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values of damping! Therefore, an apparent destabilization paradox

seemed to be found even in the non linear field, this requesting

further investigations. The main goal of this paper is therefore to

highlight the effects of the damping on the double zero bifurca

tion, both on the linear stability and on the postcritical behavior,

displaying the mechanism which leads from a non catastrophic to

a catastrophic bifurcation.

Several novelties are introduced here, with respect to [39],

namely: (1) the equations of motion are derived, and their

operator form introduced for algorithmic purposes; (2) the eva

luation of the linear stability diagram is analytically justified;

(3) the behavior of the eigenvalues close to the double zero

bifurcation point is illustrated; (4) the perturbation algorithm

employed for post critical analysis is detailed; (5) new results,

relevant to the linear stability diagram, are presented, aimed to

investigate the role of the damping coefficients; (6) new results,

concerning the postcritical scenario, are displayed, with the

purpose to illustrate the transition from two different types of

bifurcations.

The paper is thus organized. In Section 2 the equations of

motions, derived in the Appendix A, are recast in operator form, to

include boundary conditions. In Section 3 the eigenvalue problem

is addressed, for the linearized system and its adjoint. Here, the

linear stability problem is analyzed in the load parameter space

and the critical scenario is depicted for various combinations of

damping coefficients. In Section 4 a post critical analysis is carried

out around a double zero bifurcation point. An adapted version of

the multiple scale method (see [40]) is used, which is based on a

fractional series expansion of the perturbation parameter, simi

larly to the analysis carried out in [41 43]. The bifurcation

equations are derived and numerically studied to built up equili

brium paths and bifurcation diagrams. In Section 5 some conclu

sions are drawn. Two Appendices close the paper.

2. Model

The order three equations of motion of a non linear cantilever

beam, externally damped and made of a visco elastic material,

simultaneously loaded at the tip by a gravitational and a follower

force, can be derived via the extended Hamilton's principle (see

Appendix A). Internal constraints expressing unshearability and

inextensibility of the beam, call for introducing a Lagrange multi

plier, which can be eliminated by integration, thus leading to an

integro differential problem with relevant geometric (essential)

and mechanical (natural) boundary conditions. It is convenient, for

algorithmic purposes, to incorporate these latter conditions in the

field equations, thus recasting the problem in an operator form,

which is amenable to perturbation treatment (see also [41]).

When suitable non dimensional quantities are introduced, the

equations of motion assume the form

M €u þ C _u þ Ku¼ n ðu; _uÞ3
� �
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together with the clamp conditions uA¼0, u′A ¼ 0. Here, uðs; tÞ is
the transverse displacement at the abscissa s and time t, μ is the

follower force, ν is the gravitational force, α is the internal

damping, β is the external damping, A and B denote the ends of

the beam, a dash s differentiation and a dot t differentiation.

Moreover, M, C and K are the mass, damping and stiffness

operators, respectively, acting on the vector u∈ ~H, with ~H≔H⊕R
2,

which collects the field displacement u and the displacement and

its spatial derivative evaluated at the end B; nððu; _uÞ3Þ is the vector

of non linearities (which are cubic homogeneous forms in their

arguments and their spatial derivatives and integrals), both in the

domain and at the boundary B; gu is the vector of the constrained

displacements at the end A; moreover, Dn
≔∂n=∂sn;Dn

B≔∂
n=∂snjB.

Eqs. (1) are then rewritten in the following state form:

B _U ¼AUþ N ðU3Þ
GU¼ 0 ð3Þ

where

U≔
u

v
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in which v≔ _u is the velocity field, and U∈ ~H
2
is the state vector.

The equations obtained in this section have very similar

structure to those showed in [14,44 47]. In all aforementioned

papers, controlling system has an independent kinematics, char

acterized by a field which is parallel to the mechanical transversal

displacements, while being an electrical quantity. It is authors'

opinion that the study of buckling of aforementioned piezo electro

mechanical structures is feasible with the method presented here.

3. Eigenvalue analysis

Bifurcation analysis calls for evaluation of the (right) eigenva

lues and eigenvectors of the equations of motion (3). Since the

problem is not self adjoint, also the (left) eigenvectors of the

adjoint problem must be determined. The procedure, detailed in

[41], is here briefly resumed.

3.1. Right and left eigenvalue problems

The equations of motion (3), when linearized, admit the

solution U¼Φeλt which leads to the differential eigenvalue pro

blem

ðA λBÞΦ¼ 0

GΦ¼ 0 ð5Þ

or, equivalently

ϕ̂ ¼ λϕ

Kϕþ Cϕ̂ þ λMϕ̂ ¼ 0

ϕA ¼ 0; ϕ′A ¼ 0 ð6Þ



having setΦ≔fϕ; ϕ̂gT ∈ ~H
2
, ϕ≔fϕ;ϕB;ϕ′BgT∈ ~H and ϕ̂≔fϕ̂; ϕ̂B; ϕ̂′BgT∈ ~H.

By introducing the scalar products in ~H and ~H
2
, respectively

ðϕ;ψÞ≔
Z 1

0
ϕ1ðsÞψ1ðsÞ dsþ ∑

j 2;3

ϕjψ j; ϕ;ψ∈ ~H

〈Φ;Ψ〉≔
Z 1

0
∑

i 1;4

Φ iðsÞΨiðsÞ dsþ ∑
j 2;3;5;6

Φ jΨ j; Φ;Ψ∈ ~H
2 ð7Þ

and using the bilinear identity

〈Ψ; ðA λBÞΦ〉¼ 〈ðAn
λBnÞΨ;Φ〉 ð8Þ

the adjoint eigenvalue problem follows:

ðAn
λBnÞΨ¼ 0

Gn
Ψ¼ 0 ð9Þ

also written as

Kn
ψ þ λψ̂ ¼ 0

ψ̂ Cn
ψ λMn

ψ ¼ 0

ψA ¼ 0; ψ ′A ¼ 0 ð10Þ
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and Ψ≔fψ̂ ;ψgT . It should be noticed that while M and C are self

adjoint, K is not self adjoint, because of the presence of the follower

force at the boundary.

3.2. Generalized eigenvectors associated with a double zero

eigenvalue

The case in which λ¼ 0 is a double eigenvalue for Eq. (5) (and

(9)) is of particular interest in bifurcation analysis (Takens Bogda

nov bifurcation). In this occurrence, there exist only one proper

right eigenvector Φ1 ¼ fϕ1;0gT and only one proper left eigenvec

tor Ψ2 ¼ fCn
ψ2;ψ2gT; moreover, they are mutually orthogonal, i.e.

〈Ψ2;Φ1〉¼ ðCn
ψ2;ϕ1Þ ¼ 0. To complete the right basis, a generalized

eigenvector Φ2 ¼ fϕ2; ϕ̂2gT is needed, which is solution to

AΦ2 ¼Φ1

GΦ2 ¼ 0 ð12Þ

or, equivalently

ϕ̂2 ¼ ϕ1

Kϕ2 Cϕ̂2 ¼ 0

ϕ2A ¼ 0; ϕ′2A ¼ 0 ð13Þ

The generalized eigenvector Φ2 is not unique, since A is singular.

To select it univocally, a normalization condition must be enforced,

e.g. ϕ2B ¼ 0; once Φ2 has been normalized, also Ψ2 is normalized,

by requiring 〈Ψ2;Φ2〉¼ 1.

3.3. Linear stability analysis

Stability of the trivial, rectilinear configuration of the beam is

governed by the linear eigenvalue problem (1). In extended form,

it reads

ð1þ αλÞϕIV þ 2ðμþ νÞϕ″þ ðλ2 þ βλÞϕ¼ 0

ϕA ¼ 0; ϕ′A ¼ 0

ð1þ αλÞϕ‴B 2νϕ′B ¼ 0; ð1þ αλÞϕ″B ¼ 0 ð14Þ

The field equation (141) and the boundary conditions at A lead to

the solution

ϕðsÞ ¼ c1½cosðpsÞ coshðqsÞ� þ c2
1

p
sinðpsÞ 1

q
sinhðqsÞ

� 


ð15Þ

where

q2 ≔
ðμþ νÞ2 ð1þ αλÞðβλþ λ2Þ

q

ðμþ νÞ
ð1þ αλÞ

p2 ≔
ðμþ νÞ2 ð1þ αλÞðβλþ λ2Þ

q

þ ðμþ νÞ
ð1þ αλÞ ð16Þ

and c≔ðc1; c2ÞT are arbitrary constants. It should be noted that

factors 1=p;1=q have been introduced in Eq. (15), in order it holds

even when p-0 or q-0. By enforcing boundary conditions at B,

two algebraic equations follow:

Sλc¼ 0 ð17Þ

where

Sλ ≔

ðp3 þ p3αλÞ sinðpÞ ðp2 þ p2αλÞ cosðpÞ
þ2pν sinðpÞ 2ν cosðpÞ

þðq3 þ q3αλÞ sinhðpÞ þðq2 þ q2αλÞ coshðqÞ
þ2qν sinhðpÞ þ2ν coshðqÞ

ð1þ αλÞðp2 cosðpÞÞ ð1þ αλÞðp sinðpÞÞ
ð1þ αλÞðq2 coshðqÞÞ ð1þ αλÞðq sinhðqÞÞ
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ð18Þ

is the “dynamic stiffness matrix” of the system, depending on

the eigenvalue λ. This matrix, however, also depends on the

control parameters, ðμ; νÞ and the auxiliary parameters ðα; βÞ, i.e.
Sλ ¼ Sλðμ; ν; α; βÞ. The characteristic equation detSλðμ; ν; α; βÞ ¼ 0

supplies the eigenvalues λ as a function of ðμ; ν; α; βÞ. To restate

the problem in real variables, the eigenvalues are written as

λ¼ ξþ iω, with ξ;ω∈R, and then the characteristic equation is re

written in the form

f ðξ;ω; μ; ν; α; βÞ þ igðξ;ω; μ; ν; α; βÞ ¼ 0 ð19Þ

with f ; g∈R. For a fixed set of parameter ðμ; ν; α; βÞT, the system of

two real equations f ¼ 0; g¼ 0 furnishes the unknowns ξ;ω. From a

geometrical point of view, for given values of the parameters

ðμ; ν; α; βÞ, each of these equations describes a curve in the

(ξ;ω) plane, which intersect each other in an infinite number of

points, representing the eigenvalues of the systems.

In order to find the divergence boundary in the control para

meter space, the loci D of the roots ξ¼ 0;ω¼ 0 must be found.

Since gð0;0; μ; ν; α; βÞ is found to vanish identically for any ðμ; ν; α; βÞ,
and f ð0;0; μ; ν; α; βÞ is found to be independent of the damping

coefficients α; β, Eq. (19) assumes the following simple form:

ðμþ νÞ3=2 μþ ν cos 2ðμþ νÞ
p

� �h i

¼ 0 ð20Þ

This equation implicitly defines a multi branch curve D on the

(ν; μ) plane.

Hopf bifurcation occurs at the manifold H of the parameter

plane on which ξ¼ 0;ω≠0, defined by

f ð0;ω; μ; ν; α; βÞ ¼ 0

gð0;ω; μ; ν;α; βÞ ¼ 0

(

ð21Þ

These equations, for a given pair of damping coefficients ðα; βÞ,
differently from zero, implicitly define a multi branch curve H in

the ðν; μÞ plane, parametrized by the ω parameter. No closed

form solutions, but only numerical, can be pursued for Eqs. (21)

(see [48]).



When the damping coefficients ðα; βÞ are equated to zero in

Eq. (14), a circulatory system results, for which all the eigenvalues

lie on the imaginary axis in the pre critical phase. In this case,

a Hopf bifurcation occurs at the manifoldH of the parameter plane

on which two simple eigenvalues merge into a double eigenvalue,

that cannot more be defined by system (21), since the g function

vanishes, namely gð0;ω; μ; ν;0;0Þ ¼ 0. Hopf bifurcation manifold,

when this coalescence mechanism takes place, is then defined by

f ð0;ω; μ; ν;0;0Þ ¼ 0

∂f
∂ω

ð0;ω; μ; ν;0;0Þ ¼ 0

8

<

:

ð22Þ

Again, no closed form solutions, but only numerical, can be

pursued for Eqs. (22).

3.4. Parametric analysis

A large view of the linear stability diagram, in the (ν; μ) plane,

has been displayed in [39]. Here, attention is focused, in Fig. 1, on a

small region of the same diagram, in which the analysis is carried

out. The gray zone denotes stable systems and the white zone

denotes unstable systems.

Eq. (20) (divergence locus) defines a family of curves (inde

pendent of damping) labeled with D. Eq. (20) also defines an

additional straight line N , of equation μ¼ −ν, but, as it will be

shown ahead, this is not a bifurcation locus, since the transvers

ality condition of the eigenvalues is not satisfied on it. Eqs. (22)

(Hopf locus) define a second family of curves labeled with Hu.

LociD andH represent codimension 1 bifurcations. The divergence

locus D intersects the ν axis at points E1; E2;…, each corresponding

to an Eulerian critical load, νE1 ¼ π2=8; νE2 ¼ 9π2=8;…. The Hopf

locus Hu intersects the μ axis at the Beck's points. Only the lower

intersection is depicted in Fig. 1, Bu
≔ð0;10:02Þ. The Hopf curves

die at intersections with the divergence curves, where they merge

with the same tangent; in Fig. 1 only the first intersection between

the Hopf and divergence family of curves is shown, so

codimension 2 bifurcation occurs at point DZu≔ð5:51;3:02Þ.
The straight line N represents a one parameter family of

beams unstressed in the undeformed configuration, since the

two forces balance themselves when aligned. However, when

the beam moves to an adjacent configuration, and due to the

different behavior of the two forces, a (non dimensional) trans

versal force proportional to the tip rotation rises, namely

VB≔−μu′B. Since uB and u′B are concordant in sign in the resulting

static deflection, (a) when μ40 (compressive follower force) VB is

opposite to uB, and therefore is stabilizing; (b) when μo0 (tensile

follower force), the force is concordant with uB, and therefore is

(potentially) destabilizing. However, for values of jμjo1 (corre

sponding to the OC segment in the figure), VB is smaller than the

elastic forces necessary to keep the beam in the deformed

configuration, so that the trivial equilibrium is still stable; the

opposite occurs for jμj41 (below point C), so that the trivial

Fig. 1. Linear stability diagram for the undamped system (α; β 0; u superscript)

and for two damped systems (α 0:01; β 0:1, d1 superscript; α 0:01; β 10, d2

superscript); D: divergence locus, H: Hopf locus, N : zero-stress locus; E: Eulerian

bifurcations; B: Beck's bifurcations; DZ: double-zero bifurcations.

Fig. 2. Linear stability diagrams and eigenvalue sketches: (a) undamped system

(α; β 0, u superscript); (b) damped system (α 0:01, β 0:1, d1 superscript).



equilibrium is unstable. Therefore C : ¼ ð1;−1Þ is a critical point for

this family of systems.

Moreover, in Fig. 1, also the linear stability diagram for two

differently damped beams, is depicted and the stable zones of the

ðν; μÞ plane, in both damping cases, are again denoted in gray in

the figure. Eqs. (21) (Hopf locus) define a family of curves labeled

with H (depending on damping). Of this family, the curves

relevant to the slightly damped sample system (α¼ 0:01; β¼ 0:1)

have been denoted by H
d1, and curves relevant to a strongly

external damped system, (α¼ 0:01; β¼ 10) by Hd2; the Hu curve,

relevant to the undamped system, is also reported for comparison.

The Beck's points for the two damped systems are Bd1≔ð0;6:46Þ
and Bd2

≔ð0;12:60Þ, respectively, one lower and the other higher

with respect to the undamped Beck's point. The Hopf curves die at

intersections with the divergence curves, according to the well

known mechanism of the double zero (or Takens Bogdanov)

bifurcation (see for example [49]). Such codimension 2 bifurcation

occurs at points DZd1≔ð2:88;2:81Þ, DZd2≔ð5:30;3:07Þ, and in both

cases, the two loci cross each other transversally.

To investigate the behavior of the eigenvalues in the transition

across the boundaries, the stability diagram of Fig. 1 is replicated

in Fig. 2, together with the sketches of the eigenvalues relevant to

each region. Fig. 2a,b describes the scenario for the undamped

(u superscript) and the slightly damped (d1 superscript) cases,

respectively, and give a sketch of the eigenvalues in the different

zones. The undamped case is analyzed first (Fig. 2a). Here,

the system is (not asymptotically) stable if all its eigenvalues lie

on the imaginary axis, as it occurs in the gray zone. The transition

through the divergence curve, moving from the left, occurs as

follows: a couple of imaginary eigenvalues first collides at zero (on

D) and then split into a couple of opposite in sign real eigenvalues.

The transition through the Hopf curve happens as follows: two

couples of purely imaginary eigenvalues moves towards each

other, coalesce in double eigenvalues (on Hu), and then splits

again into two couples of complex and conjugate eigenvalues,

having opposite real parts. The straight line N , instead, does not

affect stability. Indeed, by crossing them in the stable zone,

a couple of purely imaginary eigenvalues collides at the origin

(on N ), then splits again into two purely imaginary eigenvalues.

Therefore, no zero eigenvalue passes through the imaginary axis,

and therefore no bifurcations occurs. Similarly, by crossing the line

in the unstable zone, a couple of opposite in sign real eigenvalues

collides at zero (on N ), then it splits again into opposite in sign

real eigenvalues. At the critical point C, a more degenerate

condition occurs, where four eigenvalues coalesce at zero. The

eigenvalues of the unstable region, further to the right, are also

sketched for low and high values of μ.

When the system is damped (Fig. 2b), (asymptotic) stability

requires that all the eigenvalues have negative real parts, while the

system is unstable if at least one eigenvalue has positive real part.

Loss of stability through divergence and Hopf loci occurs via the

classical mechanisms, namely: (a) two stable complex conjugate

eigenvalues first collide on the real axis, then, one of them crosses

the imaginary axis at zero (on D); (b) a couple of stable complex

conjugate eigenvalues simultaneously crosses the imaginary axis

(on Hd1). Again, the N line does not influence stability, since the

mechanism is identical to that of the undamped case. At the

critical point C, three eigenvalues coalesce at zero. Eigenvalues in

the rightmost region are also indicated.

A parametric study on the influence of both internal (α) and

external (β) damping coefficients is then carried out. First, the

effect of a single parameter is studied in Fig. 3a,b. In Fig. 3a

the α coefficient is zeroed, while the β coefficient is varied in a

wide range. It is found that, for any value of β, all the Hopf loci

Fig. 3. Linear stability diagrams for: (a) purely externally damped systems; (b) purely internally damped systems; (c), (d) externally and internally damped systems.



originate from the same double zero point of the undamped system

DZβ≡DZ
u ¼ ð5:51;3:02Þ. However, curves modify their shape; in

particular, the attack angle with the divergence curve increases

from zero for increasing β. As a consequence, the Beck's load

also increases with β (e.g. μB ¼ 10:05;12:13;18:60 when

β¼ 0:01;10;100, respectively). In Fig. 3b β is zeroed, while α is

varied. Again, the double zero point DZα≔ð2:46;2:46Þ is found to

be independent of the damping value, but it does not coincide with

that of the undamped system. Moreover, when α-0, the angle of

attack to the divergence curve tends to π=2, instead of zero. Due to

the deformation of H, the Beck's load highly increases with α (e.g.

μB ¼ 5:48;6:82;10:75 when α¼ 0:01;0:1;0:2, respectively).

To analyze the combined effect of the two parameters, one is

kept constant and non zero, and the other is varied (Fig. 3c,d). For

fixed α¼ 0:01 and increasing β, the scenario of Fig. 3c is found.

The Hopf locus moves to the right, and the double zero point

tends to DZβ . Consequently, the Beck's load increases with β (e.g.

μB ¼ 5:61;6:46;8:90;12:60, when β¼ 0:01;0:1;1;10, respectively).

For fixed β¼ 0:1 and increasing α (Fig. 3d), the Hopf locus moves to

the right and rotates, intersecting the divergence locus at double

zero points tending to DZα. Accordingly, the Beck's load increases

with α (e.g. μB ¼ 6:46;7:04;10:99, when α¼ 0:01;0:1;0:2).

4. Bifurcation analysis around a double-zero point

4.1. Bifurcation equation

A perturbation parameter 0≤ε51, which is a measure of the

response amplitude, is introduced via the rescaling

Uðs; tÞ ¼ ε1=2Ûðs; tÞ, where Oð∥Ûðs; tÞ∥Þ ¼ 1. Increments εðμ̂; ν̂Þ of the
bifurcation parameters ðμ; νÞ with respect to their bifurcation

values ðμ0; ν0Þ are introduced, i.e. μ¼ μ0 þ εμ̂, ν¼ ν0 þ εν̂, where

Oðμ̂Þ ¼Oðν̂Þ ¼ 1. Consequently

K¼K0 þ εðμ̂Kμ þ ν̂KνÞ þ Oðε2IÞ ð23Þ

where Kμ, Kν are the derivatives of K with respect to the

parameters. Hats will be omitted ahead for notational conveni

ence. Several independent time scales are defined, namely

tk≔ε
k=2t, ðk¼ 0;1;…Þ, so that d=dt ¼ d0 þ ε1=2d1 þ εd2 þ . The

unknowns are expanded in series of fractional powers of ε as

U¼ ∑
k 0;1;…

εk=2
uk

vk

( )

ð24Þ

After substitution of the previous expansions in Eqs. (3) a chain of

linear perturbation equations and relevant boundary conditions

follow (hats omitted):

ε0 :

d0u0 v0 ¼ 0

Md0v0 þ K0u0 þ Cv0 ¼ 0

u0A ¼ 0; u′0A ¼ 0

8

>

<

>

:

ε1=2 :

d0u1 v1 ¼ d1u0

Md0v1 þ K0u1 þ Cv1 ¼ Md1v0

u1A ¼ 0; u′1A ¼ 0

8

>

<

>

:

ε :

d0u2 v2 ¼ d2u0 d1u1

Md0v2 þ K0u2 þ Cv2 ¼ Md2v0

Md1v1 ðμKμ þ νKνÞu0 þ nðU3
0Þ

u2A ¼ 0; u′2A ¼ 0

8

>

>

>

>

<

>

>

>

>

:

ε3=2 :

d0u3 v3 ¼ d3u0 d2u1 d1u2

Md0v3 þ K0u3 þ Cv3 ¼ Md3v0

Md2v1 Md1v2 ðμKμ þ νKνÞu1 þ 3nðU2
0U1Þ

u3A ¼ 0; u′3A ¼ 0

8

>

>

>

>

<

>

>

>

>

:

ð25Þ

The first perturbation equation (251) admits the (generating) not

diverging solution

U0≡
u0

v0

( )

¼ aðt1; t2;…Þ
ϕ1

0


 �

ð26Þ

where Φ1≔fϕ1;0gT is an eigenvector for Eq. (6), and aðt0; t1;…Þ is a
real unknown amplitude, which is modulated on the slower time

scales. With Eqs. (26), the problem (252) reads

ε1=2 :

d0u1 v1 ¼ d1aϕ1

Md0v1 þ K0u1 þ Cv1 ¼ 0

u1A ¼ 0; u′1A ¼ 0

8

>

<

>

:

ð27Þ

Since the known term belongs to the range of the operator (recall

Eqs. (13) and (27) admits the steady solution

U1≡
u1

v1

( )

¼ d1aðt1; t2;…Þ
ϕ2

ϕ1

( )

ð28Þ

in which Φ2≔fϕ2; ϕ̂2gT ¼ fϕ2;ϕ1gT is the order 2 generalized

eigenvector. With Eqs. (26) and (28), the problem (253) reads

ε :

d0u2 v2 ¼ d2aϕ1 d2
1aϕ2

Md0v2 þ K0u2 þ Cv2 ¼ d2
1aMϕ1 aðμKμ þ νKνÞϕ1 þ a3nðΦ3

1Þ
u2A ¼ 0; u′2A ¼ 0

8

>

>

<

>

>

:

ð29Þ

In order it can be solved, the known term F2≔f−d2aϕ1−d
2
1aϕ2;

−d2
1aMϕ1 þ a3nðΦ3

1Þ−aðμKμ þ νKνÞϕ1gT , must belong to the range of

the operator; this solvability condition requires that

〈Ψ; F2〉¼ 0 ∀Ψ : ðAn
λBnÞΨ¼ 0 ð30Þ

and it furnishes

d2
1a¼ ðc1μμþ c1ννÞaþ c3a

3 ð31Þ

where c1μ, c1ν, c3 are real coefficients given in the Appendix B. By

using Eq. (31) and solving Eq. (29), it follows:

U2≡
u2

v2

( )

¼ d2a
ϕ2

ϕ1

( )

þ μa
zμ

ẑμ

( )

þ νa
zν

ẑν

( )

þ a3
za

ẑa

( )

ð32Þ

where zμ, ẑμ, zν, ẑν, za, ẑa are solutions to linear problems (see

Appendix B). To make the solution to the singular problem (29)

unique, the normalization condition u2B ¼ 0 was enforced.

By using the results so far achieved, Eqs. (254) read

ε3=2 :

d0u3 v3 ¼ d3aϕ1 d1d2aϕ2 d1u2

Md0v3 þ K0u3 þ Cv3 ¼ d1d2aMϕ1

Md1v2 d1aðμKμ þ νKνÞϕ2 þ 3a2d1anðΦ2
1Φ2Þ

u3A ¼ 0; u′3A ¼ 0

8

>

>

>

>

<

>

>

>

>

:

ð33Þ

Its solvability condition entails

2d1d2a¼ ðb1μμþ b1ννÞd1aþ b3a
2d1a ð34Þ

where b1μ, b1ν, b3 are real coefficients (see Appendix B).

Finally, by coming back to the original time and quantities,

Eqs. (31) and (34) are recombined, furnishing

€a ½b1μðμ μ0Þ þ b1νðν ν0Þ� _a b3a
2 _a

½c1μðμ μ0Þ þ c1νðν ν0Þ�a c3a
3 ¼ 0 ð35Þ

which is the well known bifurcation equation for double zero

bifurcation, in the Bogdanov normal form. In it, all the c's and b's

coefficients depend on damping.

4.2. Bifurcation scenarios

The bifurcation equation (35) admits two equilibrium branches

a¼ as, _as ¼ €as ¼ 0;∀t: (a) the trivial aT ¼ 0, which exists in the



whole (μ; ν) plane and (b) the non trivial

aNT ¼ 7
c1μðμ μ0Þ c1νðν ν0Þ

c3

� 
1=2

ð36Þ

which exists in a half plane of the parameter space. Stability of

both branches is governed by the variational equation

δ €a þ I1ðμ; ν; asÞδ _a þ I2ðμ; ν; asÞδa¼ 0 ð37Þ

where

I1ðμ; ν; asÞ≔ ½b1μðμ μ0Þ þ b1νðν ν0Þ þ b3a
2
s �

I2ðμ; ν; asÞ≔ ½c1μðμ μ0Þ þ c1νðν ν0Þ þ 3c3a
2
s � ð38Þ

The trivial solution as ¼ aT ¼ 0 is considered first. It loses stability

through divergence at the locus D≔fðμ; νÞjI2ðμ; ν;0Þ ¼ 0g, and

through Hopf bifurcation at the locus HT≔fðμ; νÞjI1ðμ; ν;0Þ ¼ 0;

I2ðμ; ν;0Þ40g, which are found to be a straight line and a half

straight line, respectively, tangent to the exact D and H loci at the

double zero point DZ.

When the non trivial solution as ¼ aNT ¼ 0 is considered, and

use is made of Eq. (36), the divergence locus I2ðμ; ν; aNT Þ≡
−2I2ðμ; ν;0Þ≡−2c3a2NT ¼ 0 turns out to be coincident with the line

D previously defined, this entailing that the non trivial solution

does not undergo any other divergence, in addition to that one

from which it arises. Moreover, since the stable zone lies in the

half plane I2ðμ; ν;0Þ40, the static bifurcation is supercritical if

c3o0, and subcritical if c340. In contrast, the non trivial solution

experiences a Hopf bifurcation at the half straight line HNT≔

fðμ; νÞjI1ðμ; ν; aNT Þ ¼ 0; I2ðμ; ν; aNT Þ40g. The inequality entails the

existence condition c3o0; if this is the case, HT and HNT lie in

the half planes I2ðμ; ν;0Þ40 and I2ðμ; ν;0Þo0, respectively, which

are separated by the line D.

4.3. Parametric analysis

The previous qualitative analysis highlights the strong depen

dence of the bifurcation scenario on the sign of the coefficient c3.

In order to investigate the influence of damping, this coefficient

has been evaluated for different values of α and β, and results

displayed in Table 1. It is seen that, c3o0 when β is fixed at a small

value (weakly externally damped systems) and α is varied on a

range; in contrast, the coefficient changes sign when β is suffi

ciently large (strongly externally damped systems). A similar

analysis carried out on the coefficient b3 shows that this coefficient

is always negative, this entailing that the Hopf bifurcation is

always supercritical. Moreover, Fig. 4 shows a qualitative repre

sentation of the bifurcation chart for varying β coefficient causing

a change in the sign of c3 coefficient. It should be highlighted the

fact that homoclinic and heteroclinic bifurcations occur, as it will

be shown ahead, and that in the transition, Divergence, non trivial

Hopf and homoclinic Hopf tend to overlap themselves, this giving

rise to the birth of heteroclinic Hopf and to change radically the

region of existence of non trivial equilibrium (denoted in gray in

the figure).

Guided by these results, four sample system have been con

sidered, in which the internal damping parameter has been fixed,

while the external one has been varied in a wide range. As it will

shown ahead the first two systems exhibit supercritical static

bifurcation, and in particular, in the second one the parameter set

is very close to the change in sign of the c3 coefficient (but it is

still c3o0); moreover, the third and the fourth systems exhibit

subcritical static bifurcation and again the parameter set of the

third system is close to the transition zone for the sign of the c3
coefficient (but, in this case c340). Finally, the first and the

fourth systems coincide with those presented in [39]. The para

meter sets are

(S1) for which α¼ 0:01, β¼ 0:1, entailing μ0 ¼ 2:806, ν0 ¼ 2:884

and c1μ ¼ −10:641, c1ν ¼ 6:907, c3 ¼ −29:707, b1μ ¼ 0:246,

b1ν ¼ 0:127, b3 ¼ −6:077.

(S2) for which α¼ 0:01, β¼ 0:25, entailing μ0 ¼ 3:022, ν0 ¼ 3:302

and c1μ ¼ −14:241, c1ν ¼ 5:605, c3 ¼ −3:221, b1μ ¼ 0:445,

b1ν ¼ 0:251, b3 ¼ −15:154.

(S3) for which α¼ 0:01, β¼ 0:3, entailing μ0 ¼ 3:063, ν0 ¼ 3:416

and c1μ ¼ −15:449, c1ν ¼ 5:189, c3 ¼ 8:544, b1μ ¼ 0:526,

b1ν ¼ 0:301, b3 ¼ −19:451.

(S4) for which α¼ 0:01, β¼ 10, entailing μ0 ¼ 3:076, ν0 ¼ 5:302

and c1μ ¼ −22:324, c1ν ¼ −5:156, c3 ¼ 574:504, b1μ ¼ 4:522,

b1ν ¼ 6:014, b3 ¼ −1153:303.

Results relevant to S1 are reported in Fig. 5a, displaying the

bifurcation chart, and Fig. 6, illustrating bifurcation diagrams,

these latter having been obtained by a numerical continuation

procedure. Fig. 5a shows also the tangency between asymptotic

and exact bifurcation loci (gray curves); here, in each significant

region, the two dimensional phase plane ða; _aÞ for the bifurcation

equation (35) is sketched. In region 1 the trivial solution is stable;

due to the supercritical static bifurcation, it loses stability in region

2, where two (buckled) stable non trivial equilibria take place; due

to supercritical Hopf bifurcation, it loses stability in region 5,

where a (large) stable limit cycle exists, causing periodic motion of

the beam. In region 4 two equilibria appear, but, in spite of the

supercritical character of the static bifurcation, they are unstable,

as an effect of the interaction with the dynamic bifurcation;

in region 3 two small unstable limit cycles arise (denoting periodic

motions around the buckled configurations), which render stable

the non trivial equilibria. Then, at the straight line hm, a homo

clinic bifurcation occurs (caused by the contact of the small cycles

with the trivial equilibrium and, simultaneously, with the large

cycles); after that, all cycles disappear, so that only stable equili

bria survive in region 2. Fig. 6 shows the bifurcation diagrams

relevant to the paths I to IV marked in Fig. 5a; labels D, H, hm
denote divergence, Hopf and homoclinic bifurcation, respectively.

Path I shows the static bifurcation, from which stable non trivial

Table 1

Coefficient c3 in the bifurcation equation vs. damping coefficients α and β.

β 0:1

α 0:01 α 0:05 α 0:1 α 0:8 α 1:5

−29.707 −35.669 −30.692 −2.348 −0.703

α 0:01

β 0:25 β 0:3 β 0:5 β 1 β 10

−3.221 8.544 62.603 235.510 574.504

Fig. 4. Qualitative representation of the bifurcation chart in the parameter plane

and of loci transition in varying external damping for: (a) c3o0; (b) c340; hm

homoclinic bifurcation locus; ht heteroclinic bifurcation; D divergence locus; HNT

non-trivial Hopf bifurcation locus; NTEQ region of existence of non-trivial

equilibrium.



equilibria arise. Path II displays, in sequence, (a) the Hopf bifurca

tion from the trivial solution, leading to the appearance of large

cycles, whose amplitude range is shadow in the figure; (b) the

static bifurcation, leading to initially unstable non trivial equili

bria; (c) the Hopf bifurcation from the non trivial equilibria,

leading to the appearance of small cycles and the simultaneous

regain of stability of the non trivial equilibria; (d) the homoclinic

bifurcation, causing the disappearing of all the cycles. Path III

illustrates the loss of stability of the trivial equilibrium through

divergence (for small μ) or Hopf bifurcation (for large μ). Finally,

path IV shows the transition from non trivial equilibria to large

limit cycles, passing through homoclinic bifurcation. As a final

comment on the scenario relevant to S1, there exist an attractor in

any region, namely: one or two equilibria in regions 1 and 2, one

cycle in regions 4 and 5, and two equilibria and a cycle in region 3.

Therefore the bifurcation is not catastrophic. On the other hand,

the regions (3 and 4) in which static and dynamic bifurcations

interact are of small extension.

Fig. 5. Bifurcation chart in the parameter plane and sketches of the phase-plane in the different regions for: (a) system S1; (b) system S2; (c) system S3; (d) system S4;

hm homoclinic bifurcation locus; ht heteroclinic bifurcation locus.

Fig. 6. Bifurcation diagrams for system S1; paths I to IV marked in Fig. 5a; stable (continuous lines) and unstable (dashed lines) equilibria and cycles (shaded diagrams);

labels D, H, hm denote divergence, Hopf and homoclinic bifurcation points, respectively.



System S2, in Fig. 5b exhibits the same qualitative behavior of

S1 but the areas of regions 3 and 4 appear significantly reduced,

due to the fact that coefficient c3 is closer to zero with respect to

what happens in S1. However, also in this case, both the two

unstable equilibria (region 4) both the two small unstable limit

cycles, which again render stable the non trivial equilibria

(in region 3), survive and a homoclinic bifurcation, denoted by

the line hm, again manifests itself at the contact of the small cycles

with the trivial equilibrium.

Since system S3, in Fig. 5c exhibits the same qualitative

behavior of S4, but it is close to the transition zone of the c3
coefficient, here system S4 is first described. Numerical results

relevant to system S4 are reported in Figs. 5d and 7. Since c340,

the static bifurcation is subcritical and, according to the previous

qualitative analysis, the bifurcated equilibria do not suffer Hopf

bifurcation, so that no a curve HNT exists and, consequently, no

homoclinic bifurcation hm occurs. In contrast, a new heteroclinic

bifurcation ht manifests itself. In region 1 (Fig. 5d) the trivial

equilibrium is stable, but two unstable equilibrium points coexist.

In region 2 the trivial equilibrium loses stability by divergence, and

no other local attractors exist. In region 4 the equilibrium loses

stability by supercritical Hopf bifurcation, giving rise to a stable

limit cycle internal to the non trivial equilibria. In region 3,

however, due to a heteroclinic bifurcation caused by the collision

of cycle with the non trivial equilibria, the cycle itself disappears.

Paths I and IV (Fig. 7) show the static bifurcation; path II illustrates

the succession of (a) static, (b) Hopf and (c) heteroclinic bifurca

tions; path III illustrates the loss of stability by divergence (small μ)

or Hopf bifurcation (large μ). Therefore, system S2 has stable

attractors only in region 1 (trivial equilibrium) and 4 (limit cycle);

in the remaining regions no attractors exist. The bifurcation is

therefore catastrophic.

By coming back to system S3, in Fig. 5c, since c340 but lower

with respect to what happen in system S4, region 3 appears

reduced while region 4 is enlarged. However, also in this case, the

equilibrium loses stability by supercritical Hopf bifurcation and a

stable limit cycle, internal to the non trivial equilibria, exists

(region 4), but, due to the heteroclinic bifurcation, denoted again

by the line ht , the cycle itself disappears (region 3).

5. Conclusions

A non linear, visco elastic, externally damped column, subjected

to two independent axial loads, one gravitational and the other

tangential, has been studied. By enforcing internal kinematical

constrains, a single non linear integro differential equation of motion

in the transversal displacement field has been derived, equipped

with proper boundary conditions. The linear stability diagram of the

trivial equilibrium has been studied in detail in the plane of the two

loading parameters, both for tensile and compressive forces. The

existence of divergence and Hopf bifurcations has been highlighted,

leading to double zero (Takens Bogdanov) bifurcations. A non linear

bifurcation analysis, based on a fractional power version of the

multiple scale method, has been performed around the double

zero point, by directly attacking the continuous problem (i.e. by

avoiding any a priori discretization). A parametric analysis has been

carried out, with the aim to investigate the role of damping on such a

codimension 2 bifurcation, both in linear and non linear problems.

The following main conclusions are drawn:

1. The position of the bifurcation point and the angle of attack

between the incident, divergence and Hopf, bifurcation loci

Fig. 7. Bifurcation diagrams for system S4; paths I to IV marked in Fig. 5d; stable (continuous lines) and unstable (dashed lines) equilibria and cycles (shaded diagrams);

labels D, H, ht denote divergence, Hopf and heteroclinic bifurcation points, respectively.

Fig. 8. Visco-elastic beam on viscous soil under follower force and dead load:

model and displacements.



depend on the damping coefficients. However, when one of the

coefficients is zeroed and the other is rendered small, the

properties of the undamped (circulatory) system are recovered

only for evanescent external damping, not for internal damp

ing, this case being in discontinuity with the circulatory case.

Therefore, some new features of the well known “destabiliza

tion paradox” are revealed.

2. The non linear scenario around the double zero bifurcation is

strongly affected by damping. When the external damping is

small, the static bifurcation is supercritical, this entailing the

existence of one or more attractor, equilibria or limit cycles,

in the whole neighborhood. In contrast, when the external

damping is large, the static bifurcation is subcritical, this

entailing a catastrophic character of the bifurcation, for the

lack of attractors in some region around the bifurcation point.

In the whole range studied, instead, the Hopf bifurcation has

supercritical character.

3. The interaction between static and dynamic bifurcations man

ifests itself via homoclinic or heteroclinic bifurcations, due to the

collision between limit cycles and equilibria, or between cycles.
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Appendix A

In this Appendix A derivation of the equation of motion for the

structural model, by using the extended Hamilton's principle, is

presented.

A planar beam is considered, fixed at the end A, and simulta

neously loaded at the tip B by a follower force of intensity F (tangential

to the actual configuration of the beam axis) and by a dead load of

intensity P (acting in the direction of the originally rectilinear axis,

Fig. 8). The material behavior of the beam obeys to the Kelvin Voigt

rheological model, with elastic modulus E and viscous coefficient η

(acting as an internal damping); moreover, the beam is considered

to lie on a purely viscous linear soil of constant c (simulating the

external damping). The beam is assumed to be inextensible and shear

undeformable, Formulation closely follows the procedure of [41],

where a similar system was considered, with, however, no dead load

nor internal damping, but a lumped visco elastic device.

The actual configuration of the beam is described by the

transversal displacement field uðs; tÞ, the longitudinal displace

ment wðs; tÞ of the beam axis, and moreover, the rotation of the

section ϑðs; tÞ, where s∈½0; ℓ� is a curvilinear abscissa and t is the

time. The three displacements, however, are not independent,

because of the internal constraints, expressing no shear and no

stretch, respectively

sinðϑÞ ¼ u′; ε≔ ð1þw′Þ2 þ u′2
q

1¼ 0 ðA:1Þ

where a dash denotes differentiation with respect to s. The

curvature κðs; tÞ is assumed as the (unique) strain measure; from

Eq. (A.11) it follows that:

κ≔ϑ′¼ u″

1 u′2
p ðA:2Þ

The equations of motion are derived by the extended Hamilton's

principle, by introducing the constraint equation (A.12) by a

Lagrangian multiplier Rðs; tÞ, having the meaning of (reactive)

horizontal force. The variational principle reads

δH ¼
Z t2

t1

Z

ℓ

0
½mð _uδ _u þ _wδ _wÞ EIκδκ ηI _κδκ

c _uδu δðRεÞ� ds dt þ
Z t2

t1

½ðP þ F cosðϑBÞÞδwB

F sinðϑBÞδuB� dt ¼ 0; ∀ðδu; δw; δRÞ ðA:3Þ

where EI is the flexural stiffness of the beam, a dot denotes time

differentiation, and the index B evaluation at s¼ ℓ. By using Eq.

(A.11) to eliminate the rotation ϑðsÞ, expanding uðsÞ in Taylor series,

the equations of motion, corrected up to the third order, are

derived. By introducing the following non dimensional quantities:

~t ¼ ωt; ~s ¼ s=ℓ; ~u ¼ u=ℓ; ~w ¼w=ℓ
~R ¼ R=mℓ

2ω2; ω2 ¼ EI=mℓ
4; α¼ ηω=E

β¼ cωℓ4=EI; μ¼ Fℓ2=2EI; ν¼ Pℓ2=2EI ðA:4Þ

omitting the tilde symbol, and still denoting by dashes and dots

differentiations with respect to non dimensional quantities, the

equations read

€u þ uIV þ ½u′ðu′u″Þ′�′þ α _uIV þ αf½u′ðu′u″Þ′�′g� þ β _u ðRu′Þ′¼ 0 ðA:5Þ

€w R′¼ 0

w′þ u′2

2
¼ 0

with the relevant boundary conditions, of geometrical type

wA ¼ 0; uA ¼ 0; u′A þ 1
6u′

3
A ¼ 0 ðA:6Þ

and mechanical type

RB þ 2μ 1
u′2B
2

� �

þ 2ν¼ 0

½ðu‴B þ u‴Bu′
2
B þ u″2Bu′BÞ ð2μþ RBÞu′B

þ αðu‴B þ u‴Bu′
2
B þ u″2Bu′BÞ�� ¼ 0

ðu″B þ u″Bu′
2
BÞ þ αðu″B þ u″Bu′

2
BÞ

� ¼ 0 ðA:7Þ

In deriving Eqs. (A.5) (A.7), R′ was considered as a second order

quantity, in accordance with Eqs. (A.52,3), so that terms as R′u′2

were neglected.

The longitudinal displacement wðs; tÞ and the force Rðs; tÞ follow
from integration of Eqs. (A.52,3) with the boundary conditions

(A.61) and (A.71), namely

w¼ 1

2

Z s

0
u′2 ds

R¼ 2μ 1
u′2B
2

� �

2ν
1

2

Z s

1

Z s

0
u′2 ds

1

A

��

ds

0

@ ðA:8Þ

By substituting Eq. (A.82) in Eq. (A.51) and in the remaining

boundary conditions, the following (condensed) equations in the

unique variable uðs; tÞ are finally derived

€u þ uIV þ u′ u′u″ð Þ′½ �′
þα ̇u IV þ α u′ u′u″ð Þ′½ �′

� �•

þ2 μ 1
u′2B
2

� �

þ v

� 


u″þ β ̇ _uþ

1

2
∫ s
1 ∫ s

0u′
2ds

� �••

ds
� �

u′
h i0

¼ 0

uA ¼ 0; u′

A þ
1

6
u′3
A ¼ 0

�

ðu′″B þ u′″B u′
2

B þ u″2B u′BÞ þ 2 v μ
u′2B
2

� �

u′B

þαðu′″B þ u′″B u′
2

B þ u″2B u′BÞ•



¼ 0

ðu″B þ u″Bu′
2

B Þ þ αðu″B þ u″Bu′
2
BÞ

• ¼ 0 ðA:9Þ



The obtained equations (A.9) are the same of those presented in

[39]; they are of integro differential type and contain cubic non

linearities only. It should be noticed that linearization of the

geometrical conditions does not entail any error at this order.

Finally, Eqs. (A.9) can be recasted in an operator form, in which

the mechanical boundary conditions are appended to the field

equations: in this way Eqs. (1) are obtained.

Appendix B

The z solutions appearing in Eq. (32) satisfy the following

linear problems:

d0zμ ẑμ ¼ c1μϕ2

Md0ẑμ þ K0zμ þ Cẑμ ¼ c1μMϕ1 Kμϕ1

zμA ¼ 0; z′μA ¼ 0

8

>

<

>

:

d0zν ẑν ¼ c1νϕ2

Md0ẑν þ K0zν þ Cẑν ¼ c1νMϕ1 Kνϕ1

zνA ¼ 0; z′νA ¼ 0

8

>

<

>

:

d0za ẑa ¼ c3ϕ2

Md0ẑa þ K0za þ Cẑa ¼ c3Mϕ1 þ nðΦ3
1Þ

zaA ¼ 0; z′aA ¼ 0

8

>

<

>

:

ðB:1Þ

under the normalization conditions

zμB ¼ 0; zνB ¼ 0; zaB ¼ 0 ðB:2Þ

Due to their cumbersome expressions, they are not reported here.

Coefficients in Eq. (35) take the following forms:

c1μ ¼ 2

Z 1

0
ψ2ϕ″1 ds

c1ν ¼ 2

Z 1

0
ψ2ϕ″1 dsþ 2ψ2Bϕ′1B

c3 ¼
Z 1

0
ψ2n1ðΦ3

1Þ dsþ ψ2Bn2ðΦ3
1Þ þ ψ ′2Bn3ðΦ3

1Þ ðB:3Þ

and

b1μ ¼
Z 1

0
½ðαψ IV

2 þ βψ2Þzμ þ ψ2ẑμ þ 2ψ2ϕ″2� dsþ αψ‴2BzμB αψ″2Bz′μB

b1ν ¼
Z 1

0
½ðαψ IV

2 þ βψ2Þzν þ ψ2ẑν þ 2ψ2ϕ″2� ds

þαψ‴2BzνB αψ″2Bz′νB þ 2ψ2Bϕ′2B

b3 ¼ 3

Z 1

0
ðαψ IV

2 þ βψ2Þza þ ψ2ẑa

ψ2n1ðΦ2
1Φ2Þ dsþ 3½αψ‴2BzaB

αψ″2Bz′aB þ ψ2Bn2ðΦ2
1Φ2Þ þ ψ ′2Bn3ðΦ2

1Φ2Þ� ðB:4Þ
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