc Crum et al., 1997), for

which different enhanced visco elastic laws are considered, with

large strains also accounted for (Qi and Boyce, 2005; Bergstrom

and Boyce, 1998). The models were first implemented in De Si

mone (2010) and relevant preliminary results presented in De Si

mone and Luongo (2011); here, a refinement of the formulation

and numerical simulations is accomplished.

The paper is organized as follows. In Section 2 the model is for

mulated for a generic constitutive law. In Section 3, this is special

ized to (a) inextensible, (b) elastic, (c) linear visco elastic, (d) large

strain visco elastic, (e) fully nonlinear visco elastic membranes. In

Section 4 numerical results are illustrated and commented. In Sec

tion 5 some conclusions are drawn. In the appendix a pre contact

evolution analysis is developed.

2. Planar model of cylindrical membrane

2.1. General equations

An infinitely long, homogeneous, cylindrical membrane of z

axis is considered, whose thickness h is small with respect the

length of the directrix (Fig. 2a). Boundary conditions and forces

are assumed to be independent of z, so that the problem can be

studied in the (x, y) plane. A direct, 2 D model of membrane is for

mulated, in which stress and strains along the normal to the mid

dle surface are ignored, and thickness is included in the

constitutive law.

An initial configuration CI , assumed known, is taken as refer

ence configuration (Fig. 2b). In it, a material point P is identified

by the (material) abscissa S, and its position by the vector X(S).

In the current configuration Ct assumed by the membrane at time

t, the point P occupies the new position x = x(S, t) (time t under

stood ahead). The initial length of the segment dS: = ||dX|| changes

into ds: = ||dx|| = ||x
0
||dS, where the dash denotes differentiation

with respect to S (or s, if proper). The stretch k : ds=dS, or, equiv

alently, the elongation e : k 1 (also said ‘engineering strain’), is

assumed as a strain measure:

e kx0ðSÞk 1 ð1Þ

By denoting by at x0ðsÞ � x0ðSÞ=kðSÞ and an the unit vectors,

respectively tangent and (outwards) normal to the curve Ct at P,

the local curvature, in the spatial coordinate, reads R 1ðsÞ :
ka0ðsÞk kx00ðsÞk, or in material coordinate R 1ðSÞ kx0ðSÞ�

phase  I                      phase  II                            phase  III 

(a) 

   phase  I                              phase  II            

     phase  III                   phase  V                  phase  IV             

       (b) 

Fig. 1. Evolution of the membrane configuration: (a) long plates: (I) initial contact,

(II) partial contact, (III) advanced configuration (close to total adhesion); (b) short

plates: (I) initial contact, (II) partial contact, (III) transition configuration, (IV)

punctured configuration, (V) final configuration (totally punctured).



x00ðSÞk=kx0ðSÞk3. The volume enclosed by the membrane per unit z

length, having dimensions [L2] (and simply referred ahead as the

‘volume’), in both forms, is:

V :
1

2

I

Ct

xðsÞ � x0ðsÞ � azds �
1

2

I

CI

xðSÞ � x0ðSÞ � azdS ð2Þ

where az is unit vector of the z axis.

The membrane is loaded by external body forces b = b(x; s, t),

which depend on the unknown configuration, and have the dimen

sions of a force per unit of current area. Dependence on time is as

sumed slow, so that any dynamic effect can be neglected. Different

contributions are distinguished, namely b: = Pan + bout + br, where:

P is the (homogeneous) pressure exerted by an inflated gas nor

mally to the walls of the membrane; bout are outside active forces,

for example due to an external fluid in which the membrane is im

mersed; and br are contact reactive forces exerted by an obstacle

on a part of the membrane. The internal force t: = Tat, having the

dimension of a force per unit length, is taken as a measure of the

stress of the membrane; its modulus T will be refereed as the ‘ten

sion’ of the membrane. Equilibrium in the current configuration re

quires that dt + bds = 0 (Fig. 2c), or, in material coordinate:

t0 þ kb 0 ð3Þ

where kb is the body force referred to the unstretched area. Equilib

rium, moreover, must be enforced at corners C at which the slope x
0

is discontinuous (see Fig. 2d), by requiring tþC tC þ fC 0, where fC
is a reactive force.

To complete the problem, constitutive laws must be given. Con

cerning the material behavior, the law relates tension and strain,

and, possibly, their time derivatives, namely:

f ðT; _T; e; _e; T IÞ 0 ð4Þ

in which the pre tension TI acts as a parameter. Eq. (4) must be sided

by the initial conditions TðS;0Þ T IðSÞ; eðS;0Þ eIðSÞ, where the in

dex I denotes evaluation at CI . Gas is assumed to behave as a perfect

gas under isothermal transformations, forwhich the Boyle lawholds:

PV PIV I ð5Þ

About reactive forces, it is assumed that the obstacle is friction

less, for which the reaction br = Fan is purely normal. Consistently,

reactions at the corners are assumed to act along the bisector of the

angle formed by the two tangents, this entailing ktþC k ktC k, i.e.
the tension keeps its modulus T constant trough the corner. Finally,

bout are data of the problem.

Eqs. (1) (5) constitute a partial differential system in the un

knowns x(S, t), P(t), V(t), T(S, t), e(S, t); boundary conditions require

continuity of the position vector x and equilibrium at corners. The

problem formally coincides with that which governs planar cables

(see, e.g. Luongo et al., 1984).

A special, but important case occurs when no outside forces are

applied to the membrane, i.e. bout = 0. Then, since

dat=dS kR 1an, the equilibrium Eq. (3) reads:

T 0at þ k P þ F
T

R

� �

an 0 ð6Þ

The tangential equilibrium entails T = const on the free and on

the in contact parts of the membrane; however, due to the equilib

rium at the corners, T is constant throughout the membrane. The

normal equilibrium condition, when written on the free surface

(on which F = 0), reads T = PR. Since P and T are constant, it follows,

that the radius R is also constant, i.e. the free surface has circular

directrix. When the normal equilibrium is enforced on the contact

surface, R is assigned, and the reaction is evaluated as F = P + T/R;

if the obstacle is flat, i.e. R =1, then F = P, i.e. the pressure is en

tirely balanced by the reaction.

Concerning kinematics, due to the fact that tension is constant,

even the strain e is constant in the domain. Moreover, since the free

part of the membrane is circular, the global quantity R and another

geometrical parameter can be used to describe geometry, instead

of the vector x(S). However, one of them must be taken as control

parameter for the loading process, so that just one geometrical var

iable is unknown, conveniently taken as the radius R of the circular

part.

In conclusion, when no outside forces act on the membrane, the

original infinite dimensional problem can be formulated as a much

simpler finite dimensional problem, in terms of the unknowns

q(t): = (R(t), P(t), V(t), T(t), e(t)). If the material is visco elastic, the

problem is mixed algebraic differential in time; if it is elastic, it

further degenerates into algebraic.

2.2. Membrane compressed between two parallel plates

The problem described in the Introduction is now addressed. It

consists of a long cylindrical membrane, inflated by gas, interposed

between two planar rigid plates approaching each other along the

normal direction.

The state of first contact between membrane and plates (phase

I in Fig. 1) is taken as reference configuration. Here qI: = (RI, PI, VI, TI,

eI) are assumed to be known quantities. Their evaluation, of course,

calls for solving a pre contact evolution problem, in which the

cylindrical membrane freely evolves, after it has been insufflated

(see the Appendix). This transformation leads the body from its

natural state to the initial state, as a consequence of its own vis

co elastic properties.

By accounting for the double symmetry of the system, only a

quarter of the membrane is considered, as shown in Fig. 3, for

the two cases of long plates (Fig. 3a and b) and short plates

(Fig. 3c ans d). In the initial configuration (Fig. 3a) the membrane

is circular, of center O, and delimited by the (material) contact

point A and the symmetry point C; the volume (per membrane

unit length) subtended by this arc is V I pR2
I =4. In the current

configuration Ct (Fig. 3b and c), a third point B is of interest, which

separates the in contact portion of the membrane (AB segment)

from the circular part (BC arc). The projection of B on the horizontal

symmetry axis is the new center O0 of the arc. The current config

uration is determined once the radius R and the angle h AÔB are
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Fig. 2. Cylindrical membrane in planar state of stress: (a) 3D-view; (b) kinematics;

(c) elemental equilibrium; (d) membrane pressed against a rigid obstacle.



known. Although R coincides with the (assigned) semi distance a

between the two plates, it appears computationally more conve

nient to take the angle h, instead of R, as control parameter for

the loading process, by leaving to R the meaning of configuration

variable. This state, that also occurs for short plates, will be re

ferred to as flattening.

If the plates are short, the systemexperiences a transition state CC

(here the indexC remembers the incipient appearance of a corner) in

which the contact pointB coincideswith an end of the plate (Fig. 3c);

in this configuration the quantities previously introduced assume

the values qC: = (RC, PC, VC, TC, eC). A further approach between the

plates causes thenewgeometrical structureof Fig. 3d (indented con

figuration). In order to describe how the phenomenon evolves, the

new control parameteru is chosen, which is the angle that the tan

gent at the circular arc at point B formswith the horizontal axis. The

center of the arc, O0, is no more the projection of B, and therefore a

and R are no more coincident, but a = Rcosu. In this phase, the

state variables will be still denoted by q: = (R, P, V, T, e), but the state

will be referred to as indentation. The history of these quantities, as

well as the instant atwhich the systemreaches the transition config

uration, now depends on the plate semi length b.

The problem described above is governed by the following set

of equations:

T PR

PV PIV I

f ðT; _T; e; _eÞ 0

V
R2 tan hþ p

4

� �

in flattening

R2

4
ðsin 2uþ pþ 2uÞ þ bR cosu in indentation

(

e
R
RI

1þ 2
p tan h

� �

1 in flattening

R
RI

1þ 2
pu

� �

þ 2b
pRI

1 in indentation

(

ð7Þ

Here, Eqs. (7a,b,c) have already been introduced, expressing

normal equilibrium, gas and membrane constitutive laws, respec

tively; moreover, Eqs. (7d,e) are volumetric and extensional compat

ibility equations, respectively. They are obtained by elementary

calculations relevant to the shape assumed by the membrane in

Fig. 3b and d. The indentation state, of course, only exists if the

plates are short. In the transition state, tan h b=R; u 0; so that

both the alternative expressions in Eqs. (7d) and (7e) furnish VC =

bR + pR2/4 and eC = R/RI + (2b)/(pRI), thus assuring continuity.

3. Specialized constitutive models and solutions

The governing Eq. (7) are specialized ahead to different consti

tutive models of membrane, and solutions reported, when avail

able in closed form. Non dimensional quantities are used,

according to the following definitions:

p : P=PI; s T=T I; v : V=V I; r : R=RI a a=RI; b b=RI

ð8Þ

in which TI = PIRI holds, since CI is equilibrated.

3.1. Inextensible membrane

The simplest model of material behavior is the inextensible

model. In this case, e � 0 and T assumes a reactive character (i.e.

it would be a Lagrangian parameter in a variational formulation,

in which Te = 0 is enforced). Therefore, the relevant mechanical

problem is governed by four equations in four unknowns. By using

non dimensional quantities, they read:

s pr; pv 1;

v

r2 1þ 4
p tan h

� �

r2 1þ 2
puþ 1

p sin 2u
� �

þ 4
p br cosu

(

;
r 1þ 2

p tan h
� �

1

r 1þ 2
pu

� �

þ 2
p b 1

(

ð9Þ

in the flattening and indentation states, respectively.

Eq. (9) admit a unique closed form solution. In the flattening

state, it reads:

r
p

pþ 2 tan h
; v

pð4 tan hþ pÞ
ð2 tan hþ pÞ2

;

p
ð2 tan hþ pÞ2
pð4 tan hþ pÞ ; s 1

2

4þ p cot h
ð10Þ

Fig. 3. Configurations and state variables for long (a and b) and short (c and d) plates: (a) initial state; (b) actual state; (c) transition state; (d) indentation configuration; h, u
are control parameters.



and in the indentation state:

r
p 2b

pþ 2u
;

v
ðp 2bÞð4bðpþ 2uÞ cosuþ ðp 2bÞðpþ 2uþ sin 2uÞÞ

pðpþ 2uÞ2
;

p
pðpþ 2uÞ2

ðp 2bÞð4bðpþ 2uÞ cosuþ ðp 2bÞðpþ 2uþ sin 2uÞÞ ;

s
pðpþ 2uÞ

4bðpþ 2uÞ cosuþ ðp 2bÞðpþ 2uþ sin 2uÞ ð11Þ

3.2. Elastic membrane

An improved model accounts for elasticity of the membrane. By

assuming that the body obeys to the Hooke law, by using the engi

neering strain e, and accounting for the initial tension, the consti

tutive relationship reads:

T T I þ EhIe ð12Þ

where E is the Young modulus and hIthe thickness, evaluated at CI.

In non dimensional form, the elastic problem (7) reads:

s pr; pv 1; s 1þ ke;

v
r2 1þ 4

p tan h
� �

r2 1þ 2
puþ 1

p sin 2u
� �

þ 4
pbr cosu

�

;

e
r 1þ 2

p tan h
� �

1
ðr þ 2bÞ 1þ 2

pu
� �

1

�

ð13Þ

in the two states, respectively. In Eq. (13) the following non dimen

sional elastic stiffness has been introduced:

k : EhI=T I ð14Þ

Eq. (13) can still be solved analytically. They admit two distinct

solutions; one of them, however, has to be disregarded, since phys

ically not admissible, being s < 0 (see De Simone (2010) and De Si

mone and Luongo (2011)). The admissible solution, instead, reads

as follows: (a) in the flattening state:

s
1

2
1 kþ cos hAðhÞBðhÞ

p cos hþ 4 sin h

� �

;

p
ð1þ k

2Þpþ 4ð1þ ðk 1ÞkÞ tan h ðk 1ÞAðhÞBðhÞ
2p

;

e
1

2k

BðhÞ
AðhÞ 1 k

� �

;

v
pðð1þ k

2Þpþ 4ð1þ ðk 1ÞkÞ tan hþ ðk 1ÞAðhÞBðhÞÞ
2k

2ðpþ 2 tan hÞ2
;

r
p 1þ kþ BðhÞ

AðhÞ

� �

2kðpþ 2 tan hÞ

ð15Þ

and, (b) in the indentation state:

s ¼ bðpþ 2uÞ 2bðpþ 2uÞ cosuþ b sin 2uþ 1
2
CðuÞ

pðpþ 2uþ sin 2uÞ ;

p ¼ 1

p3 8pb2 cosu
ðp3 þ 2p2uþ 2b2pð1 2 cosuÞ

þ 2b2ð2u 4u cosuþ sin 2uÞ þ bCðuÞÞ;

e ¼ ðb pÞðpþ 2uÞ 2bðpþ 2uÞ cosuþ ðb pÞ sin 2uþ 1
2
CðuÞ

pðpþ 2uþ sin 2uÞ ;

v ¼ 1

pðpþ 2uÞ2
ðp3 þ 2p2uþ 2b2pð1 2 cosuÞ

þ 2b2ð2u 4u cosuþ sin 2uÞ bCðuÞÞ;

r ¼ 1

ðpþ 2uÞðpþ 2uþ sin 2uÞ bpð1þ 2 cosuÞð

2bðuþ cosuð2uþ sinuÞÞ þ 1

2
CðuÞ

�

;

ð16Þ

where the following functions of the control parameters have been

defined:

AðhÞ : pþ 4 tan h
p

; BðhÞ : ð1þ kÞ2pþ 4ð1þ k
2Þ tan h

q

CðuÞ : 4ðpþ 2uÞðp2 � 8b2 cosuÞðpþ 2uþ sin 2uÞ þ 4b2ððpþ 2uÞð1þ 2 cosuÞ þ sin 2uÞ2
q

:

ð17Þ

3.3. Linear visco elastic membrane

To account for slow time effects and for internal energy dissipa

tion of the membrane, a visco elastic constitutive model must be

used. As a first, simplest approach to the problem, the well known

linear standard model (also called ‘three parameter model’, Fig. 4)

is adopted.

By using the engineering strain e, the relevant constitutive rela

tionship is:

_T þ K2

g T ðK1 þ K2Þ _eþ K1K2

g e

Tð0Þ T I; eð0Þ eI

(

; ð18Þ

where K1, K2, are elastic moduli (having dimensions of N/mm), and

g a viscosity coefficient (having dimensions of N/mm/s). In non

dimensional form, it reads:

_sþ s ðk1 þ k2Þ _eþ k1e

sð0Þ 1; eð0Þ eI

�

; ð19Þ

where:

~t : ðK2=gÞt; k1 : K1=T I; k2 : K2=T I ð20Þ

have been introduced, and where the dot now denotes differentia

tion with respect the non dimensional time t (tilde dropped ahead).

The visco elastic problem for the system is therefore governed by:

s pr; pv 1;

v

r2 1þ 4
p tan h

� �

r2 1þ 2
puþ 1

p sin 2u
� �

þ 4
p br cosu

(

;

e
r 1þ 2

p tan h
� �

1

ðr þ 2bÞ 1þ 2
pu

� �

1

(

;

_sþ s ðk1 þ k2Þ _eþ k1e;

sð0Þ 1; eð0Þ eI:

ð21Þ

h

TA TB

T,ε

T,ε

K2

K1

λe

λi

Fig. 4. Standard visco-elastic model.



It is a mixed differential algebraic problem, whose solution

calls for a numeric integration. It can be recast in the matrix form:

AðyðtÞÞ _yðtÞ þ BðyðtÞÞyðtÞ fðtÞ
yð0Þ y0

�

ð22Þ

where A and B are 6 � 6 matrices, y = (q; h)or y = (q; u)is an ex

tended 6 vector of state variables, including the control parameter,

and f(t) = (1, 1, 0, 1, 0; f(t)) is a 6 vector of known terms, in which

f(t) denotes the impressed time history for h(t) or u(t). Moreover

y0 = (rI, pI, vI, sI, eI; f(0)). Eq. (22) have been integrated by using a sol

ver for singular and sparse matrices.

3.4. Large strain visco elastic membrane

An enhanced visco elastic model is introduced, in which large

strains are accounted for. The stretch k : 1þ e (whose logarithm

is known as the ‘true strain’) instead of the elongation e, is used

as the strain measure, since this latter is not additive in finite kine

matics.1 Reference is made again to the three parameter model of

Fig. 4, in which A is the elastic part and B the visco elastic part. Com

patibility for the two parts requires kA kB : k, while compatibility

for part B calls for k kike, where ki;e are the stretches of the in series

inelastic and elastic devices, respectively. Equilibrium requires that

T = TA + TB and Ti = Te = :TB. By still assuming linear constitutive laws

for the single devices, namely:

TA K1ðk 1Þ; TB K2ðke 1Þ; TB g _ki ð23Þ

the following nonlinear tension strain law is finally derived,

with relevant initial conditions:

k _T ðK1 þ K2 þ TÞ _kþ K2

g ½T K1ðk 1Þ� 1 K1

K2
ðk 1Þ þ T

K2

h i2

0

Tð0Þ T I; kð0Þ kI

8

<

:

ð24Þ

It should be noted that, for small strain and T < < K2, the squared

bracket in Eq. (24) tends to 1, so that Eq. (18) is recovered. In non

dimensional variables, Eq. (24) reads:

k _s ðk1 þ k2 þ sÞ _kþ ½s k1ðk 1Þ� 1 k1
k2
ðk 1Þ þ s

k2

h i2

0

sð0Þ sI; kð0Þ kI

8

<

:

ð25Þ

The visco elastic problem for the large strain membrane model

is therefore governed by the following set of equations:

s pr; pv 1;

v

r2 1þ 4
p tan h

� �

r2 1þ 2
puþ 1

p sin 2u
� �

þ 4
p br cosu

(

;

e
r 1þ 2

p tan h
� �

1

ðr þ 2bÞ 1þ 2
pu

� �

1

(

;

k _s ðk1 þ k2 þ sÞ _kþ ½s k1ðk 1Þ� 1
k1
k2

ðk 1Þ þ s
k2


 �2

0;

sð0Þ sI; kð0Þ kI:

ð26Þ

The whole system is then rearranged as in Eq. (22), to be

numerically integrated.

3.5. Fully nonlinear visco elastic membrane

Although the previous model accounts for large strains, the con

stitutive laws (23) of the single components are still linear. To for

mulate a fully nonlinear visco elastic model (i.e. large strain and

mechanically nonlinear), it needs to describe more accurately the

tension strain rate law. Here, reference is made to a thermoplastic

polyurethane material, for which a proper 3D constitutive law, still

based on the model of Fig. 4, has been proposed in Qi and Boyce

(2005) and then reduced to a 1D law in De Simone (2010). It in

volves all the eigenvalues k1; k2; k3 of the deformation gradient

F. To reduce the model to 1D, two hypotheses are introduced: (a)

each parts A and B are incompressible, and (b) the material is trans

versally isotropic, these entailing k2 k3 �1= k
p

, with k : k1 the

longitudinal stretch. Although hypothesis (a) is quite strong (since

isochoricity is more likely to hold on the two parts as a whole,

rather than separately), it should be meant as a purely mathemat

ical hypothesis, introduced here to keep the model the simplest

possible. Based on these approximations, the following four

parameter visco elastic 1D model were obtained in De Simone

(2010) (quite involved details are omitted here):

TA c1 k2
1

k

� �

; TB c2
ln ke

ke
;

_ki

ki
c3 ke 1þ 2

k3e

s

1

 !c4

ln ke

ð27Þ

in which ci are constants depending on material. By using compat

ibility and equilibrium as in the previous model, the final constitu

tive equation was derived. Together with Eq. (26a d), they govern

the fully nonlinear visco elastic problem for the membrane.

4. Numerical results

4.1. Parameter identification and material response

A preliminary identification of the constants has been carried

out, by exploiting the results of experimental stretch tests per

formed by the first author on polyurethane samples at the Engi

neering Science Dept Laboratory of Oxford, UK (De Simone,

2010). Results of a strain controlled cycle test, conducted up to

300% maximum strain, at 0.03 s 1 strain rate, have been reported

(by thin lines) in Fig. 5a and b. Additional experimental tests were

also performed at strain rates ranging between 0.01 and 0.05 s 1,

whose results differed not more than 10 15%; therefore, reference

was made to the average rate. The response consists of an almost

linear elastic behavior, followed by an almost linear visco elastic

phase, and a number of several hysteretic loops. Referring to the

standard visco elastic model of Fig. 4, the three non dimensional

parameters were identified as follows: (a) a secant elastic slope,

able to capture the experimental stress corresponding to e = 0.25

was attributed to the two in parallel springs as K1 þ K2 (where

K i : K i=hI , having the dimensions of a force per unit of area, refers

to the material response, i.e. to the nominal stress r = T/hI ex

pressed as a function of the nominal strain e); (b) the visco elastic

slope was attributed to the stiffness K1 of the A part (as a matter of

fact, when _e const and time is large, Eq. (18a) furnishes

r K1eþ const); (c) the viscosity parameter g was computed in

order to fit, to the best extent, either (c1) the area of the first loop

(energy criterion), or (c2) the maximum stress experienced. The re

sults of the two identifications are displayed (by thick lines) in

Fig. 5a and b, respectively. Identification based on the criterion of

the maximum tension appears better than the one based on the en

ergy criterion, and therefore has been adopted. The following

numerical values for the material parameters were identified:

K1 : 1:8 N=mm2;K2 : 27 N=mm2;g 160 N=mm2=s, corre

1 Indeed, if Dl1;Dl2 are two successive deformations of a segment of initial length l,

then the final strain Dl1þDl2
l

differs from the sum of the two strains: e1
Dl1
l
; e2

Dl2
lþDl1 .

In contrast, since k lþDl1þDl2
l

; k1
lþDl1

l
; k2

lþDl1þDl2
lþDl1 , then k k1k2 .



sponding to the structural parameters K1: = 1.8 N/mm, K2: = 27 N/

mm, g = 160 N/mm/s. They were used also for the large strain vis

co elastic model.

Concerning the fully nonlinear model, four constants have to be

identified. To this end, a different method was used. Preliminary,

the first loop of hysteresis was extracted by the plots of Fig. 5,

and reported in Fig. 6 (thick lines). In it, the medium path (thin

line), equidistant from the lower and upper branches, represents

the hyperelastic experimental stress, while the difference between

the upper and the medium paths represents the viscous stress con

tribution. In the theoretical model adopted, it can be shown that

two out of four constants account for the hyperelastic behavior,

while the remaining two for viscosity. Therefore, the following

strategy was followed: the middle and the maximum values of

the hyperelastic stress were measured, and two constants were

chosen to reproduce them; moreover, the lower slope and the

maximum value of the viscous stress were measured, and two con

stant used to reproduce them. As a result of the whole identifica

tion process, the following numerical values of parameters

appearing in Eq. (27) were obtained: c1 0:3 N=mm;c2
50 N=mm;c3 1 s 1; c4 0:3.

In order to compare the responses of the three visco elastic con

stitutive laws formulated and identified above, the stress response

to the same strain history was determined by numerically inte

grating the relevant constitutive laws (Fig. 7). Three models were

considered, namely: the Linear Visco Elastic material (LVE, Eq.

(19)), the Large Strain Visco Elastic material (LSVE, Eq. (25)) and

the fully NonLinear Visco Elastic material (NLVE, Eq. (27)). The

strain history (Fig. 7a) consists of a linear phase, followed by a

quite long constant phase and finally a small amplitude harmonic

phase. This example is meant to simulate a specific technical appli

cation, namely a fender ship which is insufflated, remains at the

rest for a while, and then it is solicited with a harmonic law, due

to a (idealized) boat rolling.

Fig. 7b shows the viscoelastic responses. When they are com

pared with the purely elastic behavior (not shown), a strong decay

of the stress is noticed, due to the relaxation phenomenon occur

ring in the constant strain phase. The three models, however, give

qualitatively similar results, although appreciable local differences

exist. This entail that both geometrical (large strain) nonlinearities

and constitutive nonlinearities slightly affect the material behav

ior. In particular, the LVE overestimate the peak reached at the

end of ramp loading. However, at the end of the waiting phase,

all models give the same response. During the successive harmonic

loading, models give responses of the same period, but slightly dif

ferent in amplitude and phase.

4.2. Structural response

The structural response of the balloon is now addressed (see

Fig. 8). When t < 0, the balloon is at rest in its natural (unstressed,

unstrained) configuration. At t = 0 an internal pressure P0 is instan

taneously applied by insufflating gas, so that the membrane under

goes the strain e0 and the tension T0. With the gas flow stopped, a

time interval is waited, in which, (a) if the membrane is elastic,

tension and strain remain constant; (b) if the membrane is visco

elastic, the strain increases and the tension decreases (see the

Appendix for pre contact analysis). At t = tI the balloon is in its ini

tial state qI = (rI, pI, vI, sI, eI), when it is put in one point contact with

two parallel rigid plates. Then, the distance between the plates is

reduced at a constant strain rate, and the response q = (r, p, v, s,
e) evaluated as a function of time. By bearing in mind a balloon

for medical application, the following numerical values are as

sumed: semi width of the plate b = 30 mm, natural radius of the

balloon RN = 30 mm, thickness h = 1 mm, elastic modulus

E = 28.8 MPa, inflating pressure (see the Appendix) P0 = 0.10 MPa,

initial (nondimensional) time tI = 16.7; the aspect ratio (at the ini

tial state) is found to be b = b/RI = 0, 54 for the LVE model and 0.90

for the E one. Relevant results are plotted in Fig. 8, for the Inexten

sible (I) and Elastic (E) models, for which closed form solution ex

ists (Eqs. (10), (11), (15), and (16) respectively), and for the Linear

Visco Elastic model, which follows numerical integration of Eq.

(22). The flattening state is common to the two plates; at point C,

however, the behavior differs, being still of flattening type for long
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Fig. 5. Experimental stress–strain curve (thin lines) and Standard Model approximation (thick lines), according to the (a) equal area of loop criterion, (b) equal maximum

tension criterion.
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Fig. 6. Experimental first loop of hysteresis (thick lines) extracted by the plots of

Fig. 4; the medium path (thin line) represents the hyperelastic experimental path

while the upper path-medium path difference represents the effect of the viscosity.



plates, and of indentation type for short plates. As a general com

ment, the visco elastic response strongly differs from the elastic

and inextensible ones, thus highlighting the importance to prop

erly take into account the viscous component of the material. Spe

cifically, during flattening, it is observed that radius and tension

decrease, while volume, pressure and strain have not monotonic

behavior, this being dependent on the material viscosity vs. load

ing rate relationship. If the material viscosity has a prevalent ef

fect, the volume and the strain increase and the pressure

decreases (see Fig. 8b, in which the volume actually increases just

after flattening phase start). On the other hand, if the loading ef

fects prevail, the volume decrease and the pressure increases

(see the elastic response in Fig. 8b, in which the viscous effects

are absent and the volume, consequently, decreases). The growth

of pressure, related to the decrease of volume, is statically balanced

by the increase of curvature of the circular part of the balloon,

although the tension decreases. The more the squeezing proceeds,

the more the tension relaxes. This apparent relaxation, however, is

(a) (b)

λ
σ[Mpa]

[ ] [ ]

Fig. 7. Comparison between LVE, LSVE and NLVE constitutive laws: (a) strain-history, (b) stress-response.

Fig. 8. Structural response of a balloon squeezed between long (thick lines) or short (thin lines) plates, moving with constant rate; C transition point; I inextensible, E elastic,

LVE Linear Visco-elastic models); (a) pressure; (b) volume; (c) tension; (d) strain; (e) radius; (f) control parameters.



due to geometrical aspects of the structural problem, and not to

the material behavior. During indentation, the previous trend is

confirmed only during a very short initial stage, since strain and

tension, successively, rise up. At the non dimensional time 100.9,

the non dimensional pressure is very large (see the insert in

Fig. 8a), while the volume is very small.

As a last simulation, a more complex displacement history has

been imposed for the same balloon, and the results obtained for

four models have been compared, namely: inextensible (I), elastic

(E), linear visco elastic (LVE) and fully nonlinear viscoelastic

(NLVE). Fig. 9 shows, for the four models, the strain (Fig. 9a) and

the tension (Fig. 9b) time histories, including the pre contact

phase. At the instant tI, two short plates are juxtaposed to the bal

loon, touching it each in a single point, and a constant rate mutual

approach is imposed to them. Transition configuration is reached

at an instant tC which is different for each model. After that, the

constant rate motion is continued for an additional time interval,

sufficient to move the system far from the transition condition.

Successively, at time tP, a harmonic plate movement is started, of

amplitude such that the balloon remains in the indentation state.

As already observed, the elastic and inextensible responses

strongly differ from the viscoelastic ones, giving much higher re

sponses. In contrast, the linear and nonlinear viscoelastic models

have quite similar behaviors. During the initial phases, it is seen

that, while the tension decreases, the strain firstly decreases, but

then it raises, as an effect of the viscoelasticity.

5. Conclusions

A nonlinear planar model of visco elastic cylindrical balloon,

interposed between two approaching rigid plates, has been formu

lated. The problem has been found to be governed by five alge

braic ode equations in five state variables (radius, strain, volume,

tension, internal pressure), expressing equilibrium, compatibility

and tension strain rate relationships. The distance between the

plates (or an equivalent geometrical magnitude) has been taken

as loading parameter, and an arbitrarily selected time history, as

signed. According to the ratio between the radius of the balloon

and the length of the plates, a one phase evolution problem (only

squeezing, for long plates) or a two phases evolution problem (first

squeezing, then indentation, for short plates), occur. Five specific

models have been derived, of increasing complexity: inextensible,

linearly elastic, linear visco elastic, large strain visco elastic,

fully nonlinear visco elastic. In the second and third model, the

Fig. 9. Time-histories of (a) strain and (b) tension for resting/constant-rate/harmonic motion of the plates; I: inxstensible, E: elastic, LVE: linear visco-elastic, NLVE: linear

visco-elastic; I, P constant-rate and harmonic motion starts, C transition point; t1 = 13.6, t2 = 16.7, t3 = 36.2, t4 = 44.2, t5 = 68.3, t6 = 70.8, t7 = 72.9 and t8 = 89.4.

Fig. 10. State evolution in pre-contact phase for the LVE model; (a) strain; (b) tension; (c) radius; (d) pressure.



elongation was taken as a measure of the strain, while in the fourth

and fifth model the stretch was used.

By exploiting results of an experimental test, carried out on a

polyurethane material, the parameters have been identified, and

the responses of different constitutive models compared. It has

been found that viscosity strongly affects the response, since the

material is extremely sensible to the relaxation phenomenon.

However, moderate differences were notice about the three vis

co elastic models, to within enforced elongations of 150%,

although local differences were appreciable.

The structural response has been evaluated for two different

squeezing processes of the balloon. Again, the elastic and inexten

sible responses predict tensions which are much higher than the

viscoelastic ones, these latter being closer among them.

As a final remark, complex nonlinear constitutive laws have

been found unnecessary in the technical applications investigated

here (i.e. the fender ship and the angioplasty balloon), since the

strain is not too high. On the other hand, it is believed that the non

linear model could be useful in other applications, where larger

strains are involved, still to be investigated.
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Appendix A. Pre-contact evolution analysis

It has been assumed, so far, that the initial state qI: = (RI, PI,

VI, TI, eI), at which the plates are in a one point contact with

the balloon, is known. Indeed, a specific pre contact analysis

must be performed, to study the evolution of the balloon from

its tension free natural state to the stressed initial state. Two

phases are distinguished in such a process, namely: (a) the

inflating phase, and (b) the evolution phase. At the first stage,

the balloon is open and inflated by gas, up when a pre fixed

internal pressure P0 (measured by a manometer) is reached,

and the balloon is closed. This phase is short, if compared with

the whole evolution time interval, so that it can be considered

as instantaneous, occurring at t = 0. The successive stage, instead,

develops in a finite time interval (0, tI), which precedes the

squeezing phase. During this interval, the state of the balloon

freely evolves, ruled by the visco elastic properties of the mate

rial. Pre contact analysis, therefore, is aimed to evaluate the

inflating state, q0: = q(0), and the evolving state, qðtÞ; 0 6 t 6 tI ,

up to the initial state qI: = q(tI) .

When the internal pressure is zero, the balloon assumes an arbi

trary configuration described by a closed curve of given length lN;

among the infinite ones, we choose the circumference of radius

RN: = lN/(2p). Since tension and strain also vanish in the natural

state, it is qN: = (RN, 0, VN, 0, 0), with VN pR2
N .

(a) Inflating state. When the pressure P0 is instantaneously ap

plied, it needs to distinguish inextensible and elastic (or visco elas

tic) models. In the inextensible case, the equilibrium Eq. (1) is

sufficient to determine the tension:

T0 P0RN ðA:1Þ

so that q0: = (RN, P0, VN, T0, 0). If, however, the balloon is elastic, the

inflating state obeys to the following equations:

T0 P0R0; T0 EhNe0; e0 R0=RN 1 ðA:2Þ

which describe equilibrium, constitutive law (with EhN the stiffness

in the natural state) and kinematics, respectively. Eq. (A.2) admit

the solution:

T0
P0RN

1 P0RN
EhN

; e0
P0RN

EhN

1

1 P0RN
EhN

; R0
RN

1 P0RN
EhN

; ðA:3Þ

and therefore q0 : (R0, P0, V0, T0, e0), with V0 pR2
0.

(b) Evolving state. With the balloon closed, and no external

forces applied, its shape remains circular. Moreover, the state q0

does not evolve, if the model is inextensible or elastic, but changes

in time if it is visco elastic. In this latter case, the equations govern

ing the evolutions are:

T PR; PV P0V0; f ðT; _T; e; _eÞ 0; e R=RN 1; V pR2

ðA:4Þ

expressing equilibrium, constitutive laws and kinematics, respec

tively. By integrating Eq. (A.4) with the initial conditions q(0) = q0,

the state q(t): = (R(t), P(t), V(t), T(t), e(t)) at the instant t is evaluated,

up to the time tI. Fig. 10 shows the evolution for the LVE model,

when the sample system of Section 4.2 is considered.
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