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Reconstructing gene regulatory networks from high-throughput measurements represents a key problem

in functional genomics. It also represents a canonical learning problem and thus has attracted a lot of

attention in both the informatics and the statistical learning literature. Numerous approaches have been

proposed, ranging from simple clustering to rather involved dynamic Bayesian network modeling, as well

as hybrid ones that combine a number of modeling steps, such as employing ordinary differential equa-

tions coupled with genome annotation. These approaches are tailored to the type of data being employed.

Available data sources include static steady state data and time course data obtained either for wild type

phenotypes or from perturbation experiments.

This review focuses on the class of autoregressive models using time course data for inferring gene reg-

ulatory networks. The central themes of sparsity, stability and causality are discussed as well as the abil-

ity to integrate prior knowledge for successful use of these models for the learning task at hand.

1. Introduction

A number of technological advances, such as DNA microarrays,

RNA-Seq [1], liquid chromatography tandem mass spectrometry

[2], and similarly liquid or gaseous chromatography mass spec-

trometry [3], have enabled biomedical researchers to collect large

amounts of transcriptomic, proteomic and metabolomic data. In

addition, curated repositories containing both vast amounts of

such data, as well as functional information, ontologies, gene and

protein interactions, pathways, etc. are expanding at a fast pace

(e.g. KEGG, IntegromeDB, BioGrid, GEO, NURSA, etc.).

The increasing availability of such high dimensional data and

structured information have led to a number of novel learning

problems, including that of network inference. Networks have be-

come a key tool in computational biology due to their ability to

capture at an appropriate level of abstraction biological processes.

Overall, the study of biological networks including modeling, anal-

ysis, reconstruction and visualization aspects has become a key to-

pic in bioinformatics and computational biology (for a review and

recent trends see [4]).

A number of learning tasks have been studied in the literature,

based on the type of biological network under consideration. For

example, in metabolic reaction networks, the focus has been on

learning enzyme kinetic parameters [5], stoichiometric analysis,

as well as finding the operative modes of such networks subject

to catalytic activity and steady state operational constraints. In

protein interaction networks, predictions of interactions are based

both on protein descriptors and labeled edges [6]. Information ob-

tained from protein–protein interaction networks has proved use-

ful in protein function prediction and in learning protein

complexes [7], while predicting cellular responses using ontology

information has been a key task involving signaling networks. In

this review study, we focus on the problem of reconstructing

(inferring) the structure of gene regulatory networks (GRN). Such

networks involve interactions between DNA, RNA, proteins and

other biomolecules, whose edges represent functional influences

of one molecule on the other, rather than chemical interactions.

This learning task has become a central one in functional

genomics, as the growing literature on the subject attests [8–10].

Two main types of data have been used to learn such networks:

steady state data and time course data. steady state data are ob-

tained from a long-term observation of gene expression, assuming

the system reaches an equilibrium state. For instance, multiple bio-

logical replicates obtained at some late point in time provide such

steady state data. Such data are usually obtained from microarray

technologies, and provide a global view of the biological system

under study in its natural state (wild type); however, their infor-

mational content for network reconstruction purposes is in general

limited and accurate network inference usually requires a very
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large number of replicates [11]. On the other hand, time course

data even for wild type measurements provide insights on the

transitory behavior of the biological system which is induced by

regulations, especially if the system is observed under different ini-

tial conditions due to perturbations, as discussed next.

A particularly informative source for the learning task at hand

is data from perturbation experiments, involving specific gene

knock-outs/downs or silencing. They may correspond to a single

time observation point, selected so that the perturbation has

manifested itself in the system, or could take the form of time

series, as discussed above. The advantage of time course data ob-

tained from perturbation experiments is that they contain signif-

icant information about the dynamics of the system and are

shown to be a key component for network inference in the

DREAM7 challenge on experimental design for parameter estima-

tion in network models (more information regarding the DREAM

challenge competition is provided in Section 9). The downside of

perturbation data is that they are usually obtained from single

gene knock-outs (downs). Hence, every replicate (time series or

single time point observation) offers limited information about

the overall system, especially when joint regulations are involved.

Moreover, large scale perturbation experiments for most organ-

isms are not readily available, due to technical complexities and

cost considerations.

On the other hand, wild type time course data are still attractive

for inferring relatively large scale GRNs, since they contain ade-

quate information about regulatory interactions and are signifi-

cantly less expensive to acquire compared to perturbation data.

For inferring GRNs, the majority of approaches in the literature

belong to the class of unsupervised methods, although there has

been work that assumes partial knowledge of the network which

is either integrated as prior information in the model employed,

or used in a supervised approach [12,13]. The class of unsupervised

approaches can be divided in the following two categories:

(i) model-based ones that aim to capture the dynamical behavior

of the GRN by estimating the parameters of a chosen model

[14–17,8,9,18–20], and (ii) model-free approaches that extract

dependencies among state variables using information-theoretic

criteria in the spirit of ARACNE [15,21,22].

This review primarily focuses on inferring GRNs from time

course data and model-based approaches. Our goal is to emphasize

the key elements that are common in the best off-the-shelf net-

work inference algorithms and to outline the set of important fea-

tures that such algorithms should possess to meet future

challenges. A key feature is that of sparsity, due to the following

facts. First, statistical analysis of known regulatory networks has

shown that scale-free models are suitable to represent the topolog-

ical structure of the network, thus reflecting their sparse nature.

Second, most available data sets contain relatively few time points

compared to the number of genes measured, thus making the use

of sparse models obligatory. Another key element in network infer-

ence (and in learning complex structures in general) is that of

stability of the algorithm. The concept of stability has been central

for model selection in regularized regression [23] or as a construc-

tion principle in various randomized models, including bagging

and random forests. Recent works explore the use of this concept

in GRN inference [24,25]. Taking another angle, the ability to

integrate prior knowledge into a model or in a learning method

represents a valuable property in a field where partial knowledge

coming from different sources may be available [26]. Finally a

key question regarding network inference is the semantics associ-

ated with a direct edge in a regulation graph. Directed edges under

certain conditions reflect causal relationships [27]. Even though

estimating such relationships is known to be a very challenging

task, causality nevertheless represents a central issue in network

inference.

The remainder of the paper is organized as follows. Section 2

presents the problem of gene regulatory network inference from

time course data and emphasizes desirable properties of a network

structure inferred by a learning method. Section 3 gives an over-

view of the main Markov models used for network inference from

time course data. In Sections 4 and 5, different works about Markov

models and their associated network inference methods are re-

viewed and when it is possible, analyzed through the concepts of

sparsity and causality. Section 4 focuses on linear autoregressive

models for which sparse regression has been largely developed

and from which Granger-causal networks can be inferred. Exten-

sions of linear autoregressive models described in Section 5 con-

sider generalized additive models and kernel-based methods.

Section 6 gives a brief presentation of dynamic Bayesian networks

that support, as a special case of autoregressive models, specific

learning strategies. In Section 7, we highlight the notion of stability

and describe how it has been recently used for model selection and

to improve upon a base model. Section 8 addresses prior integra-

tion in the whole set of reviewed models, while Section 9 provides

an overview of the performance of various methods in the DREAM

computational challenges. Finally, Section 10 discusses recent

trends and future challenges.

2. Gene regulatory network inference from time course data

In model-based approaches to network inference, a GRN is ab-

stracted and considered as a dynamical system whose states corre-

spond to different mRNA concentrations. The network structure is

defined as a directed graph G whose nodes are associated to genes

and whose directed edges represent the presence or the absence of

regulations1 from one regulating gene to a target gene. In the paper,

jGj ¼ p denotes the number of genes and A, a binary matrix of size

p� p, is the adjacency matrix of graph G.

Assuming that we observe gene expression levels for wild type,

we denote by xT the p-dimensional vector of the gene expression

levels measured at time T. Gene regulatory network inference con-

sists in providing an estimate of A denoted by bA, given the time

course Sn ¼ fx0; . . . ;xn�1g of length n measured at equidistant time

points t0; . . . ; tn�1, with ti ¼ ti�1 þ s; i ¼ 1; . . . ;n� 1. In the case the

time points are not regularly spaced, which happens rather fre-

quently in biological experiments, the observations are smoothed

by a nonparametric regression which is re-sampled subsequently.

The sampling rate s is in this case an additional hyperparameter

of any discrete-time modeling. This estimation task is by definition

unsupervised unless partial knowledge about the graph is avail-

able. The main part of the paper is devoted to the case when no

edges are known. However, integration of prior knowledge will

be discussed in detail in Section 8.

Model-based approaches mainly proceed in two steps: first, gi-

ven a model of the dynamical system M, they estimate its param-

eters from observed time course and second, they extract from its

parameters an estimate bA of the target matrix A. In some cases, like

in Dynamical Bayesian Learning, the network structure is included

in the parameter set and the second step is straightforward.

2.1. Desirable properties for the estimated network

Let us discuss the properties for the network structure esti-

mated from model M and time course data Sn. Beyond structure

consistency, which will not be discussed here per se, other proper-

ties related to what biologists expect from the automated inference

process can be targeted. They include network sparsity and

stability of the algorithm employed. Next, we provide a high level

1 For sake of simplicity, we will only consider transcriptional regulations.
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overview of these key concepts, while a more detailed presentation

is given in the next sections.

Sparse networks: A network is said to be sparse if the number of

edges in a network is very small compared to the number of pos-

sible edges. Network inference methods search for sparse networks

for different reasons: first, the unfavorable ratio between the com-

plexity of models compared to the limited size of available time

course data creates difficulties to any statistical inference method.

So, only a rigorous control of the model’s complexity can help to

avoid overfitting. Second, when learning continuous estimates of

matrix A, for instance within the autoregression framework, we

wish to be able to clearly extract edges from continuous coeffi-

cients. This extraction process is similar to feature selection, so at

the end of the learning process, the estimated matrix coefficients

should be as close as possible to zero or to one in absolute value.

Third, there is strong evidence that gene regulatory networks as

well as more general biochemical networks are sparse [28,29]. This

has motivated researchers to use techniques that encourage spar-

sity in the reconstructed network. A prime tool to achieve this

objective is penalized regression, which has been extensively used

with most of the models discussed in subsequent sections.

Causal networks: In order to better understand regulatory mech-

anisms, biologists aim at identifying causal influence of one com-

ponent upon another. However, inferring causal relationships

between two variables from data, as opposed to measuring associ-

ations or correlations, is one of the most challenging issues in

empirical inference. Causality, which has attracted a lot of atten-

tion in all experimental sciences, supports many definitions; in this

paper we retained two of them that have been effectively used for

network inference: Granger causality [30], originally defined for

linear autoregressive models in economics, and causality such as

defined in graphical causal modeling by Pearl [27]. Applications

to causal network inference will be discussed in Section 4 devoted

to linear autoregressive models and in Section 6, which briefly de-

scribes Dynamic Bayesian Networks.

Stable networks: Stability of an estimation procedure refers to its

ability to provide similar output (in an appropriate metric) when

fed with closely related training data. In the specific problem of

network estimation from time course data, this means that two

adjacency matrices inferred from two appropriately bootstrapped

samples are close enough. As shown in Section 7, stability has been

recently used in network inference either as a model selection

method or as a building principle using randomization.

3. Overview of Markov models for gene regulatory network

inference

A large number of modeling approaches [31] have been devel-

oped to describe the behavior of a GRN. Formal approaches use dis-

crete descriptions of the network using automata, Petri Nets and

Computation Tree Logic that allow to analyze the discrete dynam-

ics and performmodel-checking [32]. There exist a few attempts to

learn these models from data, although estimation generally in-

volves combinatorial optimization, a challenging issue with high

computational cost. Quantitative models, including ordinary differ-

ential equations (ODE), dynamical Bayesian networks, autoregres-

sive and state-space models are more popular in the context of

GRN inference. Characterized by a set of parameters, they can be

estimated using continuous mathematical programming tools

and other optimization tools devoted to linear or nonlinear model-

ing. Major achievements in network inference with linear ODEs

were obtained by several groups [16], while nonlinear ODEs,

whose parameters can be easily interpreted as in S-systems [33–

35], have proven to be also appealing for network inference. The

interested reader will find a complete review about the use of

ODE based modeling in [9]. In this review, we focus on discrete-

time probabilistic quantitative models, whose advantages are that

they can take into account measurement noise, while estimation of

their parameters does not involve computationally intensive inte-

gration steps. These models belong to the family of Markov models,

where the future depends on the past only through the present

state and possibly a few directly preceding states. We start by

introducing some notation. We denote by xT the p-dimensional

state vector of the network under study at time T, where p corre-

sponds to the number of genes in the system under consideration.

Next, we give a quick overview of probabilistic models.

3.1. First order Markov models

A first order autoregressive model is defined by the following

equation:

8T P 1; xT ¼ FðxT�1Þ þ �T ; ð1Þ

where F is a deterministic function from R
p to R

p and �T is a noise

term, usually assumed to be Gaussian: Nð0;r2IÞ. Moreover, the �T ’s

are assumed to be independent.

Alternatively the same model can be described by the joint

probability density of the state vectors over all different time-

points T ¼ 0; . . . ;n� 1, which in the Gaussian case is given by

pðx0; . . . ;xn�1Þ ¼ pðx0Þ
Yn�1

T¼1

pðxT jxT�1Þ ð2Þ

with pðxT jxT�1Þ being a multivariate Gaussian density on the vector:

xT � FðxT�1Þ.

Such a model can be decomposed into p one-dimensional

models:

8i 2 f1; . . . pg; xiT ¼ fiðx
1
T�1; . . . ; x

p
T�1Þ þ �iT : ð3Þ

Dynamical Bayesian Networks also fit into a similar framework, but

with the following restriction: each one-dimensional variable i only

depends on a set of parent variables measured at time ðT � 1Þ:

8i 2 f1; . . . pg; xiT ¼ fiðPaðiÞT�1Þ þ �iT : ð4Þ

A number of studies have focused on first order Markov models

with a linear function F. Although GRNs do not exhibit linear

behavior, especially due to saturation effects, the linearity assump-

tion offers two main advantages: it enables looking at larger

dimensional spaces than nonlinear models given the limited

amount of data usually available and also the coefficients of the

linear function admit a straightforward interpretation in terms of

conditional independence. Then, the model can be written as:

8i 2 f1; . . . pg; xT ¼ AxT�1 þ �T ; ð5Þ

where �T is a p-dimensional Gaussian vector, A a p� p matrix, and

consequently xT is also a p-dimensional Gaussian vector. It can also

be written as a collection of p one-dimensional autoregressive mod-

els of the form:

8i 2 f1; . . . pg; xiT ¼
Xp

j¼1

aijx
i
T�1 þ �iT : ð6Þ

3.2. Markov models of order m

Models of order 1, as those presented above are rather

restrictive. Regulatory events may occur at different rates and

higher order interactions can better capture the dynamics of the

system under study. There has been some work in the literature
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that considers the problem of GRN inference by employing higher

order autoregressive models, especially in the linear case [36,37].

4. Linear autoregressive models for network inference

Linear models represent a popular class for learning GRNs from

time course data, especially when coupled with the concept of

Granger causality developed in the econometrics literature [30].

In this framework, interactions amongst variables (genes) are de-

fined if past observations of one variable result in improved predic-

tions of other variables. Specifically, let fxTg
n
T¼0 and fyTg

n
T¼0 be

observations from two time series. Then, x is considered to be

Granger-causal for y if the model

xT ¼
Xq1

t¼1

atxT�t þ
Xq2

t¼1

btyT�t þ uT ; q1; q2 6 T; ð7Þ

significantly outperforms the model

xT ¼
Xq1

t¼1

atxT�t þ eT ; q1 6 T; ð8Þ

in terms of predictive ability as measured by the Predictive Mean

Squared Error. Models as described in Eqs. (7) and (8) are based

on a sequential strategy, where one keeps adding terms to the mod-

el and testing its overall significance through an F-test.

Graphical Granger causal models extend the notion of Granger

causality to p variables. Specifically, define a vector time series

xt ¼ ðx1t ; . . . ; x
p
t Þ and consider the d-th order corresponding vector

auto-regressive (VAR) model [38, Chapter 2]:

xT ¼ A1xT�1 þ . . .AdxT�d þ eT ; ð9Þ

where At; t ¼ 1; . . . ;d, are p� p matrices whose coefficients repre-

sent the magnitude of interaction effects among variables at differ-

ent time points. In this model formulation, variable xjT�t is

considered Granger-causal for xiT , if the corresponding coefficient,

ðAtÞij ¼ at;i;j is statistically significant.

One of the first studies to use the notion of Granger causality for

the estimation of a regulatory network has been [39]. However,

due to lack of adequate samples and to overcome computational

issues, instead of looking at the full model of Eq. (9), that study

adopted a simplified strategy that examines pairs of genes one at

a time for Granger causality. This results in testing pðp� 1Þ=2

hypotheses and a strategy for addressing the multiple comparisons

problem and thus controlling the familywise error rate of the test

is used; [39] employed the False Discovery Rate procedure intro-

duced by Benjamini and Hochberg [40].

It can be seen that in order to estimate the full model of Eq. (9),

one must have T > dp
2
(more time points than the number of ef-

fects to be estimated); in the presence of n independent replicates

of the time course data, the condition becomes Tn > dp
2
. This is a

strong requirement for any network containing p ¼ 30 or more

genes. Nevertheless, extensive research [41] indicates that GRNs

are relatively sparse and hence it is appropriate to estimate a sparse

VAR model. To do so, [17] focused on an order d ¼ 1 VAR model

and employed a Lasso penalty leading to the following loss

function

Xn

T¼1

jjxT � A1xT�1jj
2 þXðA1Þ; ð10Þ

with XðA1Þ ¼ k
Pp

i¼1

Pp
j¼1ja1;i;jj and k > 0 being a tuning parameter,

selected either through cross-validation or through a grid search

over a range of values followed by inspection of the structure of

the resulting network. In an extension, and to overcome the impact

of high correlations between the time series that leads to numerical

instabilities, [42] used an elastic net penalty of the form

XðA1Þ ¼ k1
Pp

i¼1

Pp
j¼1ja1;ijj þ k2

Pp
i¼1

Pp
j¼1ða1;i;jÞ

2. A potential challenge

for fitting this model is the need to search for two tuning

parameters.

A shortcoming of these and related studies (e.g. [43]) is that

they consider a single time lag in the VAR model. To rectify this,

[37] proposed a different formulation of the model in Eq. (9). Spe-

cifically, it proposed fitting the following loss function

jjxT �
XT�1

t¼1

AtxT�tjj
2 þXðAÞ; ð11Þ

where XðAÞ ¼ k
Pp

j¼1;j–i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT�1
t¼1 ðat;i;jÞ

2
q

is the so-called group lasso

penalty. The idea behind this penalty is that it forces simultaneous

selection of all the members of the group, which in the present con-

text implies including all the time lags of variable xj. The shortcom-

ing of this modeling approach lies in the fact that lags from the

distant past may not be relevant in the estimation of Granger causal

effects.

In a series of papers [36,19], high-order sparse VAR models were

considered and estimated by employing different variable selec-

tion strategies. In this line of work, the problem is cast as that of

estimating a Directed Acyclic Graph with a known ordering [18],

which provides a general framework for addressing theoretical is-

sues, such as prediction and selection consistency of the estimated

Granger causal effects and subsequently of the resulting network

structure.

In [36], a truncating Lasso penalty was employed, in an effort to

identify the correct order of the VAR model. Specifically, the fol-

lowing loss function is optimized for i ¼ 1; . . . ; p:

argmin
ht2Rp

n�1kxiT �
Xd

t¼1

AtxT�tk
2
2 þ k

Xd

t¼1

Wt

Xp

j¼1

jAj
t jw

j
t ; ð12Þ

W1 ¼ 1; Wt ¼ MIfkAðt�1Þk0 < p2 c
ðT � 1Þ

g; t P 2;

where M is a large constant, and c is the allowed false negative rate.

In [36], a block-coordinate descent algorithm for solving this opti-

mization problem is introduced and the following theoretical prop-

erties of the resulting estimated Granger effects established: (i) the

proposed penalty gives a consistent estimate of the order of the

underlying VAR model and (ii) its structure is consistently esti-

mated under certain regulatory conditions, provided that the effects

At
ij decay over time.

For the case where the latter decay assumption is violated, a

thresholding strategy was adopted in [19], where the Granger

causal effects obtained from a lasso penalized regression are

subsequently thresholded. In this strategy, two tuning parameters

need to be fixed: the penalty for the lasso regression step and

the threshold. Theoretical work establishes consistent estimation

of (i) the order of the VAR model and (ii) the structure of the

underlying network under a restricted eigenvalue condition for

the design matrix of the regression problem. The latter condition

is a standard one in inference for high-dimensional regression,

classification and learning Gaussian and Markov graphical model

problems [44].

Finally, in [19] both the truncating lasso and the thresholding

strategies are complemented with a group lasso term, in order to

incorporate externally given pathway information in this learning

problem.

5. Nonlinear autoregressive models

Living systems with feedback loops do not always exhibit linear

dynamical behavior. This is the case in GRNs for which we observe

nonlinearities in a large range of situations. Within the framework
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of autoregressive models, it is possible to estimate a nonlinear

model and subsequently extract its network structure without

assumptions about the shape of the model. We present here two

examples of nonlinear semiparametric autoregressive models

where sparsity is imposed to models in order to extract networks.

5.1. Nonlinear semiparametric models with splines and kernels

In order to model nonlinear interactions, [45,46] have intro-

duced a semiparametric nonlinear autoregressive model,2 defined

as follows:

8i 2 f1; . . .pg; xiT ¼ gi
TðxT�1; b

iÞ þ �iT ; ð13Þ

where �iT is a Gaussian isotropic noise field and the function gi
T can

be written as a sum of B-spline basis functions using coefficients of

matrix bi:

8i 2 f1; . . .pg; gi
TðxT�1;b

iÞ ¼ fi1ðx
1
TÞ þ � � � þ fipðx

p
TÞ þ li; ð14Þ

with li being a gene-specific term, fijðx
j
TÞ ¼

PM
k¼1b

i
jkBjkðx

j
TÞ and fBjkg

spline basis functions. Each function fij allows to model the poten-

tial nonlinear regulation from gene j on gene i without any assump-

tions about the nature of the influence. In this model, the norm of bi
j

controls the influence of gene j on gene i. Morrissey et al. [46] devel-

oped a full Bayesian approach to identify the parameters bi
j of this

spline-based model.

Another approach called LOCKNI (Local Kernels for Network

Inference) was recently proposed in [47]: it provides an even more

direct approach to sparse nonlinear modeling of the expression of a

given target gene i in the context of multiple kernel learning. In Eq.

(13), each function gi is now defined for each target gene i, as:

gi
TðxT�1;bi;wiÞ ¼

Xn�2

t¼0

witK iðxT�1;xtÞ; ð15Þ

where the components of vector wi are weighting the observations

at each time point and K i is positive semi-definite kernel defined by

a convex linear combination of the following component (or local)

kernels:

K iðxT�1;xtÞ ¼
Xp

j¼1

bijjjðxT�1;xtÞ ð16Þ

with jjðxT�1; xtÞ ¼ jðxjT�1; x
j
tÞ, defined as a positive semi-definite

kernel applied to the jth projection of both entries xT�1 and xt . For

instance, if we choose a Gaussian kernel, jjðxT�1;xtÞÞ writes as:

jjðxT�1;xtÞ ¼ expð�cðxjT�1 � xjtÞ
2
Þ: ð17Þ

In the general case, Eq. (15) can be re-written in the following way

to emphasize the different roles of bi and wi:

gi
TðxT�1; h

iÞ ¼
Xp

j¼1

bij

Xn�2

t¼0

witjjðx
j
T�1; x

j
tÞ

!
: ð18Þ

This model can be seen explicitly as a weighted sum of local or com-

ponent functions, each of them devoted to a single regulator candi-

date. The bi parameters encode (after sparsification) the presence or

absence of regulations, while the wi parameters encode the depen-

dence of the model on the training data. Network inference is

clearly facilitated by controlling the sparsity of vector bi. In [47],

vectorswi and bi are estimated for each target gene i using an alter-

nate optimization scheme, typical of multiple kernel learning ap-

proaches described in [48,49].

5.2. Nonlinear models with operator-valued kernels

Taking another angle, a general framework for network infer-

ence based on estimation of the Jacobian matrix of the model

was recently introduced in [20]. Model F described in Eq. (1) is cho-

sen to belong to a family of nonparametric nonlinear vector-valued

functions F . Once an estimate bF of F is obtained from data

ðx0;x1Þ; . . . ; ðxn�2;xn�1Þ in an autoregression scheme, the Jacobian

matrix ~rbF of bF is also estimated and thresholded to get an esti-

mate bA of the incidence matrix of the directed graph describing

the network. More precisely, the Jacobian matrix rF of the model

F is empirically defined from observations as follows: for a given

ordered pair ði; jÞ 2 f1; . . . ; pg2,

~rF ij ¼
1

n� 1

Xn�2

t¼0

F ijðtÞ
@FðxtÞi
@xjt

; ð19Þ

with F ijðtÞ ¼
@Fðxt Þi
@xj

t

.

The Jacobian coefficient F ijðtÞ represents how much FðxtÞi varies

when xjt varies and therefore, reflects the influence of gene j on

gene i. In the linear case, from Eq. (5), the Jacobian matrix corre-

sponds exactly to the regression matrix A : ðrFÞij ¼ aij.

In order to cope with nonlinear interactions between genes,

[20] proposed a new family of vector kernel-based autoregressive

models, called Operator-valued Kernel Vector Auto-Regressive

(OKVAR), and given by:

8T > 1; FðxT�1Þ ¼
Xn�2

‘¼0

KðxT�1;x‘Þc‘ ð20Þ

with KðxT�1;x‘Þ 2 LðRpÞ, the space of linear operators on p-dimen-

sional vectors, i.e. the space of p� p real valued matrices and with

K satisfying the properties of a matrix-valued kernel. A function K

defined as the limit of a matrix-valued kernel Kr; r 2 N, was pro-

posed for the OKVAR model:

Krðx; yÞij ¼ bijexpð�cr jjx� yjj2Þexpð�cðxi � yjÞ
2
Þ ð21Þ

with limr!þ1cr ¼ 0 and B being a positive semi-definite matrix. In

this model, a null value for bij codes for the absence of regulation

from gene j to gene i, while the vectors c‘ leverage the importance

of data x‘. Learning F requires to learn both the matrix C whose col-

umn vectors are c0; . . . ; cn�2 and the B matrix, assuming that c is

determined using entropy maximization. Lim et al. [20] introduced

a boosting algorithm to learn a linear combination of base models

Fm, each of them devoted to a random subspace and learned using

an elastic criterion, controlling the sparsity of vectors c as well as

the Jacobian sparsity. The boosted model takes the following form:

8T > 1; FðxT�1Þ ¼
XM

m¼1

amFmðxT�1Þ ð22Þ

with a a M-dimensional weight vector. At each boosting iteration,

the parameters ðCm; BmÞ of the base model Fm are estimated through

a two-stage procedure: Bm is determined using an independence

test and Cm is the minimizer of the following loss function:

LðCmÞ ¼
1

2ðn� 1Þ

Xn�1

t¼1

jjxt � Fmðxt�1Þjj
2 þ k1jjCmjj1

þ k2jjFmjj
2
Fm

: ð23Þ

As in linear models, the ‘1 constraint allows to control the sparsity

of the model, which is necessary when working in a high dimen-

sional space, with a few time-points. A model selection procedure

is then required to select the values of hyperparameters k1 and k2.

2 This model can also be presented as a Dynamic Bayesian Network discussed in

Section 6 as shown in [45].
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6. Dynamic Bayesian networks

Dynamic Bayesian Networks (DBN) are a generalization of

Bayesian networks in order to model random state variables at

time t using random state variables at time t � 1 as described in

Eq. (4). Each variable xj has a set of parent variables PaðiÞ, on which

it exclusively depends. In DBNs, cycles and feedback signals can be

represented because dependences always occur from past to pres-

ent. The network structure is unrolled through time and therefore,

it does not need to be acyclic. DBNs can be used to represent either

discrete variables or continuous ones. Gaussian DBNs correspond

to first order linear autoregressive models, for which each one-

dimensional state variable depends only on a subset of variables,

its parents, meaning that the corresponding design matrix has true

zeros. Nonlinear DBN models for continuous variables have also

been derived [45] using spline regression on the parent variables

similarly to the model of [46] previously described in Section 5.

DBNs are mostly used with discrete variables; in that case, they

are completely identified by the set of parents of each variable and

the conditional probability tables relatively to the parents of each

variable. Learning methods developed at first for DBNs were inher-

ited from those employed in Bayesian networks: namely, condi-

tional independence-based and scoring methods. Conditional

independence-based methods first estimate the dependence graph

between variables at time t � 1 and variables at time t using statis-

tical tests. Once the dependence graph is learned, tables of condi-

tional probabilities relatively to the graph structure can be

estimated through maximum likelihood methods. In scoring meth-

ods, a function that measures the fit of a model given the data is

defined. This scoring function is usually proportional to the loga-

rithm of the a posteriori probability of the parameters of the model.

Then, an exploration in the space of all possible graphs is under-

taken. The latter step is computationally very intensive and evolu-

tionary algorithms for instance have been developed to obtain local

solution candidates. Alternative approaches work on a full Bayes-

ian scheme with the use of Markov Chain Monte Carlo sampling

to obtain the posterior probability. In recent work, [50] showed

that contrary to Bayesian networks, learning a DBN that has only

inter-time slice edges is possible in polynomial time. This theoret-

ical result motivated Xuan et al. [51] to propose a global and scal-

able optimization algorithm. However, a drawback of DBNs as well

as Bayesian networks is that they require large sample sizes to be

correctly estimated, which is not always the case when it comes to

GRNs. For this reason, special network topologies were considered

in [52], that led to fast learning algorithms.

Addressing Causality in DBN follows the seminal works on cau-

sal networks built by Pearl [27,53] about Bayesian Networks. In a

Bayesian Network (BN) a directed edge between A and B may be

considered as causal if B is affected when A is removed by some

intervention. As most of the methods we have explored so far,

DBNs do not account for perturbation data, usually called interven-

tion data in the BN and DBN framework. To tackle this issue, Hill

et al. recently developed in [54] a modeling framework devoted

to DBN that takes into account interventional designs and showed

how to extract causal relationships with an illustration on signal-

ing networks.

7. Using stability to improve network inference

Estimation of a high-dimensional network structure is a notori-

ously difficult task, especially in cases where data are limited. Con-

trolling model sparsity is essential to network inference, but

stability of the network learning algorithm is also a highly desir-

able property.

The learning algorithms presented in Sections 3 and 4 for infer-

ring GRNs are fairly complex and involve a number of tuning

parameters. Hence, even if the algorithm is provided with quite

similar input data, the estimated network structure may exhibit

quite large differences. The concept of stability selection can be

used either as a model selection criterion or as a principle of model

construction and has attracted a lot of attention recently in the lit-

erature [23,25,55] both from a theoretical standpoint and when ap-

plied to GRN inference. There exist two mechanisms that can

induce changes in the training data: the first is based on subsam-

pling (bootstrapping would exhibit a similar behavior) the training

samples, while the second adds noise to the available measure-

ments and hence acts as a local perturbation of the input.

7.1. Stability as a criterion for model selection

Meinshausen and Bühlhmann [23] proposed the concept of

selection stability in the context of learning high-dimensional

structures, such as in regularized regression models or in graphical

modeling. It is based on subsampling the input to determine the

amount of regularization, so that a certain family-wise type I error

in multiple testing of whether a set of variables is part of the model

can be conservatively controlled for finite sample size.

The mechanics of the procedure in the context of our network

inference problem are as follows:

1. Subsample the input data.

2. Use a learning algorithm to estimate the network structure.

3. Repeat steps (1) and (2) S times.

4. Retain edges in the network that appear in the S replica-

tions more often than a prespecified threshold.

When the input data are in the form of time series, care must be

taken when subsampling, so that their temporal correlation

structure is preserved. For example, [20] used a block-bootstrap

procedure that preserves temporal dependencies, together with a

non-linear autoregressive model to infer gene regulatory networks.

Haury et al. [25] employed these ideas to automatically select fea-

tures (regulator candidates) in a LARS (Least Angle Regression)

model. Randomization of the algorithm is performed by randomly

modifying the gene expression matrix. A scoring function assesses

the significance of a transcription factor in the model based on the

number of times it is selected on the top features by the random-

ized LARS.

7.2. Stability by construction

As stability is a desirable property of a learning algorithm, sev-

eral authors have proposed to build stable learning algorithms by

randomizing base algorithms and aggregating their outcomes.

Randomization can operate on samples via subsampling such as

bagging (see for instance, [56]) or on variables via random

subspaces, like random forests used in a regression framework

by GENIE3 [24], the winner of DREAM 4 and 5 challenges [57].

8. Prior knowledge integration

8.1. Sources of prior knowledge

Considering the unfavorable ratio between the data size and the

number of genes, incorporation of prior knowledge into the learn-

ing process represents a promising working direction. Prior knowl-

edge used so far to improve performance of network inference

algorithms includes general properties of degree distribution in

the network, DNA binding sites and motifs, known pathways and
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epigenetic information such as histone modification profiles, DNA

methylation, interferences by micro-RNA. Several statistical stud-

ies [58] tend to show that the degree distribution of transcriptional

regulatory networks is scale-free. This assumption can be encoded

as prior knowledge during the learning process. Higher level net-

work features have also been discussed in [26]. Prior knowledge

can also be defined from additional experimental data like ChIP-

Seq experiments [59]. ChIP-Seq experiments dedicated to a tran-

scription factor (TF) allow to identify effective bindings of the given

TF on target genes and therefore give a valuable source of knowl-

edge about candidate target genes. When such experimental data

are not available, it is still possible to find a description of tran-

scription factors with their known DNA binding sites in databases

like TRANSFAC [60] devoted to eukaryote organisms. A target gene

can be associated to a transcription factor as soon as one of the

transcription factor DNA binding sites can be found in the proximal

promoter region of the target. DNA sequences can be obtained

from the Ensembl project and processed by off-the-shelf tools like

RSTAT as explained in [61]. Text-mining tools such as Pathway Stu-

dio or Ingenuity also provide an important source of knowledge

about regulations associated with the bibliographic references

these regulations have been introduced. Concerning epigenetic fea-

tures, the work of Zheng et al. [62] assumes that genes involved in

the same regulatory pathways have similar patterns of epigenetic

features. Their study reveals that histone modification profiles of

both regulators and regulees are correlated and that the corre-

sponding correlation matrix can be used as a prior regarding the

absence or presence of edges in the network. Furthermore, pertur-

bation data like systematic single gene knock-out data also serve as

prior knowledge [63] for network inference from time-series. Fi-

nally, all theses sources of information can provide prior knowl-

edge under the form of an adjacency matrix corresponding to an

initial guess of the network structure.

8.2. Methods to incorporate prior knowledge

Different methods have been developed to integrate such

knowledge. Research in this area covers frequentist regularized

regression [64,61], as well as Bayesian approaches [65,66,26,67].

Interestingly, all these works emphasize the importance of finding

a good balance on weighing the experimental data and prior

knowledge [64,61]. Within the framework of regularized regres-

sion, a recent approach described in [64] expresses prior knowl-

egde on regulations as a modifier on each ‘1 constraint applied to

a single weight. This way, the ‘1 constraint is relaxed when applied

to a putative regulation. Another closely related approach has also

been proposed in Weber et al. [61] in the context of a system of lin-

ear ordinary differential equations. Regulations that are supposed

to be known are associated with prior parameters. Parameters of

the linear ODEs are learnt by minimizing the square loss penalized

by the weighted distance between them and the prior parameters.

The weights associated with each distance are defined as score val-

ues for the prior knowledge. If a regulation is known with great

certainty, then the corresponding score is high and the prior

knowledge becomes a model requirement. The majority of other

approaches have been developed in the context of Bayesian esti-

mation [65,66,26]. For DBNs, the works described in [65], as well

as in [66,26], define a prior distribution on network structures

(matrices) G as a Gibbs distribution:

PðGjbÞ ¼
e�bEðGÞ

ZðbÞ
ð24Þ

with b a hyperparameter, EðGÞ an energy function that can take dif-

ferent forms according to the nature of the prior, and

ZðbÞ ¼
P

Ge
�bEðGÞ the normalizing term. Denoting by B the matrix

that codes for prior knowledge coming from one of the sources of

information cited previously, Werhli et al. [66] express the energy

function E as the ‘1 norm of the difference between G and B. Taking

the logarithm of the prior distribution in Eq. (24) provides an

expression similar to the one proposed by Weber et al., except that

there is a single weight b for the whole term. Models are then learnt

either by a maximum posterior approach [65] or by sampling the

corresponding posterior distribution using Markov Chain Monte

Carlo (MCMC) as in [66,26]. When several sources of information

provide different initial guesses Bi; i ¼ 1; . . . I, [66] shows that the

resulting energy function can be efficiently computed using the

modularity of (Dynamic) Bayesian Networks. Muk et al. [26] also

propose a list of more sophisticated priors for Bayesian Networks

that also work for DBNs. Another approach involves hierarchical

priors: in a Boolean Dynamic Bayesian network based on a sigmoid

function composed with a linear model, [67] uses a hierarchical

prior on the weight matrix. Specifically, at the first level, a Gaussian

prior is employed on the parameters where all the prior distribu-

tions over weights emanating from the same gene j share the same

variance r2
j . At the second level, r2

j has a Gamma distribution. The

use of this specific hierarchical prior has the following effects: genes

that receive large weights exhibit also large variance and hence are

good candidates for acting as hubs.

In [64], a method based on Bayesian regression with a modifica-

tion of Zellner’s g prior is developed for modeling the network

behavior dimension by dimension. The prior on the regression

coefficients takes the form of a multivariate Gaussian centered at

an initial guess and the empirical covariance matrix re-scaled by

a chosen factor g as covariance matrix. The choice of g depends

on the belief about the initial guess.

9. Performance assessment of the network inference

algorithms

Ideally, performance of network inference algorithms should be

directly proportional to their real impact on biological discoveries.

However it is not always possible to get an in silico prediction val-

idated by biologists, especially in case of relatively large networks.

In order to be able to compare several algorithms, a consortium of

researchers initiated yearly challenges for computational biology

tasks and especially network inference. The so-called DREAM pro-

ject (Dialogue for Reverse Engineering Assessments and Methods)

has as its main objective to enable and strengthen interactions be-

tween experiments and theory in the area of cellular network

inference and quantitative model building in systems biology.

Towards that goal, it has held annual competitions from the

year 2006 onwards. A number of these events included a gene reg-

ulatory network inference challenge: DREAM 3 [68], DREAM 4 [69]

and DREAM 5 [57].

Next, we describe some of the features of the network inference

DREAM 3 challenge. Subnetworks of the accepted E. coli and S. cere-

visiae gene regulatory networks were extracted and gene expres-

sion measurements were generated using a thermodynamic

model of coupled differential equations. A small amount of

Gaussian noise was added to the generated trajectories to simulate

measurement error. The obtained data reflected three types of

experiments: (1) time course data of a wild type strain following

an environmental perturbation (i.e., trajectories); (2) knock-down

of a gene by deletion of one copy in a diploid organism (i.e., hetero-

zygous mutants); (3) knock-out of a gene by deletion of both cop-

ies in a diploid organism (i.e., homozygous null mutants). The size

of the challenge networks is 10, 50 and 100 and for each of them

participants were asked to submit reconstructions for five variants,

Ecoli1, Ecoli2, Yeast1, Yeast2, Yeast3, whose topology varied in

terms of overall density and number of regulators for each gene.
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The objective was to infer the underlying directed network, but

not the sign of the edge (up- or down-regulated). Performance

metrics included true and false positive and negative rates, sum-

marized in Receiver Operator Curves and Precision-Recall ones.

Several teams submitted predictions for the 10, 50 and 100-size

network challenges, and an overall assessment indicates that no

single algorithm dominated all the challenges [68]. The submitted

algorithms covered a wide spectrum of techniques, ranging from

clustering ones, to DBNs, to employing ordinary differential equa-

tion modeling. The winning algorithms employed both time course

data and perturbation data. However, in our recent work [20]

employing nonlinear operator-valued kernel autoregressive mod-

els, we managed to match the performance of the best algorithms

relying only on time course data. The take-home message is that

sophisticated algorithms properly tuned can perform exceptionally

well, even when relying only on time course data, which, as

pointed out in the introductory section, are more readily available

than data from exhaustive knock-out/down experiments.

The DREAM 4 challenge also focused on network inference, but

for protein signaling networks from phosphoproteomics data.

Although this learning task is similar in nature to that for GRNs

and the competing teams employed similar algorithms as those

discussed above, the main focus of the challenge was on how well

predicted measurements from reconstructed networks matched

the actual phosphoproteomics ones.

The DREAM 5 challenge revisited the problem of learning a GRN

from gene expression data. The networks under consideration

were from a prokaryotic model organism (E. coli) as in the DREAM 3

challenge, a eukaryotic model organism (S. cerevisiae), a human

pathogen (S. aureus) and an in silicobenchmark. Similar type of data

as in the DREAM 3 challenge were furnished to the competing

teams that in turn employed a wide range of learning algorithms,

like in the DREAM 3 challenge, including DBNs, sparse regression

models, random forests based algorithms, as well as clustering

ones.

The take-home message from this challenge is that no algo-

rithm performed consistently across all networks, probably due

to the differing features of their underlying topologies. It is inter-

esting to note though that a consensus type strategy discussed in

[57], where a network is built by integrating the inferred networks

from different algorithms, clearly outperformed stand alone meth-

ods. This is akin to employing stability selection across a large

model space, thus confirming the importance of this principle for

GRN reconstruction.

10. Discussion

Learning methods devoted to GRN inference have now reached

a certain degree of maturity, since most of them integrate some of

the key ingredients of statistical learning, such as sparsity and sta-

bility. For a biomedical researcher contemplating which model to

use for this learning task, our broad recommendation is to start

with linear or kernel based vector autoregressive models, depend-

ing on whether or not the time course data exhibit strong nonlin-

ear dynamics. The reason is that these two model classes share a

number of similarities both at the conceptual, as well as the

technical level (both boil down to fitting penalized regressions).

Further, fast computational algorithms have been developed to

train them and they can produce sparse and stable networks.

Hence, they can be used effectively to learn the structure of GRNs.

On the other hand, although conceptually powerful, DBNs are

computationally expensive and therefore do not scale well for

learning large scale GRNs. However, one can adopt a hybrid

strategy, by first using (non)-linear autoregressive models to

obtain an estimate of the GRN and then use it as a prior for a

DBN model to further explore the network structure.

However, this first generation of tools needs to face new chal-

lenges. Let us focus on the following important issues that are rou-

tinely encountered by biologists: multiple data integration,

knowledge integration, scaling to large networks and experimental

design. Integration of multiple sources of data together with multi-

ple methods has been recently addressed in [70] by formulating

the learning problem as a multi-objective optimization task within

an ensemble method framework. Combining multiple sources of

data with prior knowledge is however still a challenge: while ker-

nels have already shown to provide a powerful framework to data

integration [71], other approaches combining logic-based ap-

proaches with probabilistic graphical models [13] may offer an

interesting interface between biologists and modelers. In general,

scaling algorithms to higher dimensional spaces often assumes a

modular structure in the data. Interestingly, this fits well with

observations about the apparent design features of the GRN, for in-

stance, in development [72]. Principled modular learning ap-

proaches [73] based on mixture modeling, although not very well

developed to date, may hold the key to large scale network infer-

ence. Finally, present practice focuses on network reconstruction

after the data have been collected. Experimental design strategies

that inform the biologists which are the most informative pertur-

bation experiments for network identification purposes [74] will

play a key role to improve GRN reconstruction.
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