the adjective 'numerical', used here to partially connote the algo rithm, should not be understood in the usual meaning of 'approx imation', but rather as an 'automatic procedure' to numerically evaluate the coefficients of some series expansions, that would be impossible to perform manually. For these reasons, the proce dure should be considered as 'asymptotically exact'.

This approach, however, does not seem to be thoroughly inves tigated, yet. An attempt along this line was performed in [START_REF] Luongo | A transfer matrix-perturbation approach to the dynamics of chains of nonlinear sliding beams[END_REF], where, by dealing with continuous beams on sliding supports, an algorithm transforming a nonlinear continuous problem into a nonlinear discrete map was illustrated. Of course the consistent perturbation method can only be applied to systems made of ele ments whose field equations can be asymptotically integrated for general non homogeneous boundary conditions, typically one dimensional elements. However, it is expected that it can be ap plied also for bi or three dimensional elements, in the framework of a semi variational (Kantorovich) approach, as those used, e.g. in [START_REF] Maurini | On a model of layered piezoelectric beams including transverse stress effect[END_REF][START_REF] Maurini | Extension of the Euler Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach[END_REF].

In this paper, the algorithm is detailed for a geometrically non linear planar frame, made of inextensible and shear indeformable beams, whose masses are lumped at their ends. The inextensible model appears physically reasonable and analytically suitable, since it reduces the number of field equations; in contrast, how ever, it calls for a proper treatment of the axial reactive stress, in the framework of a mixed displacement stress approach [START_REF] Pignataro | Symmetric bifurcation of plane frames through a modified energy potential[END_REF][START_REF] Pignataro | Stability, bifurcation and postcritical behaviour of elastic structures[END_REF]. Inextensible frames and pantographic type structures have also been used in the literature to develop higher gradient theories of materials endowed with microscopic structures [START_REF] Alibert | Truss modular beams with deformation energy depending on higher displacement gradients[END_REF][START_REF] Seppecher | Linear elastic trusses leading to continua with exotic mechanical interactions[END_REF]. The gov erning equations are derived via a direct (equilibrium and compat ibility) approach, differently from [START_REF] Pignataro | Symmetric bifurcation of plane frames through a modified energy potential[END_REF][START_REF] Pignataro | Stability, bifurcation and postcritical behaviour of elastic structures[END_REF], where a constrained variational problem was tackled; moreover, more general loading conditions are allowed here.

The paper is organized as follows. In Section 2 the nonlinear field equations for a massless beam are asymptotically solved for prescribed displacements at the ends and longitudinal reactive stress, all taken as independent state variables for the element. This solution is asymptotically exact up to third order in the per turbation parameter, which is a measure of the amplitude of the response. In Section 3 a state relation for the element is drawn, and the relations are successively assembled for the frame. Here lumped masses are introduced and discrete nonlinear equations are derived, expressing equilibrium at joints and kinematic com patibility for the elements. In Section 4 the global equations are solved asymptotically, namely: (a) a straightforward expansion is used for static problems, in order to express the structural re sponse as a function of a load parameter; (b) the Multiple Scale Method is applied, to evaluate both the free and forced response of the frame, the latter relevant to harmonic loads in primary res onant conditions. Internal resonances have been so far excluded, but they could be easily accounted for. As a consequence, the re sponse is mono modal, but the contribution of the passive modes (in the Center Manifold perspective) is accounted for. In Section 5 some examples have been worked out and relevant results illus trated. Results provided by the proposed method are validated by a comparison with a FEM solution of both static and dynamic prob lems. Finally, in Section 6, some conclusions are drawn. Two Appendixes report computational details.

Continuous formulation

A straight beam is considered, as an element of a planar frame. The beam is assumed internally constrained and massless. The continuous problem for the single element is formulated, and asymptotically solved.

Constrained elastic problem for a single beam

The (static) nonlinear elastic problem for a rectilinear beam, is formulated here. The beam is considered to be axially inextensible and shear indeformable, and modeled as an elastic, polar, one dimensional, internally constrained continuum. The field equilib rium equations, in vector form, turn out to be (Fig. 1):

t 0 ðsÞþbðsÞ 0; m 0 ðsÞþa t ðsÞÂtðsÞ 0 & ð1Þ 
where t(s) and m(s) are the internal force and couple, of reactive and active nature, respectively; b(s) is the linear density of the external body forces; a t (s) is the unit vector tangent at the actual configuration; s is the curvilinear abscissa (both in the reference and actual configuration); finally, a prime denotes differentiation with respect to s. By introducing the components with respect to the (a x , a y , a z ) element basis, with (a x , a y ) spanning the plane in which the beam bends, and a x aligned with the beam axis in the reference configu ration, it follows that (Fig. 1):

m(s)=M(s)a z , t(s)=R(s)a x + S(s)a y , a t (s) = cosu(s)a x + sinu(s)a y , b(s)=b x (s)a x + b y (s)a y .
So that the equilibrium conditions (1) lead to three scalar equations:

M 0 ðsÞþSðsÞ cos uðsÞ RðsÞ sin uðsÞ 0; R 0 ðsÞþb x ðsÞ 0; S 0 ðsÞþb y ðsÞ 0;

8 > < > : ð2Þ 
The beam undergoes a planar displacement field, where u(s)= u(s)a x + v(s)a y is the beam axis translation field and u(s) the rotation field of the sections. The strain displacement relation expresses the link between the unique strain component, the curvature j(s), and the rotation: jðsÞ u 0 ðsÞð 3Þ while kinematic compatibility calls for internal geometrical con straints (Fig. 1):

u 0 ðsÞ cos uðsÞ 1; v 0 ðsÞ sin uðsÞð 4Þ

The material is assumed to behave as linearly elastic, so that the bending moment and the curvature are related by: MðsÞ EIjðsÞð 5Þ

with EI the (uniform) flexural stiffness.

The elastic problem of the internally constrained beam there fore consists of seven scalar Eqs. (2) [START_REF] Luongo | Multiple scale bifurcation analysis for finite-dimensional autonomous systems[END_REF], in which M(s), R(s), S(s), u(s), v(s), u(s), j(s) are the scalar unknowns. After combination and partial integration, the problem is recast in the following form:

EIuðsÞ 00 þ SðsÞ cos uðsÞ RðsÞ sin uðsÞ 0

RðsÞ R B þ Z l s b x ðsÞds; SðsÞ S B þ Z l s b y ðsÞds uðsÞ u A þ Z s 0 ðcos uðsÞ 1Þds; vðsÞ v A þ Z s 0 sin uðsÞds ð6Þ 
where u A : u(0), v A : v(0), R B : R(l), S B : S(l) are integration con stants and l is the beam length. Eq. ( 6) would supply the solution of the problem once u A , v A , R B , S B were assigned, together with pre scribed rotations u A , u B at the ends:

uð0Þ u A ; uðlÞ u B ð7Þ 
However, when the beam is considered as a frame element, the translations u B , v B (equal to those of the attached joint) should be considered as assigned, instead of the reactive internal forces R B , S B . In this perspective, it is convenient to consider the reactive forces as Lagrange multipliers associated with kinematic con straints deduced by Eqs. (6 4,5 ), namely:

u B u A Z l 0 ðcos uðsÞ 1Þds; v B v A Z l 0 sin uðsÞds ð8Þ 
in which the 'known' quantities u A , v A , u B , v B and the unknown func tion u(s) appear.

By summarizing, the problem is governed by a mixed differen tial algebraic problem in the unknowns u(s), R B , S B , constituted by: (i) a second order differential equation, obtained combining the first three Eqs. ( 6); (ii) the relevant boundary conditions Eqs. ( 7); (iii) the side algebraic conditions [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems and bifurcations of vector fields[END_REF]. By introducing the nondi mensional quantities:

s s L ; l l L ; ũH u H L ; ṽH v H L ; ba b a L 3 EI e R B R B L 2 EI ; e S B S B L 2 EI ; e MðsÞ MðsÞL EI ð9Þ 
with H = A, B; a = x, y and L a characteristic length, the problem reads:

u 00 ðsÞþ S B þ Z l s b y ðsÞdsÞ ! cos uðsÞ R B þ Z l s b x ðsÞds ! sin uðsÞ 0 uð0Þ u A ; uðlÞ u B u B u A Z l 0 ðcos uðsÞ 1Þds; v B v A Z l 0 sin uðsÞds ð10Þ 
where the prime denotes now differentiation with respect to s and the tilde has been dropped for notational convenience. As a solution strategy, Eqs. (10 1 3 ) should be solved to obtain u(s; R B , S B ), in which R B , S B are parameters; after substitution into Eqs (10 4,5 ), two nonlinear algebraic equations follow for these latter quantities. Finally, the nondimensional bending moment follows (tilde suppressed):

MðsÞ u 0 ðsÞð 11Þ

Perturbation solution

Since the solution to Eqs. (7) (10) cannot be pursued in closed form, a perturbation approach is followed. It is based on the hypothesis that all the quantities involved, loads, displacements, active and reactive stresses, are first order quantities, whose order of magnitude is O(e), where 0 < e ( 1, is a small perturbation parameter, acting as bookkeeping, to be eliminated at the end of the analysis. Accordingly, displacements and reactions are ex panded in truncated n term series as: In the following, n = 3 will be taken and hats omitted. By substitut ing Eqs. ( 12) and [START_REF] Chen | Finite element analysis of post-buckling dynamics in plates-Part I: An asymptotic approach[END_REF] in Eqs. [START_REF] Luongo | A unified perturbation approach to static/dynamic coupled instabilities of nonlinear structures[END_REF] [START_REF] Nayfeh | Numerical-perturbation method for the nonlinear analysis of structural vibrations[END_REF], Taylor expanding the har monic functions, and separately equating to zero the coefficients with the same power of e, the following perturbation equations are obtained: e : u 00

uðsÞ R B S B u A v A u A u B v B u B 0 B B B B B B B B B B B B B B B B @ 1 C C C C C C C C C C C C C C C C A X n k 1 e k u k ðsÞ R Bk S B k u Ak v Ak u Ak u Bk v Bk u Bk 0 B B B B B B B B B B B B B B B B @ 1 C C C C C C C C C C C C C C C C A ð12Þ 
1 ðsÞþS B1 R l s b y ðsÞds u 1 ð0Þ u A1 ; u 1 ðlÞ u B1 u B1 u A1 0 v B1 v A1 R l 0 u 1 ðsÞds 8 > > > > < > > > > : ð14Þ 
e 2 :
u 00

2 ðsÞþS B2 R B1 þ R l s b x ðsÞds u 1 ðsÞ u 2 ð0Þ u A2 ; u 2 ðlÞ u B2 u B2 u A2 1 2 R l 0 u 2 1 ðsÞds v B2 v A2 R l 0 u 2 ðsÞds 8 > > > > > < > > > > > : ð15Þ 
e 3 :
u 00

3 ðsÞþS B3 1 2 S B1 u 2 1 ðsÞþR B1 u 2 ðsÞþR B2 u 1 ðsÞ u 3 ð0Þ u A3 ; u 3 ðlÞ u B3 u B3 u A3 1 2 R l 0 u 1 ðsÞu 2 ðsÞds v B3 v A3 R l 0 ðu 3 ðsÞ 1 6 u 3 1 ðsÞÞds 8 > > > > < > > > > : ð16Þ 
Eqs. ( 14) [START_REF] Maurini | On a model of layered piezoelectric beams including transverse stress effect[END_REF] are sets of linear differential algebraic equations linking the kth order part of the unknowns, u k (s),R Bk , S Bk , to the kth order part of the assigned end displacements u Ak , v Ak ,u Ak ,u Bk , v Bk ,u Bk . Each linear problem is governed by the same linear operator (the tangent operator at the reference configuration of the beam), while the known term contains low order quantities, already deter mined at the previous steps.

The perturbation equations highlight the different role of the two reactive forces. While S B enters the linear differential alge braic operator, R B , in contrast, does not appear in it. Consequently, R B1 is undetermined at the e order in the single beam problem, and, similarly, R B2 , R B3 , ... are undetermined at e 2 , e 3 , ... orders.

However, as it will be clearer ahead, they will be determined by the joint equilibrium conditions when elements will be assembled.

To limit algebra, the loads b x , b y will be assumed ahead to be constant along the beam axis. By performing integrations and accounting for boundary conditions, the e order Eqs. ( 14) lead to:

u 1 ðsÞ 1 s l ÀÁ u A1 þ s l u B1 þ 1 2 ðls s 2 ÞS B1 þ 1 6 ð l 2 s þ s 3 Þb y ; u B1 u A1 0; v B1 v A1 l 2 u A1 þ l 2 u B1 þ l 3 12 S B1 l 4 24 b y 8 > < > : ð17Þ 
Eq. ( 173 ) can be solved with respect to S B1 and this, in turn, substi tuted in Eq. (17 1 ), to obtain u 1 (s) expressed as a function of the no dal displacements and load; it results:

u 1 ðsÞ 
1 4 s l þ 3 s 2 l 2 u A1 þ 3 s 2 l 2 2 s l u B1 þ6 s 2 l 3 s l 2 ðv A1 v B1 Þþ 1 12 ðl 2 s 3ls 2 þ 2s 3 Þb y ; S B1 6 
l 2 u A1 6 
l 2 u B1 12 
l 3 ðv A1 v B1 Þþ by l 2 u B1 u A1 0 8 > > > > > > < > > > > > > : ð18Þ 
or, in symbolic form: Eqs. ( 18) are the well known solution to the first order Euler Ber noulli beam. They hold "R B1 , this unknown being counterbalanced by the (linearized) constrain ( 193 ).

u 1 ðsÞ F 1 ðv 1 ; b; sÞ S B1 S 1 ðv 1 ; bÞ u B1 u A1 0 8 > < > : ð19Þ 
where v k : (v Ak , v Bk , u Ak , u Bk ) T (k =1,2,...
By substituting Eqs. [START_REF] Pignataro | Symmetric bifurcation of plane frames through a modified energy potential[END_REF] in the e 2 order Eqs. [START_REF] Luongo | A transfer matrix-perturbation approach to the dynamics of chains of nonlinear sliding beams[END_REF], and perform ing similar steps, it is found that:

u 2 ðsÞ F 1 ðv 2 ; sÞþF 2 ðv 1 ; R B1 ; b; sÞ S B2 S 1 ðv 2 ÞþS 2 ðv 1 ; R B1 ; bÞ u B2 u A2 U 2 ðv 1 ; bÞ 8 > < > : ð20Þ 
where F 2 ; S 2 ; U 2 are homogeneous quadratic functions of their arguments. Analogously, Eqs. ( 16) furnish, at the e 3 order: u 3 ðsÞ F 1 ðv 3 ;sÞþF 1;1 ððv 1 ;R B1 ;bÞ;ðv 2 ;R B2 ;0Þ;sÞþF 3 ðv 1 ;R B1 ;b;sÞ

S B3 S 1 ðv 3 ÞþS 1;1 ððv 1 ;R B1 ;bÞ;ðv 2 ;R B2 ;0ÞÞ þ S 3 ðv 1 ;R B1 ;bÞ u B3 u A3 U 1;1 ððv 1 ;bÞ;ðv 2 ; 0ÞÞ þ U 3 ðv 1 ;R B1 ;bÞ 8 > < > : ð21Þ 
where F 3 ; S 3 ; U 3 are homogeneous cubic functions and F 1;1 ; S 1;1 ; U 1;1 are bilinear functions of their arguments (with the second order part of the loads equal to zero); moreover F 1;1 ðw 1 ; w 2 Þw T 2 ½@F 2 ðwÞ=@w w w 1 and analogous. The explicit expressions for F k ; S k ; U k are given in the Appendix A. Eqs. (18) (20), together with the series expansions [START_REF] Garcea | Path-following analysis of thin-walled structures and comparison with asymptotic post-critical solutions[END_REF], asymptotically solve the problem [START_REF] Nayfeh | Numerical-perturbation method for the nonlinear analysis of structural vibrations[END_REF], to within an error smaller than O(e 3 ).

Discrete formulation

The relations relevant to the continuous problem are now recast in discrete form. Then, they are assembled for the structure, and inertia forces acting on masses lumped at joints are taken into ac count at this stage. The static and dynamic problems for the frame are thus formulated.

Element relation

To formulate the problem in a discrete form, it needs to link the external forces acting at the ends of the beam, namely f :

(X A , X B , Y A , Y B , m A , m B ) T ,
to the loads b and to the displacements at the same points, u : T , where all the compo nents are expressed in the element basis (Fig. 2). However, due to the inextensibility condition, forces depend on the transversal dis placements v : (v A , v B , u A , u B ) T and on the reactive stress R B , not on the longitudinal displacements u A , u B ; on the other hand, the kine matic constraint (10 4 ) must be appended to this relation as a scalar condition involving all the displacements and R B . Consequently, the relations sought for are of the following type:

(u A , u B , v A , v B , u A ,u B )
f fðv; R B ; bÞ 0 u B u A gðv; R B ; bÞ & ð22Þ 
They will be named the state relations for the element. Their form suggests to introduce the following vectors:

Q : ðX A ; X B jY A ; Y B ; m A ; m B j0Þ T ; q : ðu A ; u B jv A ; v B ; u A ; u B jR B Þ T ð23Þ 
said of the dependent and the independent state variables, respec tively, which permit to write Eqs. [START_REF] Luongo | On nonlinear dynamics of planar shear indeformable beams[END_REF] in the compact form:

Q Qðq; bÞð 24Þ with Q : fju B u A g ðÞ T .
Of course, since the continuous problem has been solved in asymptotic form, also the state relation (23) will be asymptotic, namely Q ðeÞ QðqðeÞ; ebÞ (with load rescaled). By

letting Q P k e k Q k ; q P k e k q k
and expanding Eq. ( 24), it follows that:

e : Q 1 Lq 1 p e 2 : Q 2 Lq 2 þ N 2 ðq 1 ; bÞ e 3 : Q 3 Lq 3 þ N 1;1 ððq 1 ; bÞ; ðq 2 ; 0ÞÞ þ N 3 ðq 1 ; bÞ ð25Þ 
where:

L : dQ dq 0 ; p : dQ db 0 b ð26Þ 
are the tangent system matrix and the load vector, respectively; moreover:

N 2 ðq 1 ; bÞ : 1 2 d 2 Q dq 2 ! 0 q 2 1 þ d 2 Q dqdb ! 0 q 1 b þ 1 2 d 2 Q db 2 ! 0 b 2 N 1;1 ððq 1 ; bÞ; ðq 2 ; 0ÞÞ : d 2 Q dq 2 ! 0 q 1 q 2 þ d 2 Q dqdb ! 0 q 2 b N 3 ðq 1 ; bÞ : 1 6 d 3 Q dq 3 ! 0 q 3 1 þ 1 2 d 3 Q dq 2 db ! 0 q 2 1 b þ 1 2 d 3 Q dqdb 2 ! 0 q 1 b 2 ð27Þ 
are quadratic, bilinear and cubic vector valued functions, related to second and third derivatives of Q. Eqs. (25 a,b,c ) are the e , e 2 and e 3 order parts, respectively, of the state relation (24). Now, an explicit form for Eqs. (25) is derived. Forces at the ends are expressed by the boundary equilibrium conditions as:

X A Rð0Þ R B b x l X B RðlÞ R B Y A Sð0Þ S B b y l Y B SðlÞ S B m A Mð0Þ
u 0 ð0Þ m B MðlÞ u 0 ðlÞ ð28Þ where use of (nondimensional) Eqs. (6 2,3 ) and Eq. ( 11) has been made. By substituting the series expansions (12) for u(s), R B , S B , and using rescaling [START_REF] Chen | Finite element analysis of post-buckling dynamics in plates-Part I: An asymptotic approach[END_REF], it follows: p : b y ð0; 0; l=2; l=2; l

X A X B Y A Y B m A m B 0 B B B B B B B B @ 1 C C C C C C C C A e R B1 b x l R B1 S B1 b y l S B1 u 0 1 ð0Þ u 0 1 ðlÞ 0 B B B B B B B B @ 1 C C C C C C C C A þ e 2 R B2 R B2 S B2 S B2 u 0 2 ð0Þ u 0 2 ðlÞ 0 B B B B B B B B @ 1 C C C C C C C C A þ e 3 R B3 R B3 S B3 S B3 u 0 3 ð0Þ u 0 3 ðlÞ 0 B B B B B B B B @ 1 C C C C C C C C A ð29Þ 
0 efu B1 u A1 gþe 2 fu B2 u A2 U 2 ðv 1 ; bÞg þ e 3 u B3 u A3 U 1;1 ððv 1 ; bÞ; ðv 2 ; 0ÞÞ U 3 ðv 1 ; R B1 ; bÞ ÈÉ ð30Þ 
2 =12; l 2 =12; 0Þ T ð31Þ 
where L = L T , n is a collocation vector, K is the familiar stiffness ma trix of the (shear undeformable) rod and p is the relevant load vec tor. Explicit expressions for the operators N 2 (q 1 , b), N 1,1 ((q 1 , b), (q 2 , 0)), N 3 (q 1 , b) are reported in the Appendix B.

The static problem

When a planar frame is considered, made of M elements and N joints, the independent state variables are a set of 3 N displace ments and M reactive stresses, i.e. q :

u 1 ; v 1 ; u 1 ; ...; u N ; v N ; ð u N jR 1B ; R 2B ; ...; R MB Þ T ;
here and in the following, an underbar de notes a vector (or a tensor) whose components are evaluated in an extrinsic (global) basis (a x , a y , a z ), with (a x , a y ) spanning the plane of the frame. The relevant elastic problem is governed by a set of (3N + M) equations, made of 3 N joint equilibrium equations, plus M constraint equations. In order to write these equations, the ele ments state vectors q e u e R e B ÀÁ T and Q e f e 0 ÀÁ T appearing in the state relation (24) (the apex e being introduced here for con venience), must be expressed in the global basis. However, while displacements u e and forces f e obey the usual rule for basis rota tions, the reactive force R e B must be leaved unaltered in such a change. Therefore, the state vectors for the element transform as:

q e T e q e ; Q e T eT Q e ð32Þ 
where: T e q e 1 ; b e ; T e q e 2 ; 0 þ N e 3 T e q e 1 ; b e ð35Þ

T e : R e 0 0 1 ! ð33Þ 
where:

L e : T eT L e T e ; p e : T eT p e ; N e k :

T eT N e k ð36Þ 
Finally, Eqs. (34) are assembled, to express the nodal equilibrium equations P e X eT Q e þ P 0 and the compatibility equations q e = X e q, where X e are collocation matrices and P nodal active forces. The state relation for the frame is therefore: X e X eT T eT Q e ðT e X e q; lb e ÞþlP 0 ð37Þ in which a load parameter l, affecting all the forces, has been intro duced for later convenience. Finally, by using Eqs. (35) in Eq. (37), the following perturbation equations are generated: e : Lq 1 lq e 2 : Lq 2 þ N 2 ðq 1 ; lbÞ 0 e 3 : Lq 3 þ N 1;1 ððq 1 ; lbÞ; ðq 2 ; 0ÞÞ þ N 3 ðq 1 ; lbÞ 0 ð38Þ where L : P e X eT L e X e is the global system matrix; p : Pþ P e X eT p e is the global load vector; N 2 ðq 1 ; bÞ :

P e X eT N e 2
ðT e X e q 1 ; b e Þ (and similar) are the global vectors of nonlinearities.

Eqs. (38) asymptotically govern the static problem for the frame. 

The dynamic problem and the multiple scale method

To tackle the dynamic problem, one has to model the inertia forces. Now, the mass density of the beam, m e , entails inertia forces that should be included in the field equations [START_REF] Nayfeh | Nonlinear oscillations[END_REF]. These call for solving partial differential equations in space and time. A much simpler approach, however, consists in modelling the beams as massless and in lumping their total mass at the ends, although this requires a finer discretization. Lumped mass at the joints intro duce inertia forces in the load vector P, which therefore splits in an active and an inertial part, P: P a + P i . To use quantities consis tent with those in Eqs. [START_REF] Steindl | Methods for dimension reduction and their application in nonlinear dynamics[END_REF], a nondimensional time t and a nondi mensional linear mass density m e are defined, as:

t xt; me m e x 2 L 4 EI ð39Þ 
where t is the true time and x is a characteristic frequency. By lumping the total mass of the element, m e l e at its ends and neglect ing rotatory effects, it follows that forces P e i ðtÞ : M e q e ðtÞ act at the ends of the element, where the dot denotes differentiation with respect to t, and: where tilde has been dropped. Eqs. (41) are rewritten in asymptotic form according to the expressions (35) for Q e ; moreover the Multiple Scale Method is used to express time dependence of the solution [START_REF] Nayfeh | Nonlinear oscillations[END_REF]. By introduc ing independent time scales t 0 : t, t 1 : et, t 2 : e 2 t and by applying the chain rule for the second derivative, i.e. d 

M e : 1 2 me l e diag 1 1 j 1100j 0 ½ ð40Þ 
2 =dt 2 ðd 0 þ ed 0 þe 2 d 2 Þ 2 d 2 0 þ 2ed 0 d 1 þ e 2 ð2ed 0 d 2 þ d 2 1 Þþ...,
e : Md 2 0 q 1 þ Lq 1 lpðt 0 Þ e 2 : Md 2 0 q 2 þ Lq 2 2Md 0 d 1 q 1 N 2 ðq 1 ; lbðt 0 ÞÞ e 3 : Md 2 0 q 3 þ Lq 3 Mð2d 0 d 1 q 2 þ 2d 0 d 2 q 1 þ d 2 1 q 1 Þ þ N 1;1 ððq 1 ; lbðt 0 ÞÞ; ðq 2 ; 0ÞÞ N 3 ðq 1 ; lbðt 0 ÞÞ ð42Þ 
where, pðt 0 Þ : P a ðt 0 Þþ P e X eT p e ðt 0 Þ and q k = q k (t 0 ,t 1 ,t 2 ). Eqs. (42) asymptotically govern the dynamic problem for the frame.

Solution to discrete equations

Eqs. ( 38) and (42), respectively governing the static and the dy namic problems for the frame, are solved. e : q 1 lL 1 p e 2 : q 2 L 1 N 2 ðlL 1 p; lbÞ e 3 : q 3 L 1 N 1;1 ððlL 1 p; lbÞ; ð L 1 N 2 ðlL 1 p; lbÞ; 0ÞÞ L 1 N 3 ðlL 1 p; lbÞ 0 ð43Þ

The series q P k e k q k , accordingly, reads:

q lL 1 p þ l 2 L 1 N 2 ðL 1 p;bÞ no þ l 3 L 1 N 1;1 ððL 1 p;bÞ;ð L 1 N 2 ðL 1 p; bÞ;0ÞÞ L 1 N 3 ðL 1 p; bÞ no ð44Þ 
where homogeneity of the N functions has been accounted for and the perturbation parameter e has been reabsorbed through the in verse load rescaling el ? l. Eq. ( 44) provides a third order extrap olation from the origin of the relationship linking nodal displacements and reactions with the load multiplier.

The dynamic response to external harmonic excitation

The (undamped) harmonically forced response of the frame is now analyzed.

All loads, acting at the nodes, P a (t), and distributed on the beams, b(t), are assumed to be synchronous, obeying to the law: 

Table 1

Fundamental nonlinear frequency of the frames in Fig. 6, when a/l = 0.15, vs the total number of elements. 

X M =8 M =16 M =32 M =64 HH 
pðt 0 Þ : p 0 cos Xt 0 N 2 ðq 1 ; lbðt 0 ÞÞ : N ð0Þ 
2 ðq 1 ÞþlN ð1Þ 
2 ðq 1 ; b 0 Þcos Xt 0 þ l 2 N ð2Þ 
2 ðb 0 Þcos 2 Xt 0 N 1;1 ððq 1 ;lbðt 0 ÞÞ; ðq 2 ; 0ÞÞ : N

1;1 ðq 1 ; q 2 ÞþlN ð0Þ 
1;1 ðb 0 ; q 2 Þcos Xt 0

N 3 ðq 1 ; lbðt 0 ÞÞ : N ð0Þ 
3 ðq 1 ÞþlN ð1Þ 
3 ðq 1 ; b 0 Þcos Xt 0 þ l 2 N ð2Þ 3 ðq 1 ;b 0 Þ cos 2 Xt 0 þ l 3 N ð3Þ 
3 ðb 0 Þcos 3 Xt 0 ð46Þ 
where underbars have been omitted. It should be noticed that, since the distributed loads enter quadratic and cubic nonlinearities, para metric excitation terms of frequency X or 2X and external excitation terms of frequency 3X are generated. If, in contrast, only nodal forces are applied to the frame (i.e. b 0 = 0), then, just the external excita tion (46 1 ) exists, while nonlinearities (46 2 4 ) are of autonomous type.

The excitation frequency is here assumed to be nearly resonant with the k th natural frequency x k , i.e.:

X : x k þ er; r Oð1Þð 47Þ

where r is a detuning parameter. Moreover, any internal reso nances occurring among the natural frequencies, as well as any combination resonances occurring among the external and natural frequencies, are excluded. Hence, the response of the system is mono modal (at e order, but all modes contributes at higher orders, as forced by the leading one). Since the external excitation is reso nant, it is assumed of soft type and therefore shifted at the e 3 order in the perturbation scheme [START_REF] Nayfeh | Nonlinear oscillations[END_REF]; this is formally achieved by taking l =O(e 3 ), instead of O (e), as so far assumed. Consequently the per turbation Eqs. (42) become: e :

Md 2 0 q 1 þ Lq 1 0 e 2 : Md 2 0 q 2 þ Lq 2 2Md 0 d 1 q 1 N ð0Þ 
2 ðq 1 Þ e 3 : Md 2 0 q 3 þ Lq 3 Mð2d 0 d 1 q 2 þ 2d 0 d 2 q 1 þ d 2 1 q 1 Þ N ð0Þ 
1;1 ðq 1 ; q 2 Þ N ð0Þ 
3 ðq 1 Þþlp 0 cos Xt 0 ð48Þ while the nonlinear effects of the distributed loads shift at orders higher than e 3 . Eq. (48 1 ) admits the generating solution:

q 1 A k ðt 1 ; t 2 Þu k e ix k t 0 þ c:c: ð49Þ 
where u k is the (real) kth natural mode, x k the associated linear natural frequency, A k (t 1 , t 2 ) a slow time depending complex ampli tude, and c.c. denotes complex conjugate terms. With Eq. ( 49), Eq. ( 482 ) reads:

Md 2 0 q 2 þ Lq 2 2ix k d 1 A k Mu k e ix k t 0 A 2 k e 2ix k t 0 þ A k A k N 2 ðu k Þþc:c: ð50Þ 
where an overbar indicates the complex conjugate. By removing secular terms, d 1 A k = 0 follows, and the Eq. ( 50) furnishes:

q 2 A 2 k ðt 1 ; t 2 Þz 11 e 2ix k t 0 þ A k A k z 11 þ c:c: ð51Þ 
where z 11 and z 11 are solution of:

ðL 4x 2 MÞz 11 N 2 ðu k Þ; Lz 11 N 2 ðu k Þ: ð52Þ 
Substitution in Eq. ( 483 ) and imposition of solvability condition lead to:

2ix k u T k Mu k d 2 A A 2 k A k ð2N 2 ðu k ; z 11 Þþ2N 2 ðu k ; z 11 Þ þ 2N 2 ðu k ; z 11 Þþ3N 3 ðu k ; u k ; u k ÞÞ þ l p 0 2 e irt ð53Þ 
Coming back to the true time t, reabsorbing the parameter e, intro ducing the polar form A = ae i# /2 and letting c : rt # be the phase difference, it follows: 

_ a l c 3 c 1 sinðcÞ a _ c ar c 2 4c 1 a 3 2l c 3 c 1 cosðcÞ ð54Þ 
where c 1 2x k u T k Mu k ; c 2 ð2N 
c kp ar c 2 4c 1 a 3 AE 2l c 3 c 1 0 ð55Þ 
Eq. ( 55) supplies, in implicit form, the detuning vs the amplitude, r = r(a; l), with the load as a parameter, from which the forcing fre quency amplitude response, X = x k + r(a;l) is derived from Eq.

(47). This, also furnishes the natural frequency amplitude response (also known as backbone curve), when the excitation amplitude l = 0 is zero, namely:

X x k þ c 2 4c 1 a 2 ð56Þ 
Finally, the response to the harmonic excitation is evaluated by Eqs. ( 49) and (51), namely q = q 1 + q 2 , and making use of Eq. ( 47) and definition of c. In real form it reads:

q au k cosðXt cÞþ 1 2 a 2 ðz 11 þ z 11 cos 2ðXt cÞÞ ð57Þ 
with c given by Eq. (55 1 ).

Numerical examples

The algorithm developed above has been applied to few sample structures to check efficiency and for illustration purposes. Simple frames have been considered for both nonlinear static and dynamic analyses. Then, a larger structure has been considered and its dynamics studied.

Statics of a simple frame

A simple planar frame, made of two mutually orthogonal beams, depicted in Fig. 3, has been considered for static analysis. The beams have the same length l = 18 m, axial stiffness EA = 9.03 Â 10 8 N and bending stiffness EI = 3.17 Â 10 6 Nm 2 ; the inertia radius is q = 0.059 m, therefore the slenderness is k: l/ q = 300. A two beams system is considered, with two different boundary conditions and loads (CS and HH systems in Fig 3). In the CS system (Fig. 3 a ), the frame is clamped at one end (A, where the three boundary conditions u A =0, v A = 0 and u A = 0 are en forced) and simply supported to the other (C, where v C = 0 holds).

The AB column is loaded by uniformly distributed forces per unit length p 1 = 1.50 Â 10 3 N/m, acting normally and tangentially to the beam axis and a force F 1 = 4.5 Â 10 3 N is applied at the connect ing joint B. In the HH system (Fig. 3 b ), the frame is hinged at both ends (A and C, where u A =0,v A = 0 and u C =0,v C = 0 are respectively enforced). The BC beam is loaded by a uniformly distributed force per unit length p 2 = 4.00 Â 10 3 N/m, acting orthogonally to its axis, while a force F 2 = 36.00 Â 10 3 N is applied at the connecting joint B. Since the finite element formulated here is asymptotically exact, only two elements are necessary in the analysis, one for each beam, and therefore no convergence analysis needs to be carried out.

By taking all the forces proportional to a load multiplier l, the load paths shown in Fig. 4 a,b are obtained, by using Eqs. (44). The plots display the horizontal displacement u B (in meters) of the joint B of the CS system, and the modulus of the vertical displacement v D (in meters) of the midspan joint D of the HH system, both vs the load multiplier l. Here, I denotes the linear path, II the solution truncated at the second order, and III the solution truncated at the third order. It is seen that the resulting effect of nonlinearities is hardening in the CS system and softening in the HH system.

In order to validate the method illustrated here, results have been compared to those obtained with FEM models, implemented with the commercial code SAP2000. The FEM solutions have been obtained for few selected values of the load intensity, and the rel evant displacements reported in Fig. 4 by dots. Both an extensible and an inextensible model were considered, the first by accounting for the real axial stiffness of the beams, and the second by artifi cially magnifying the cross section area. However, it was found that relevant results were practically indistinguishable. Overall, the approximation offered by the third order asymptotic solutions is found to be excellent, although the magnitude of the displace ments is very large. It should be stressed that while the perturba tion approach requires solving three linear problems to build up the whole paths, the FEM solution requires solving a nonlinear prob lem for each value of the load multiplier.

The deformed shapes of the frame, relevant to l = 1, are illus trated in Fig. 5; again, linear (I), quadratic (II), and cubic (III) solu tions are shown (Fig. 5 a,c ), while the separated (incremental) contributions are illustrated in Fig. 5 b,d . In the first frame, consis tently with the hardening effect, nonlinearities reduce the the hor izontal displacement of the joint B; in the second one, which instead exhibits a softening behavior, nonlinearities increase the vertical displacement of the joint D.

Dynamics of simple frames

The dynamic behavior of the simple frame of Fig. 6 has been analyzed. The two beams have equal length l = 30 m, axial stiffness EA = 1.53 Â 10 9 N, bending stiffness EI = 34.17 Â 10 6 Nm 2 , and inertia radius q = 0,149 m, so that slenderness is k = 200. Moreover, the mass per unit length is m = 5.84 kg/m. The two structures differ in the boundary conditions, namely hinged hinged (HH) and clamped supported (CS). Due to the inertia forces acting along the beam, it is necessary to divide each beam in several elements, in order that the assumed lumped mass model can adequately approximate the continuous model. A preliminary error analysis was therefore carried out, by evaluating the nonlinear fundamental frequency X of both structures, as given by Eq. ( 56), for a given va lue of the nondimensional amplitude to length ratio, taken as a/ l = 0.15 (see Fig. 6 for the meaning of the amplitude, and for the shape of the 1st nonlinear normal mode). Each beams has been di vided in M/2 elements (hence N = M + 1 joints) and results reported in Table 1. It is seen that the frequency converges when M = 16, so that the analysis has been carried out with this discretization.

For the two frames, the relative correction (X x 1 )/x 1 of the fundamental natural frequency X with respect to the linear one x 1 , is shown in Fig. 7 vs the nondimensional amplitude a/l. While the HH frame possesses a strong softening behavior, the CS frame exhibits an almost linear, very weak hardening behaviour, simi larly to the fixed free beam, as well known in literature (see, e.g. [START_REF] Luongo | On nonlinear dynamics of planar shear indeformable beams[END_REF]).

The response of the HH and CS frames to a harmonic load is now addressed. A horizontal force P(t)=P 0 cos (Xt) is applied at the joint between the two beams, and the frequency response curve given by Eqs. (55) is plotted in Fig. 8 for different values of the nondi mensional excitation amplitude (2P o /c 1 x 1 l = 0, 0.001, 0.005, 0.01) and true or magnified cross section area.

The previous semi analytical results were validated via compar ison with a FEM analysis carried out by the code SAP 2000. An har monically varying force of given X frequency was assigned and the nonlinear response recorded for approximately 500 s. After that, a FFT was performed to extract from the response the amplitude of the X frequency content. Both a script in Mathematica and the pro gram QtiPlot were used to check errors in FFT. Especially when a magnified value of the cross section area was considered, this pro cedure required extremely long computations on a PC with a mul ticore CPU (six cores, 12 threads, clock 3.2 GHz, 32 Gb RAM), of the order of 20 h to obtain a single point of the diagram! The relevant results, obtained for few points, both adopting the true or magni fied axial stiffness are reported in Fig. 8. Again, an excellent agree ment with the consistent perturbation method is found. This latter, however, requires few minutes to evaluate the whole curve.

During the forced motion, and according to Eq. ( 57), the struc ture experiences a linear X harmonic response and a second order response, consisting in a drift and a 2X harmonic motion, so that the resulting response is no more harmonic. Therefore, if some shots are taken during a period of oscillation, the shape of structure modifies itself. These are displayed in Fig. 9 when 2P o /c 1 x 1 l = 0.01, (X x 1 )/x 1 = 0.025, 0.0002 and t = (0, 0.3, 0.6, 0.9)p/X.

Dynamics of a Vierendeel beam

The dynamics of a more complex frame (see Fig. 10), also known as Vierendeel beam, has finally been analyzed. Such a problem, that would be intractable by a traditional manual approach, is indeed useful to show the capability of the proposed numerical perturba tion method. The frame is made of 5 equal square meshes of side l/ 5, with l = 30 m the total length. All the 14 beams are equal, of axial stiffness EA = 1.53 Â 10 9 N, bending stiffness EI = 34.17 Â 10 6 Nm 2 , slenderness k = 40 and mass per unit length m = 5.84 kg/m. Both upper and bottom longerons are clamped on the left and supported on the right. Each beam has been divided in 4 elements, so that the whole structure is made of 56 elements and 54 joints. If symmetry of the structure with respect the horizontal axis is taken into ac count, then the number of joints reduces to 29.

The analysis has been focused on several modes; here, only the results relevant to the 1st and 2nd mode are reported. For each considered mode the corrections of the natural frequency versus the amplitude of free oscillation have been evaluated by Eq. ( 56) and plotted in Fig. 11. In the figure, the amplitude a represents the maximum vertical displacement of the linear mode, and n = 1, 2 is the number of the mode. It appears that the frame posses a softening behavior, stronger for higher modes.

When a harmonic vertical force is applied in the middle of the upper beam, having nondimensional amplitude 2P o /c 1 x 1 l =0, 0.001, 0.005, 0.01, the frequency response curves of Fig. 12 follow from Eq. (56). Fig. 13 reports some shots of the evolution of the deformed con figuration at t = (0, 0.3, 0.6, 0.9)p/X, when the beam is forced clo sely to the 1 st and 2 nd mode, respectively (2P o /c 1 x 1 l = 0.01, (X x)/x = 0.0423, 0.1139)

Conclusions

In this paper, a numerical perturbation method for analyzing statics and dynamics of general geometrically nonlinear planar frames, made of inextensible and shear indeformable beams, has been illustrated. The method is based on a 'consistent perturbation analysis', in which the displacement fields are not interpolated be tween the nodes, as in the FEM approach, but rather obtained by asymptotic integration of the field equations, under the simplifying assumption that masses are lumped at the ends. The numerical as pect of the algorithm does not consists in any approximation, but only in the fact that calculations, that would be manually impossi ble for their complexity, are instead rearranged in a way they can be made by a computer. Goal of the analysis is to evaluate the numerical values of the coefficients of the series expansions, which describe the response in terms of a control parameter (e.g. the load multiplier in a static problem, or the forcing frequency, in a dy namic problem). To achieve this goal, few linear problems (typically three) must be solved to obtain the whole curve, instead of a large number of nonlinear problems, as instead required by a continuation incremental iterative method.

The paper addressed all the aspect of the problem, namely: (a) the formulation of the model, (b) the solution algorithm, (c) the discussion of the results.

Formulations was aimed to find a third order relation between end forces and end displacements. Due to the internal constraints, the longitudinal component of the reactive internal contact forces also appeared in the set of the end forces, counterbalanced by an additional kinematic condition. Modeling was therefore carried out in the context of the mixed formulation of elasticity. Once the relations have been obtained for the element, they were assem bled, to furnish global equation for the frame, leading to perturba tion equations to be solved in cascade.

The straightforward perturbation expansion method was used for solving static problems, and the multiple scale method for dy namic problems, both furnishing solutions which are analytical in the control parameter. Attention was focused on evaluating the frequency amplitude relationships, for nonlinear free vibrations as well as harmonic excitation.

A number of sample systems were studied, consisting in simple planar frames and a larger Vierendel beam. Several aspects were addressed as: convergence of results, comparison between differ ent order asymptotic solutions, mechanical interpretation of the structural behaviour. Remarkably, the semi analytical results were found to be in excellent agreement with computationally expan sive FEM analyses.

F 1 ðv 1 ; b; sÞ : f 1 ðsÞu A1 þ f 2 ðsÞu B1 þ f 3 ðsÞðv B1 v A1 Þþf 4 ðsÞb y F 2 ðv 1 ; R B1 ; b; sÞ : f 5 ðsÞu A1 R B1 þ f 6 ðsÞu B1 R B1 þ f 7 ðsÞðv B1 v A1 ÞR B1 þ f 8 ðsÞu A1 b x þ f 9 ðsÞu B1 b x þ f 10 ðsÞðv B1 v A1 Þb x þ f 11 ðsÞR B1 b y þ f 12 ðsÞb x b y ðA: 1Þ 
F 1;1 ððv 1 ; R B1 ; bÞ; ðv 2 ; R B2 ; 0Þ; sÞ : Finally, the polynomial fk (s) are defined as follows: 

f 5 ðsÞðu A1 R B2 þ u A2 R B1 Þ þ f 6 ðsÞðu B1 R B2 þ u B2 R B1 Þ þ f 7 ðsÞ½ðv B1 v A1 ÞR B2 þðv B2 v A2 ÞR B1 þf 8 ðsÞu A2 b x þ f 9 ðsÞu B2 b x þ f 10 ðsÞðv B2 v A2 Þb x þ f 11 ðsÞR B2 b y ðA:2Þ F 3 ðv 1 ; R B1 ; b; sÞ : f 13 ðsÞ v 3 A1 þ v 3 B1 ÀÁ þ f 14 ðsÞ v 2 A1 v B1 v 2 B1 v A1 ÀÁ þ f 15 ðsÞ v 2 A1 u B1 þ v 2 B1 u B1 ÀÁ þ f 16 ðsÞ v 2 A1 u A1 þ v 2 B1 u A1 ÀÁ þ f 17 ðsÞu A1 v A1 v B1 þ f 18 ðsÞu B1 v A1 v B1 þ f 19 ðsÞ u A1 u B1 v B1 u A1 u B1 v A1 ðÞ þ f 20 ðsÞ u 2 A1 v B1 u 2 A1 v A1 ÀÁ þ f 21 ðsÞ u 2 B1 v B1 u 2 B1 v A1 ÀÁ þ f 22 ðsÞu 2 A1 u B1 þ f 23 ðsÞu 2 B1 u A1 þ f 24 ðsÞu 3 A1 þ f 25 ðsÞu 3 B1 þ f 26 ðsÞ R 2 B1 v B1 R 2 B1 v A1 þ f 27 ðsÞu A1 R 2 B1 þ f 28 ðsÞu B1 R 2 B1 þ f 29 ðsÞv A1 v B1 b y þ f 30 ðsÞ v 2 A1 b y þ v 2 B1 b y ÀÁ þ f 31 ðsÞ u A1 v B1 b y u A1 v A1 b y ÀÁ þ f 32 ðsÞðu B1 v B1 b y u B1 v A1 b y Þ þ f 33 ðsÞu 2 A1 b y þ f 34 ðsÞu 2 B1 b y þ f 35 ðsÞu A1 u B1 b y þ f 36 ðsÞR 2 B1 b y þ f 37 ðsÞðR B1 v B1 b x R B1 v A1 b x Þ þ f 38 ðsÞR B1 u B1 b x þ f 39 ðsÞR B1 u A1 b x þ f 40 ðsÞu A1 b 2 x þ f 41 ðsÞu B1 b 2 x þ f 42 ðsÞu A1 b 2 y þ f 43 ðsÞu B1 b 2 y þ f 44 ðsÞ v B1 b 2 y v A1 b 2 y þ f 45 ðsÞ v B1 b 2 x v A1 b 2 x þ f 46 ðsÞR B1 b y b x þ f 47 ðsÞb y b 2 x þ f 48 ðsÞb 3 
ðv A1 R B2 þ v A2 R B1 Þ þ 6 5l ðv B1 R B2 þ v B2 R B1 Þ 1 10 ðu A1 R B2 þ u A2 R B1 Þ 1 10 ðu B1 R B2 þ u B2 R B1 Þ þ 3 5 v A2 b x
f 1 ðsÞ : 1 4 s l þ 3 

  while loads are rescaled as: b x e bx ; b y e by
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 1 Fig. 1. Equilibrium and kinematics of the internally constrained beam.

  ) and b : (b x , b y ) T have been posed, and F 1 ; S 1 are linear functions of their arguments.

A

  further substitution of Eqs. (19 1,2 ) (21 1,2 ) for u k (s), S Bk leads to express the boundary forces as function of v k , R Bk , b and the pertur bation parameter e. On the other hand, the kinematic constraint (10 4 ), after expansion and use of Eqs. (19 3 ), (20 3 ), (21 3 ), reads:

  Appending Eqs. (30) to Eqs. (29), and separating terms of the same order, Eqs. (25) are finally obtained. In them:

is a 7 Â 1 L e q e 1 p e e 2 : Q e 2 L e q e 2 þ N e 2 T e q e 1 ; b e e 3 : Q e 3 L

 71122233 7 transformation matrix, including the well known 6 Â 6 rotation matrix R e . By using the coordinate transformations (32), in the state relation (24), namely Q e Q e ðq e ; b e Þ, this latter becomes:Q e T eT Q e ðT e q e ; b e Þð 34Þor, in asymptotic form:e : Q e e q e 3 þ N e 1;1
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 3 Fig. 3. (a) Clamped-Supported, and (b) Hinged-Hinged frames under static loads.
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 2 Fig. 2. End displacements and forces for the beam element.
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 5 Fig. 5. Deformed equilibrium configurations of the CS and HH frames,when l = 1: (a) and (c) I linear, II quadratic, III ubic solutions; (b) and (d) incremental contributions at different orders (Ic, IIc, IIIc).
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 46 Fig. 4. Load-paths for the CS and HH frames of Fig. 3, displaying displacements u B and v D (in meters) vs the load multiplier l for the configurations of Fig. 3 a and Fig. 3 b respectively; curves: I linear, II quadratic, III cubic perturbation solution; FEM solution.
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 1 The static response When Eqs. (38) are solved in sequence, they furnish (underbar omitted):
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 8 Fig.8. response curves for the HH and CS frames, for different excitation amplitudes 2P o /c 1 x 1 l = 0, 0.001, 0.005, 0.01; curves: third-order perturbation solution; FEM solution: s true axial stiffness, magnified axial stiffness.
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 7 Fig. 7. Natural nonlinear frequency X vs nondimensional amplitude, for the HH and CS frames.
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 1112 Fig. 11. Natural nonlinear frequencies X vs nondimensional amplitude, for the 1st and 2nd mode of the Vierendeel beam.
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 9510 Fig.9. Deformed configurations, at different times, of the HH and CS frames, when harmonically forced; 2P o /c 1 x 1 l = 0.01, (X À x 1 )/x 1 = À0.025, 0.0002.
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 13 Fig.[START_REF] Chen | Finite element analysis of post-buckling dynamics in plates-Part I: An asymptotic approach[END_REF]. Deformed configurations, at different times, of the Vierendeel beam, when the beam is forced closely to the 1st and 2nd mode, respectively; 2P o /c 1 x 1 l = 0.01, (X À x)/x = À0.0423, À0.1139.
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  where d k : d/dt k , the following perturbation equations are derived:

  2 ðu k ; z 11 Þþ2N 2 ð u k ; z 11 Þþ2N 2 ðu k ; z 11 Þþ 3N 3 ðu k ; u k ; u k ÞÞ and c 3 = p 0 /2.

	The steady solution _ a _ c 0 reads:
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Appendix A. Perturbation solution for the element problem

The solution to the perturbation equations for the element, Eqs. [START_REF] Garcea | Path-following analysis of thin-walled structures and comparison with asymptotic post-critical solutions[END_REF] [START_REF] Silvestre | Asymptotic-numerical method to analyze the postbuckling behavior, imperfection-sensitivity, and mode interaction in frames[END_REF], is given, in symbolic form, by Eqs. [START_REF] Maurini | Extension of the Euler Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach[END_REF] [START_REF] Pignataro | Stability, bifurcation and postcritical behaviour of elastic structures[END_REF].There, lin ear (index 1), quadratic (index 2), bilinear (index 1,1) and cubic (index 3) operators are involved, whose explicit form is reported here. The F k operators, appearing in the expression of u(s), are: u A2 b x ðA:6Þ S 3 ðv 1 ; R B1 ; bÞ : 432 ðA:7Þ

The U k operators, appearing in the expression of u B u A , are: ðA:8Þ U 1;1 ððv 1 ; bÞ; ðv 2 ; 0ÞÞ :

Nonlinear part of nodal forces

The nonlinear terms appearing in the state relation, Eq. ( 24), are defined as follows: 

ðB:1Þ

In these equations, U 2 ; U 1;1 ; U 3 are defined in the Appendix A. Con cerning the end forces, the quadratic components are: The bilinear components are: Finally, the cubic components are: