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Abstract 

In this paper, we develop a quantitative comparison method for two arbitrary protein structures. 

This method uses a root-mean-square deviation (RMSD) characterization and employs a series 

expansion of the protein’s shape function in terms of the Wigner-D functions to define a new 

criterion, which is called a “similarity value”. We further demonstrate that the expansion 

coefficients for the shape function obtained with the help of the Wigner-D functions correspond 

to structure factors. Our method addresses the common problem of comparing two proteins with 

different numbers of atoms. We illustrate it with a worked example. 

 

 

 

Introduction 

A quantitative comparison of two protein tertiary structures to assess their similarity is a major 

challenge, but if properly investigated, it can offer answers to important questions in 

biochemistry and cell biology1. In particular, structural similarity between proteins is a very good 

predictor of their functional similarity. In order to classify proteins according to their structural 

characteristics, we first have to be able to determine the 3D structures of the proteins in question, 

which typically involves x-ray or electron crystallography, or in some cases other techniques 

such as nuclear magnetic resonance (NMR) or mass spectroscopy2. In the absence of 

crystallographic structures for a given protein, computational methods may still be used to 

predict a 3D structure based on sequence similarity with crystallographically resolved protein 

structures using a technique called homology modeling3. Assuming structural information is 

available, a number of methods have been developed to compare protein structures4,5. Some 

methods are based on numerical techniques such as geometric hashing6 or spherical harmonic 

descriptors 7. A recently reported method uses so-called Zernike descriptors8. 

Traditionally, protein classifications have been performed manually with the aid of automated 

tools, and they take into account information available to biologists regarding both the functions 

and the phylogenetic origins of the proteins investigated. Examples of relevant databases include 



3 

 

SCOP (Structural Classification of Proteins)9,10, CATH (Class, Architecture, Topology, and 

Homologous superfamily)11, and FSSP (Families of Structurally Similar Proteins)12 to name but 

a few. 

In order to match two distinct protein structures, there should exist a one-to-one map between 

their structural elements, which is called “correspondence”. In addition, proper alignment of the 

structural elements of these proteins should be generated. A common measure that is used for 

this type of alignment is RMSD13,14. Until now, a complete geometrical comparison of two 

proteins has rarely been possible mainly because most proteins have different sizes and/or 

different numbers and types of atoms. Therefore, a complete match between an arbitrary pair of 

proteins is a difficult task to accomplish in general. This is why either partial or local similarity 

tests have frequently been used in the past13. An example of using RMSD for partial similarity 

analysis is the STRUCTAL software15. In the Results and  Discussion section, we discuss in 

more detail different methods used for protein structure comparisons and compare and contrast 

them with our method 

In this paper, we introduce a fully automated method that enables one to compare protein 

structures and to perform identification of proteins. To this end we expand the protein shape 

function in terms of Wigner-D functions16 and demonstrate mathematically that the expansion 

coefficients can be regarded as the structure factors of a protein. We then compare them to assess 

their similarity by introducing a new parameter referred to here as the “Similarity Value” (SV). 

Our method obtains the similarity value in the reciprocal space (in relation to the spatial domain) 

where two proteins have the same dimension (values of their structure factors). However, it is 

important to note that these proteins are allowed to have different numbers of atoms in the spatial 

domain. We demonstrated below that the SV is generally a good alternative parameter to the 

RMSD value. However, in comparing different-size structures, using the similarity value (SV) is 

strongly preferred as it permits a quantitative comparison between any protein structures 

independently of their sizes. 
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Basic mathematical idea 

The Wigner D-functions describe the rotation on a sphere in 4-dimensional space (4-sphere), and 

they are analogous to the well-known spherical harmonic functions, which are commonly used to 

describe the rotation on a sphere in 3-dimensional space (3-sphere)16. A rigid body can be 

projected on a 4-sphere; thus, its shape function can be expanded using the Wigner-D functions. 

Proteins are not typically thought of as rigid bodies due to their weak bonds, but instead they 

undergo sizeable thermal fluctuations at finite temperature and conformational changes due to 

ligand binding. However, the different conformations of a protein which are explored over time 

can be quantitatively characterized using shape functions in time series representations. 

We start by expanding a hypothetical protein shape function, f , in terms of Wigner-D functions 

as  

 ሺ     ሻ  ∑ ∑ ∑         ሺ     ሻ 
    

 
    

 
    

 (1) 

where the Clmn  factors are the coefficients of the series expansion, Dmn
l  is a Wigner-D function 

and the parameters     and   satisfy:           and      . The Wigner-D function is 

defined by17 

     ሺ     ሻ                ሺ    ሻ (2) 

where  

     ሺ ሻ    √ቀ      ቁ ቀ      ቁ ቀ      ቁ ቀ      ቁ          ሺ   ሻ  ሺ   ሻ          ሺ   ሻ ሺ ሻ (3) 

where         and        , and 

   {        ሺ  ሻ          (4) 

while    ሺ ሻ  is the associated Legendre polynomial is defined as 
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    ሺ ሻ  ሺ  ሻ       ሺ    ሻ            ሺ    ሻ . (5) 

The dimension of a Wigner-D function is given by  

   ሺ ሻ  ∑ሺ    ሻ  
        ሺ   ሻሺ    ሻሺ    ሻ 

 (6) 

We can express Eq. 1 in matrix notation simply as     . Indeed, the discrete Fourier transform 

on SO(3) can be written in terms of the Wigner-D functions as17,18  

 ሺ     ሻ  ∑ ∑ ∑  ̂       ሺ     ሻ 
    

 
    

 
    

 (7) 

where  ̂ is the Fourier transform of f . We can express the above relation in matrix form as    ̂ . Thus, the      coefficients can be viewed as Fourier transforms of a given function  . 

On the other hand, we know from crystallography that the Fourier transform of the shape 

function of an object is defined as the corresponding structure factor19. Thus, the      

coefficients describe the structure factors of a given protein with the shape function   (which is 

obtained from the positions of the atoms of the protein). 

Having generated the shape function  , we can obtain the      coefficients of the expansion by       ሺ    ሻ   ∫∫∫ ሺ     ሻ      ሺ     ሻ               

 (8) 

where we use the orthogonality of the Wigner-D function:  ∫∫∫        ሺ     ሻ     ሺ     ሻ                  ሺ    ሻ              
 (9) 
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Method and algorithm  

In this section we discuss practical aspects of implementing our method for particular proteins. 

First, we download each protein’s atom positions from the Protein Data Bank (PDB) and convert 

these positions to obtain the corresponding Euler angles. Then, we define the protein shape 

function   as follows: if a voxel contains a protein’s atom then   is equal to one, otherwise   is 

taken to be zero. The next steps are to compute the resultant Wigner-D functions up to        

and obtain the      matrix elements. 

One simple way to measure the similarity between two arbitrarily selected proteins is equivalent 

to computing the correlation value between the structure factors of the two proteins:                      ۦ   ሺ ሻ    ሺ   ሻۧۦ   ሺ ሻ    ሺ ሻۧۦ   ሺ  ሻ    ሺ  ሻۧ 
 (10) 

whereۦ     ۧ indicates the inner product and 'abs( ) indicates the absolute value of a variable. 

However, the CV measure does not provide proper comparison results for proteins, as is 

explained below. 

Representing a 3D shape by expansion in terms of Wigner-D functions effectively projects this 

shape on a 3-manifold as a part of the hyper-surface of a 4-sphere. The      matrix elements are 

the points on the manifold constructed in this manner. The CV computed in Eq. 10 gives a 

fractional rate of the overlap between the two manifolds. 

We illustrate this with a specific example. We have chosen a crystal structure for the tubulin 

heterodimer with PDB code 1JFF20. This PDB has two subunits: 1JFF-A for the α-tubulin 

monomer and 1JFF-B for the β-tubulin monomer. As shown in Table I, the CV for 1JFF and  

1JFF-A is approximately 1. This is because the 1JFF-A manifold is a sub-manifold of 1JFF, and 

all the points of 1JFF-A are subsumed by 1JFF. A discussion about SVs between 1JFF, 1JFF-A 

and 1JFF-B which are obtained in Table I, is given in the Results and Discussion section. 

Instead of using the CV measure, we define a solid measure by applying the RMSD concept to 

the structure factor distances using the following procedure. A structure factor is a complex 

number, so we can embed it as a vector in a 2D Euclidean space. Thus, for each protein, we can 
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define a space with the dimension equal two times the number of computed structure factors. For 

example, for          we will have 7770 structure factors, so our space’s dimensionality is                        (we represent this space by a 2-column and a 7770-raw 

matrix). Subsequently, we compute the distances between each pair of elements in this matrix. 

We obtain an     matrix of the distances. In a similar way we obtain another matrix for the 

second protein. The next step is to compute the parameter  

    ∑∑ሺ        ሻ  
   

 
     ∑∑ሺ     

                   ሻ 
    

 (11) 

where dij  and ¢dij  are the elements of the distance matrix of each of the two proteins. This is an 

RMSD relation, except we have eliminated the average coefficient 1 ሺ ሺ   ሻሻ. Equation 11 in 

the vector form is 

 ۧ    ۦ             
 (12) 

Where
 
ۧ   ۦ       ∑ ∑             ,     is defined similarly (these are vector lengths, i.e., the 

sum of the squares of arrays), and ۦ    ۧ is the scalar product of the two protein vectors (i.e., the 

sum of the corresponding array multiplications). This scalar product indicates the correlation 

between two proteins, because if there is no correlation, then         , and if we have a 

maximum correlation (the two proteins are the same), then    . To obtain a direct measure of 

the similarity between two proteins, we define SV by rewriting Eq. 12 as follows: 

                    ⟨ |  ⟩           ቀ          ቁ. (13) 

Based on the above discussion, SV will satisfy the following inequality: 

                                              . (14) 

In other words, when the two proteins are the same, then       , and when they are 

completely different and there is no correlation between them, then     . 
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The Fourier transformation is a linear transform21, and it preserves the length and the inner 

product. Thus, the Fourier transform is an isometric mapping19,22,23. We have shown earlier in 

this paper that the      coefficients are the Fourier transforms of  . Therefore, SV is a good 

measure to compare two proteins. In the following box, we summarize the algorithm for 

computing the similarity between two proteins in several simple steps. 

 

Algorithm 

1. Obtain protein data from the PDB website (    position coordinates of all atoms). 

2. Sort atoms by their distances to the center of mass. It is assumed that all masses are distributed 

equally for all atoms. Another possibility could be to consider real masses of atoms. 

3. Convert Cartesian     coordinates of all atoms to the corresponding Euler angles,     relative 

to the center of mass of the protein. 

4. Define the shape function,      ሺ        ሻ    ሺ         ሻ  : the number of atoms  ሺ        ሻ corresponding to the ሺ        ሻ  position coordinates of the ith-atom in Euler angles. 

5. Compute the results of     ሺ        ሻ Eqs. 2–4. 

6. Compute the structure factor,      from the discrete form of Eq. 8: 

            ∑ ሺ        ሻ       ሺ        ሻ                   
    

We sum only over occupied atom positions because the shape function is zero when there is no 

atom in the voxel. Thus, the other terms are zero. 

7. Repeat steps 1–7 for each protein analyzed. 

8. Compute SV using Eq. 13 between two proteins selected for comparison. 
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Results and Discussion 

Table I lists CV and SV measures for selected pairs of protein structures as examples. 

We see that the correlation value, CV, does not give a good comparison between two proteins. 

This is because it is a criterion to compute the overlap between two manifolds in the reciprocal 

space. If the two proteins are similar, this criterion gives a good correlation between them 

because these two proteins have the same structure factors. However, for two different or 

partially different proteins the CV is not very accurate. 

To check our SV criterion, we have calculated the atomic shape function for the 1JFF-A structure 

by using the structure factors,     . Figure 1 shows the histograms and plots of   and its 

reconstructions             ∑               for     and      for 1JFF-A. We see that the 

reconstructed functions,          , are in good agreement with  , especially when      increases. 

Figure 2 shows that when the surface under a pocket of the structure factors is normalized to one, 

the structure factor for a given   has the Poissonian distribution: 

 
 ሺ    ሻ    ሺ    ሻ√∑ ∑     ሺ    ሻ                ሺ ሻ           (15) 

where      ሺ      ሻ and   ሺ    ሻ . The Poissonian distribution is usually considered 

to be a continuous distribution. However, here we make it discrete since we need to perform a 

numerical computation. The maximum probability value for the Poissonian distribution occurs 

when     and the magnitude of the corresponding peak for probability is then equal to 

   ሺ   ሻ              √ ሺ     ሻ  (16) 

where we used Stirling’s approximation relation, i.e.    √ ሺ     ሻ       . The peaks in 

Fig. 2 are in good agreement with Eq. 11. This is another test to confirm the validity of our 

method, since it gives the same result as the one obtained in x-ray pattern intensity distributions 

and in Poisson’s distribution for random interactions between radiation and matter24,25. 
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In the following discussion we wish to highlight the differences between our method and other 

methods. The methods introduced for comparing protein similarities are normally based on the 

following the proteome-scale protein structure modeling, score function comparison, obtaining 

moments or descriptors, comparing RMSD between residues or chains of two proteins7,26–49. 

Discussing all the methods is out of scope in this paper, but here, we review some methods, 

which may appear similar to our method. One of these methods involves spherical polar Fourier 

shape density functions (SPF)26. This method uses the expansion of the 3D density function in 

terms of radial and spherical harmonic functions and computes the correlation coefficients 

between two density function expansion coefficients. The other method uses Zernike descriptors.  

The Zernike functions are extensions of the spherical harmonic functions. The Zernike 

descriptors were first used by Novotni and Klein27 to compare two shapes in shape searching 

algorithms in computer science. Later they were adapted for protein comparison purposes28,29. 

The 3D Zernike method is a rotational invariant method and it finds a descriptor which 

represents a given shape. By comparing the descriptors, the similarities between any two shapes 

could be determined. Another method that should be mentioned here is the spherical harmonic 

method7,28. This method expands a shape function in terms of spherical harmonic functions. 

After some algebraic computations, the spherical harmonic method defines the descriptors and 

compares them. The above methods use moment or descriptor concepts to compare proteins.  

Some methods have used RMSD values as a score to compare between two structures but 

because of the different protein sizes normally these methods use RMSD only partially. For 

example, some of these methods have used a difference between the intra-structural residue–

residue distances, e.g. Dali45,46, CE47, or between inter-structural residue-residue distances, such 

as STRUCTAL15, SAL48 and TM-score40.  Our method is different from these structural methods 

for the following reasons: 

1. Using the Wigner-D function does not require a definition of a radial function, as is done in 

the 3D Zernike, spherical harmonic or SPE methods. The three angles in the Wigner-D 

functions are the Euler angles and it is well known from classical mechanics that moving 

through a 3D rigid body is possible by using three Euler angles. 

2. We show that the expansion coefficients of the shape function defined by the Wigner-D 

functions are equivalent to the Fourier transform of the shape function (see more details in 
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the Basic Mathematical Idea section). Thus, we introduce the expansion coefficients of a 

shape function in terms of Wigner-D functions as structure factors. 

3. It is well known that the Fourier transform (consequently an expansion on the Wigner-D 

function) is a linear transform and hence it preserves isometry17,18,22,23. Thus, if we define a 

RMSD-type criterion, like Similarity Value between structure factors, we prove 

mathematically that the properties obtained in the reciprocal space reflect the same properties 

in the position space. That means that if in the reciprocal space two proteins are similar, the 

same result holds true in the position space (provided a method of comparison is defined). 

4. The size of a protein analyzed does not affect our comparison. This is because we are able to 

compare two proteins with the same size in reciprocal space, even though they may be 

different in position space, and we can choose the dimension of reciprocal space according to 

a desired level of accuracy. Note that in reality the expansion terms have to go to infinity but 

similar to other computational calculations, we should choose a cutoff in order to terminate 

this divergence. The number of expansion coefficients used increases the level of accuracy 

but also the cost of computation. 

5. Contrary to inductive methods, our method is deductive and it is proved by mathematics, thus 

it does not rely on a great deal of experience to be validated. This is why we did not need to 

compare a large number of proteins in our manuscript and only a few number of known 

proteins are given as examples. Nonetheless, we compared our method results with two other 

sets i.e. 48 set and 86 set, where both liganded, unliganded proteins are listed, and RMSD 

values in the supplementary material of Li et al.1 (These sets are reported in 

http://dragon.bio.purdue.edu/visgrid_suppl). Note that RMSD values are computed in the 

position space. Tables II  and III  show that our SV values (computed in reciprocal space) are 

in good agreement with the RMSD values reported in Li et al.1. When an RMSD value 

between two proteins structures increases, SV decreases which means that the similarity 

between these two proteins decreases. Some differences between two results that can be 

found in the tables are related to the partial computation of RMSD value, especially when the 

number of atoms in the two proteins compared is different. This good agreement between 

RMSD values and SVs indicates that our SV is a reliable parameter for comparing any two 
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proteins. In some algorithms, using RMSD values in a part of the algorithm, RMSD can be 

replaced by SV as an alternative parameter. This is because SV is equivalent to RMSD and SV 

can be computed more precisely than RMSD for proteins with different sizes. However, it 

should be kept in mind that the cost of computation for SV is about 33 seconds for comparing 

two proteins using a laptop with an Intel Core i7 CPU. 

Below we discuss a specific example by explaining the SVs results for 1JFF and their monomers 

(1JFF-A and 1JFF-B). As we know, 1JFF-A has             , 1JFF-B has              and 1JFF has the sum of both monomers atoms i.e.               . The SVs 

reported between these macromolecules in Table I are:  

1JFF 1JFF-A SV = 0.2091 

1JFF 1JFF-B SV = 0.4967 

1JFF-A 1JFF-B SV = 0.2271 

Here, we discuss these results in more detail. To simplify notation, we represent 1JFF-A with A, 

1JFF-B with B, and 1JFF with AB. Their distance matrices are defined by  ሺ   ሻ which has     arrays, similarly  ሺ   ሻ with s ´ s matrix elements, and  ሺ     ሻ with ሺ   ሻ  ሺ   ሻ  
arrays. Note that here we define distance matrix   in position space. We can write  ሺ     ሻ as 

  ሺ     ሻ   ሺ   ሻ   ሺ   ሻ   ሺ   ሻ    ሺ   ሻ (17) 

where   indicates direct sum between matrices (see Fig. 3). We note that  ሺ   ሻ and  ሺ   ሻare 

transpose of each other. Let us assume an unknown direct way (in position space and not in 

reciprocal space), then we can find the RMSD between the above structures. We then compute 

the following terms 

 
    ሺ   ሻ  ∑[ ሺ   ሻ   ሺ   ሻ]     ሺ    ሻ  ∑[ ሺ     ሻ   ሺ   ሻ]     ሺ    ሻ  ∑[ ሺ     ሻ   ሺ   ሻ]    (18) 

where [ ]    means that all arrays of the matrix in the bracket will be squared, ∑[ ] is defined as 

summation over all matrix arrays in the bracket, [ ],    indicates “an imaginary minus sign” 

between two different size matrices (the difference between matrix sizes is a serious problem 
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when trying to define a corresponding RMSD) and we do not know how it acts. Now, we expand    between AB and A and B. First, we have    ሺ    ሻ   ∑[ ሺ     ሻ   ሺ   ሻ]   ∑[ ሺ   ሻ   ሺ   ሻ   ሺ   ሻ    ሺ   ሻ   ሺ   ሻ]    

 (19) 

Similarly, we find that   ሺ    ሻ  ∑ [ ሺ     ሻ   ሺ   ሻ]    ∑[ ሺ   ሻ   ሺ   ሻ   ሺ   ሻ   ሺ   ሻ   ሺ   ሻ]    

 (20) 

We readily see that  ሺ    ሻ    ሺ    ሻ. This shows that two monomers do not have the 

same RMSD values or SVs.  

Now, one can add leaks of arrays in distance matrix of A (or B) with respect to the distance 

matrix size of AB by adding zeros (see Fig. 4). Note that this assumption has not been proved 

and is only a heuristic. Thus, the following relation could be obtained (a derivation is given by 

Figs. 5 and 6) 

    ሺ    ሻ    ሺ    ሻ  |  ሺ   ሻ    ሺ   ሻ| (21) 

where   ሺ   ሻ  .ሺ   ሻ  ሺ   ሻۧ has a similar definition to the one mentioned after Eq. 12 ۦ 

However, this definition does not provide a normalized measure to compare with the SV. Now, 

we define SS  as follows 

      ሺ    ሻ   ሺ    ሻ  |   ሺ   ሻ   ሺ   ሻ  ቀ  ሺ     ሻ   ሺ   ሻቁ| (22) 

where we have defined  ሺ    ሻ as follows 

  ሺ    ሻ    ሺ    ሻ  ቀ  ሺ     ሻ   ሺ   ሻቁ (23) 
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and  ሺ    ሻ is defined similarly. Here, to arrive at the right-hand side of Eq. 22 we 

approximated   ሺ   ሻ    ሺ   ሻ in the dominator. We will see later this is a very reasonable 

approximation.  

The computation of    for 1JFF and its two monomers 1JFF-A and 1JFF-B results in   ሺ     ሻ               ,    ሺ   ሻ               and   ሺ   ሻ             in 

units of square Angstroms. From these values, it is easy to obtain  ሺ   ሻ     ሺ   ሻ               . To get a sense of the numerical values involved, in addition to our real case, we 

compute SS in Eq. 22 for a totally correlated ሺ  ሺ     ሻ   ሻ case and for an uncorrelated 

(  ሺ     ሻ    ሺ   ሻ    ሺ   ሻ)  case. Thus, we have 

    {  ቀ    ሺ   ሻ  ሺ   ሻቁ                                         ሺ   ሻ                                                  (24) 

The above equation shows that            . We normalize SS to ½  so that we have 

                ቀ          ቁ  {                                                            (25) 

Thus, for our case we have:                     . Now, we come back to SVs obtained in 

Table I that yields:   ሺ    ሻ    ሺ    ሻ                       . We see that these 

two results are in good agreement. Note that SSNormalized is obtained by using an approximation. 

Here in the structural form, we have shown why two monomers of 1JFF are different. Thus, if 

one of these monomers is similar to 1JFF the other could not be similar and vice versa. 

 

Conclusions 

This paper introduces a new method to compare protein structures; it can be generalized to 

compare arbitrary shapes defined as a set of 3D coordinates. The novelty of our method lies in 

expanding the shape function using Wigner-D functions, showing that the expansion coefficients 

correspond to the structure factors, and using the RMSD measure in the reciprocal space (for the 

structure factors) to define a similarity value, namely the SV parameter. We show that this 
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measure gives a corresponding similarity in the spatial domain because of the isometric property 

of the Fourier transform. We have verified our method by obtaining the shape function by using 

the structure factors and Wigner-D functions (see Fig. 2). The absolute values of the structure 

factors are the same as the intensities measured by x-ray scattering. We also show that the 

structure factor distribution is a Poisson distribution; as is well known, the intensity distribution 

for x-ray scattering is also a Poisson distribution. This result demonstrates the reliability of our 

method. The numerical results shown in Tables I–III  for SV also confirm the reliability and 

usefulness of our method. 

An important problem for similarity comparison methods is that the number of the protein atoms 

in an arbitrary pair of proteins is generally not the same. To address this problem, some methods 

use partial similarity measures between two proteins. However, in our method, despite the fact 

that the number of atoms of the two proteins being compared is different, the number of structure 

factors is the same in reciprocal space. This is another important advantage of our method. 

 

Acknowledgements 

S.M.S.F. acknowledge grant number 2/22306 from Ferdowsi University of Mashhad. J.A.T. 

gratefully acknowledges research support received from the National Science and Engineering 

Research Council (Canada), the Canadian Breast Cancer Foundation, and the Allard Foundation. 

  



16 

 

References 

1. Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D. Characterization of local 
geometry of protein surfaces with the visibility criterion. Proteins. 2008 May 1;71(2):670–683. 

2. Rupp B, Wang J. Predictive models for protein crystallization. Methods (San Diego, Calif.). 
2004 November;34(3):390–407. 

3. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based 
environment for protein structure homology modelling. Bioinformatics (Oxford, England). 2006 
January 15;22(2):195–201. 

4. Kolodny R, Petrey D, Honig B. Protein structure comparison: implications for the nature of 
“fold space”, and structure and function prediction. Current opinion in structural biology. 2006 
June;16(3):393–398. 

5. Carugo O. Recent progress in measuring structural similarity between proteins. Current 
protein & peptide science. 2007 June;8(3):219–241. 

6. Wolfson HJ, Rigoutsos I. Geometric hashing: an overview. IEEE Computational Science 
Engineering. 1997 December;4(4):10 –21. 

7. Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, Jacobs D. A search 
engine for 3D models. ACM Trans. Graph. 2003 January;22(1):83–105. 

8. Kihara D, Sael L, Chikhi R, Esquivel-Rodriguez J. Molecular surface representation using 3D 
Zernike descriptors for protein shape comparison and docking. Current protein & peptide 
science. 2011 September;12(6):520–530. 

9. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins 
database for the investigation of sequences and structures. Journal of molecular biology. 1995 
April 7;247(4):536–540. 

10. Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJP, Chothia C, Murzin AG. 
Data growth and its impact on the SCOP database: new developments. Nucleic acids research. 
2008 January;36(Database issue):D419–425. 

11. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM. CATH--a 
hierarchic classification of protein domain structures. Structure (London, England: 1993). 1997 
August 15;5(8):1093–1108. 

12. Holm L, Ouzounis C, Sander C, Tuparev G, Vriend G. A database of protein structure 
families with common folding motifs. Protein science: a publication of the Protein Society. 1992 
December;1(12):1691–1698. 



17 

 

13. Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-
dimensional structures of globular proteins. Journal of molecular biology. 1994 January 
14;235(2):625–634. 

14. Carugo O, Pongor S. A normalized root-mean-square distance for comparing protein three-
dimensional structures. Protein science: a publication of the Protein Society. 2001 
July;10(7):1470–1473. 

15. Levitt M, Gerstein M. STRUCTAL. A structural alignment program. Stanford University; 
2005. Available from: http://csb.stanford.edu/levitt/Structal 

16. Wigner EP. Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der 
Atomspektren. Braunschweig: Vieweg Verlag; 1931. 

17. Potts D, Prestin J, Vollrath A. A fast algorithm for nonequispaced Fourier transforms on the 
rotation group. Numerical Algorithms. 2009 November 1;52(3):355–384. 

18. Hielscher R, Potts D, Prestin J, Schaeben H, Schmalz M. The Radon transform on SO(3): a 
Fourier slice theorem and numerical inversion. Inverse Problems. 2008 April 1;24(2):025011. 

19. Lipson H, Taylor CA. Fourier transforms and X-ray diffraction. London: Bell; 1958. 

20. Löwe J, Li H, Downing KH, Nogales E. Refined structure of alpha beta-tubulin at 3.5 A 
resolution. Journal of molecular biology. 2001 November 9;313(5):1045–1057. 

21. Arfken JB, Weber HB. Mathematical methods for physicists. 6th ed. Burlington, MA: 
Elsevier; 2005. 

22. Curtis CW. Linear Algebra. Undergraduate texts in mathematics. Springer-Verlag, New 
York,; 1984. 

23. Titchmarsh EC. Introduction to Theory of the Fourier Integrals. 2nd ed. London: Oxford 
University Press; 1948. 

24. Huldt G, Szoke A, Hajdu J. Diffraction imaging of single particles and biomolecules. Journal 
of structural biology. 2003 November;144(1-2):219–227. 

25. Wilson AJC. The probability distribution of X-ray intensities. Acta Crystallographica. 1949 
October 1;2(5):318–321. 

26. Ritchie DW, Kemp GJ. Protein docking using spherical polar Fourier correlations. Proteins. 
2000 May 1;39(2):178–194. 

27. Novotni M, Klein R. Shape retrieval using 3D Zernike descriptors. Computer-Aided Design. 
2004 September 15;36(11):1047–1062. 



18 

 

28. Sael L, Li B, La D, Fang Y, Ramani K, Rustamov R, Kihara D. Fast protein tertiary structure 
retrieval based on global surface shape similarity. Proteins: Structure, Function, and 
Bioinformatics. 2008;72(4):1259–1273. 

29. Venkatraman V, Yang YD, Sael L, Kihara D. Protein-protein docking using region-based 3D 
Zernike descriptors. BMC bioinformatics. 2009;10:407. 

30. Chikhi R, Sael L, Kihara D. Protein Binding Ligand Prediction Using Moments-Based 
Methods. In: Kihara D, editor. Protein Function Prediction for Omics Era. Springer Netherlands; 
2011. pp. 145–163. 

31. An J, Totrov M, Abagyan R. Pocketome via comprehensive identification and classification 
of ligand binding envelopes. Molecular & cellular proteomics: MCP. 2005 June;4(6):752–761. 

32. Brunet D, Vrscay ER, Wang Z. On the mathematical properties of the structural similarity 
index. IEEE transactions on image processing: a publication of the IEEE Signal Processing 
Society. 2012 April;21(4):1488–1499. 

33. Heyne S, Costa F, Rose D, Backofen R. GraphClust: alignment-free structural clustering of 
local RNA secondary structures. Bioinformatics. 2012 June 15;28(12):i224–i232. 

34. Feng J, Meyer CA, Wang Q, Liu JS, Shirley Liu X, Zhang Y. GFOLD: a generalized fold 
change for ranking differentially expressed genes from RNA-seq data. Bioinformatics (Oxford, 
England). 2012 November 1;28(21):2782–2788. 

35. Carugo O, Pongor S. Protein fold similarity estimated by a probabilistic approach based on 
C(alpha)-C(alpha) distance comparison. Journal of molecular biology. 2002 January 
25;315(4):887–898. 

36. Huang C-D, Lin C-T, Pal NR. Hierarchical learning architecture with automatic feature 
selection for multiclass protein fold classification. IEEE transactions on nanobioscience. 2003 
December;2(4):221–232. 

37. Rogen P, Fain B. Automatic classification of protein structure by using Gauss integrals. 
Proceedings of the National Academy of Sciences of the United States of America. 2003 January 
7;100(1):119–124. 

38. An J, Totrov M, Abagyan R. Comprehensive identification of “druggable” protein ligand 
binding sites. Genome informatics. International Conference on Genome Informatics. 
2004;15(2):31–41. 

39. Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation invariant spherical harmonic 
representation of 3D shape descriptors. In: Proceedings of the 2003 Eurographics/ACM 
SIGGRAPH symposium on Geometry processing. SGP  ’03. Aire-la-Ville, Switzerland, 
Switzerland: Eurographics Association; 2003. pp. 156–164. 



19 

 

40. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-
score. Nucleic acids research. 2005;33(7):2302–2309. 

41. Betancourt MR, Skolnick J. Universal similarity measure for comparing protein structures. 
Biopolymers. 2001 October 15;59(5):305–309. 

42. Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure 
template quality. Proteins. 2004 December 1;57(4):702–710. 

43. Levitt M, Gerstein M. A unified statistical framework for sequence comparison and structure 
comparison. Proceedings of the National Academy of Sciences. 1998 May 26;95(11):5913–
5920. 

44. Lathrop RH. The protein threading problem with sequence amino acid interaction 
preferences is NP-complete. Protein engineering. 1994 September;7(9):1059–1068. 

45. Holm L, Sander C. Protein structure comparison by alignment of distance matrices. Journal 
of molecular biology. 1993 September 5;233(1):123–138. 

46. Holm L, Sander C. Dali: a network tool for protein structure comparison. Trends in 
biochemical sciences. 1995 November;20(11):478–480. 

47. Shindyalov IN, Bourne PE. Protein structure alignment by incremental combinatorial 
extension (CE) of the optimal path. Protein engineering. 1998 September;11(9):739–747. 

48. Kihara D, Skolnick J. The PDB is a covering set of small protein structures. Journal of 
molecular biology. 2003 December 5;334(4):793–802. 

49. Mavridis L, Venkatraman V, Ritchie D, Morikawa H, Andonov R, Cornu A, Malod-Dognin 
N, Nicolas J, Temerinac-Ott M, Reisert M, et al. SHREC’10 Track: Protein Models. In: ; 2010. 

 

  



20 

 

 

Figure Legends 

Fig. 1. Histograms (a) and plots (b) of the shape function    (blue) and its reconstructions           
for          (green) and           (red) for 1JFF-A. We see that the reconstructed           are in good agreement with   when      increases. 

Fig. 2. Panel (a) shows non-normalized absolute values of structure factors. The abscissa is the 

total number of structure factors. Panel (b) shows the normalized area under the curve to one of 

the absolute values of the structure factors for each  . The abscissa is the value ofሺ    ሻ . 

Fig. 3. A schematic of the distance matrix representation. 

Fig. 4. Extended  ሺ   ሻ   matrix. Here we add zeros to change the size of  ሺ   ሻ   from     

to ሺ   ሻ  ሺ   ሻ. 
Fig. 5. A schematic representation of obtaining  ሺ    ሻ. The subtraction of the two top matrices 

yields the bottom matrix. 

Fig. 6. Top. Squared arrays of  ሺ    ሻ and  ሺ    ሻ.  “   ” means that all arrays of the matrix 

will be squared. The sum over all arrays of these matrices yields    as defined by Eq. 11. 

Bottom. Subtraction of two top matrices. Normally, we should subtract the sum of two top 

matrices. But, here to show the derivation of our formula in Eq. 21 before summation we 

subtract two top matrices and we see the result in the bottom. To solve Eq. 21, we have to sum 

over all arrays of bottom matrix. The minus sign causes the change of shading on  ሺ   ሻ    in 

the bottom matrix. 
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Table I. Comparison between pairs of proteins using correlation value (CV) and similarity value (SV). 

1JFF, 1SA0, 1TUB, and 1FSZ are all structures of proteins in the tubulin-FtsZ superfamily. 1ATN is a 

structure for actin. Comparisons between unrelated protein pairs (tubulin-FtsZ superfamily with actin) are 

italicized. 

 

First 
Protein’s 
PDB ID 

Second 
Protein’s 
PDB ID 

Correlation 
Value (CV) 

Similarity 
Value (SV) 

1JFF 1ATN 0.3962 0.0002 
1JFF 1FSZ 0.9661 0.3453 
1JFF 1SA0 0.9361 0.0981 
1JFF 1TUB 0.9933 0.4872 
1JFF 1JFF-A 0.9537 0.2091 
1JFF 1JFF-B 0.9987 0.4967 
1JFF-A 1JFF-B 0.9460 0.2271 
1JFF-A 1ATN 0.5634 0.0010 
1JFF-A 1SA0 0.9955 0.3771 
1JFF-A 1TUB 0.9300 0.2425 
1JFF-A 1FSZ 0.9795 0.4131 
1JFF-B 1SA0 0.9270 0.1073 
1JFF-B 1ATN 0.3782 0.0002 
1JFF-B 1TUB 0.9969 0.4962 
1JFF-B 1FSZ 0.9637 0.3689 
1ATN 1SA0 0.5973 0.0023 
1ATN 1FSZ 0.5016 0.0005 
1ATN 1TUB 0.3639 0.0002 
1SA0 1FSZ 0.9806 0.2322 
1SA0 1TUB 0.9085 0.1154 
1FSZ 1TUB 0.9489 0.3852 
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Table II. Set of 48 protein structures with SV and RMSD from Li et al.1 for comparison. The SVs are 

computed from structure factors for lmax = 7. 

 

First 
Protein’s 
PDB ID 

Second 
Protein’s 
PDB ID 

Similarity 
Value (SV) RMSD [1] 

1A6W 1A6U 0.198 0.34 

1MRG 1AHC 0.401 0.43 

1RNE 1BBS 0.316 0.61 

1RBP 1BRQ 0.108 0.62 

1BYB 1BYA 0.499 0.43 

1HFC 1CGE 0.399 0.37 

3GCH 1CHG 0.070 1.10 

1BLH 1DJB 0.497 0.23 

1INC 1ESA 0.397 0.21 

1GCA 1GCG 0.499 0.32 

1HEW 1HEL 0.498 0.21 

1IDA 1HSI 0.083 1.07 

1DWD 1HXF 0.150 0.27 

2IFB 1IFB 0.382 0.37 

1IMB 1IME 0.498 0.22 

2PK4 1KRN 0.445 0.39 

2TMN 1L3F 0.266 0.62 

1IVD 1NNA 0.426 1.23 

1HYT 1NPC 0.332 0.88 

1PDZ 1PDY 0.499 0.66 

1PHD 1PHC 0.499 0.17 

1PSO 1PSN 0.499 0.33 

1SRF 1PTS 0.498 0.26 
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1ACJ 1QIF 0.497 0.31 

1SNC 1STN 0.495 0.70 

1STP 1SWB 0.145 0.33 

1ULB 1ULA 0.474 0.79 

2YPI 1YPI 0.165 1.27 

2H4N 2CBA 0.498 0.20 

2CTC 2CTB 0.499 0.15 

5CNA 2CTV 0.034 0.40 

1FBP 2FBP 0.494 1.06 

2SIM 2SIL 0.499 0.14 

1MTW 2TGA 0.159 0.42 

1APU 3APP 0.498 0.40 

1QPE 3LCK 0.465 0.28 

5P2P 3P2P 0.480 0.42 

4PHV 3PHV 0.045 1.23 

3PTB 3PTN 0.122 0.26 

1BID 3TMS 0.499 0.24 

1OKM 4CA2 0.472 0.22 

4DFR 5DFR 0.496 0.82 

3MTH 6INS 0.381 1.09 

6RSA 7RAT 0.440 0.18 

1CDO 8ADH 0.403 1.34 

7CPA 5CPA 0.132 0.40 

1ROB 8RAT 0.469 0.28 

1IGJ 1A4J 0.411 0.80 
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Table III. Set of 86 protein structures with SV and RMSD from Li et al.1 for comparison. The SVs are 

computed from structure factors for lmax = 7. 

 

First 
Protein’s 
PDB ID 

Second 
Protein’s 
PDB ID 

Similarity 
Value (SV) RMSD [1] 

1AD4 1AD1 0.499 0.50 

1AHX 1AHG 0.499 0.24 

1AUR 1AUO 0.499 0.20 

1AXZ 1AXY 0.498 0.12 

1GN8 1B6T 0.491 0.51 

1B9Z 1B90 0.494 0.54 

1LRI 1BEO 0.498 1.05 

1BUL 1BUE 0.499 0.18 

1BYD 1BYA 0.499 0.43 

1C3R 1C3P 0.202 0.39 

1C5I 1C5H 0.494 0.13 

1QJW 1CB2 0.498 0.63 

1CTE 1CPJ 0.499 0.29 

1SZJ 1CRW 0.499 0.33 

1ESW 1CWY 0.498 0.38 

1CY7 1CY0 0.155 1.12 

1DED 1D7F 0.481 0.26 

1P7T 1D8C 0.406 0.66 

1DMY 1DMX 0.499 0.19 

1DQY 1DQZ 0.052 0.75 

1LP6 1DV7 0.471 0.56 

1E2S 1E1Z 0.499 0.13 

1ESE 1ESC 0.499 0.19 
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6ALD 1EWD 0.477 0.44 

1NLM 1F0K 0.163 1.66 

1F4X 1F4W 0.488 0.25 

1JBW 1FGS 0.430 1.48 

1FR8 1FGX 0.498 0.54 

1LD8 1FT1 0.416 0.92 

1HVC 1G6L 0.345 0.46 

1LSP 1GBS 0.360 0.26 

1LC3 1GCU 0.458 0.77 

1GJW 1GJU 0.499 0.29 

1N75 1GLN 0.422 1.47 

1GOY 1GOU 0.476 0.47 

1H46 1GPI 0.193 0.15 

1GUZ 1GV1 0.383 0.62 

1YDD 1HEA 0.491 0.18 

1YDA 1HEB 0.498 0.20 

1KIC 1HOZ 0.420 0.35 

1A80 1HW6 0.466 0.93 

1I3A 1I39 0.498 0.40 

4AIG 1IAG 0.494 0.26 

1JZS 1ILE 0.497 0.69 

1JQ3 1INL 0.493 0.35 

1JAY 1JAX 0.435 0.60 

1UEH 1JP3 0.499 0.67 

1JSO 1JSM 0.499 0.10 

1JYL 1JYK 0.208 0.94 

1JVS 1K5H 0.351 1.16 
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1K70 1K6W 0.497 1.08 

1M6P 1KEO 0.136 1.05 

3KIV 1KIV 0.467 0.30 

1KMP 1KMO 0.498 0.64 

2NGR 1KZ7 0.467 1.61 

2MIN 1L5H 0.084 0.55 

1LL2 1LL3 0.496 0.37 

1LMC 1LMN 0.499 0.10 

1EYN 1NAW 0.208 1.02 

1BHT 1NK1 0.033 0.58 

1PBO 1OBP 0.143 0.38 

1OPB 1OPA 0.295 0.68 

1I75 1PAM 0.499 0.13 

1NME 1PAU 0.499 0.29 

1KEV 1PED 0.281 0.81 

1PIG 1PIF 0.495 0.32 

1PJC 1PJB 0.498 0.61 

1KLT 1PJP 0.168 0.97 

1QHG 1PJR 0.499 0.23 

1CEB 1PKR 0.041 0.58 

2PK4 1PMK 0.417 0.71 

1BK9 1PSJ 0.494 0.24 

1QBB 1QBA 0.497 0.11 

1PYY 1QME 0.157 0.59 

1OSS 1SGT 0.367 0.27 

1SWN 1SWL 0.497 0.31 

1LBT 1TCA 0.440 0.24 
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1WBL 1WBF 0.371 0.39 

1YDB 1YDC 0.491 0.12 

1H0S 2DHQ 0.499 0.26 

1LLO 2HVM 0.498 0.12 

43CA 43C9 0.491 0.23 

5BIR 4BIR 0.487 0.61 

5EUG 4EUG 0.498 0.21 

5EAU 5EAS 0.064 0.40 

7TAA 6TAA 0.499 0.24 

 

 

 


