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Abstract

The indentation response of glasses can be classified under three headings: normal, anomalous and intermediate,
depending on the deformation mechanism and the cracking response. Silica glass, as a typical anomalous glass,
deforms primarily by densification and has a strong tendencyto form cone cracks that can accompany median,
radial and lateral cracks when indented with a Vickers tip. This is due to its propensity to deform elastically
by resisting plastic flow. Several investigations of this anomalous behavior can be found in the literature. The
present paper serves to corroborate these results numerically using the discrete element method. A new pressure-
densification model is developed in this work that allows fora quantitative estimate of the densification under very
high pressure. This model is applied to simulate the Vickersindentation response of silica glass under various
indentation forces using the discrete element method first,and then a discrete-continuum coupling method with
large simulation domains to suppress the side effects and reduce the computational time. This coupling involves
the discrete element method (DEM) and the constrained natural element method (CNEM). The numerical results
obtained in this work compare favorably with past experimental results.

Keywords: Brittle, Amorphous, Glassy silica, Densification, Fracture, Indentation, Discrete elements,
discrete-continuum coupling

1. Introduction

Because of their excellent physical (i.e. mechanical, thermal and optical) properties in addition to excellent chemi-
cal resistance, several types of glasses have become the main focus of several researchers. According to the depen-
dence of various properties such as density, hardness, refractive index, Young’s and shear moduli with the pressure
and fictive temperature (defined in a simple manner as the temperature at which the glass would be in thermal
equilibrium), glasses can be classified under three headings: normal, intermediate and anomalous. Normal glasses,
such as soda-lime silicate glass, exhibit properties decreasing with increasing fictive temperature and pressure.
Anomalous glasses, such as germania, exhibit the opposite trend in these properties. Intermediate between normal
and anomalous glasses are expected to have some properties that are independent of these parameters (i.e. pressure
and fictive temperature). Of particular interest is silica glass which is known to exhibit anomalous behavior in its
thermal and mechanical properties [1, 2]. Furthermore, certain properties of this type of glass such as the Young’s
and shear moduli and the density show an anomalous dependence on the fictive temperature. When indented with
a Vickers tip, silica glass exhibits a cracking pattern thatis more complex than in a typical normal glass, such as
soda-lime silicate [3, 4]. Specifically, silica glass has a strong tendency to form ring cracks at the periphery of the
indenter impression, but other crack systems typical of normal glasses, i.e. median, radial and lateral cracks, can
be introduced [5, 6]. The anomalous cracking response in silica glass is due to its propensity to deform elastically
by resisting inelastic flow. In the region of ordinary hydrostatic pressures (up to approximately 8GPa), silica glass
behaves in a perfectly elastic manner. However, and contrary to crystalline solids, when the hydrostatic pressure
is in the 8GPa range or beyond, silica glass begins to exhibit signs of permanent deformation. The permanent
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deformation of silica glass, which is an amorphous solid, isvery different from the plastic flow found in crystalline
solids. Indeed, the plastic flow in crystalline solids is volume-conservative and initiates under shear stress only.
The spherical part of the stress tensor has no influence on theplastic flow. However, the permanent deformation of
silica glass is always accompanied by a volume change. In addition, as found in several previous works [7, 8, 9, 10],
it can initiate under hydrostatic pressure. There are several works on this subject in the literature, some of which
are controversial. It began with the works of Bridgman and Šimon [7]. They demonstrated that amorphous silica
exhibits permanent densification which translates to a permanent volume decrease of approximately 7.5 % at ap-
proximately 20GPa. They also demonstrated that this propensity decreases when other substances are added, such
as sodium oxide,Na2O. However, at that time, technical difficulties prevented the generation of strictly hydrostatic
conditions at pressures above 5GPa[7]. Uniaxial pressures were applied on thin disks to study the densification of
glasses. Unfortunately, these tests induced additional shear stresses, which explain the systematic fracturing of the
samples.
Cohen and Roy [11] studied the densification of silica powderunder uniaxial pressures. They found that the
densification begins at approximately 2GPa(10GPain Bridgman and Šimon’s work [7]) and the volume reduction
can far exceed 7.5 %. According to Reference [12], the difference between the previous results is due to the shearing
effects, which are most important in the case of silica powder and allows a greater densification level to be reached.
This explanation was belied later by Cohen and Roy [13], who excluded the shearing effects on the densification
level. For more details, the reader can refer to [14]. Several other works treating the shearing effects can be found
in the literature [15, 16, 17]. At present, this subject has not been resolved, and the role of the shearing stresses in
densification remains ambiguous.
In the present work, the densification of silica glass is studied numerically using a discrete element method devel-
oped by Andréet al. [18, 19] for brittle continuous media. A new densification model based on the compressive
stress in the cohesive bonds between the neighboring discrete elements is proposed. As will be shown later, this
model provides a relatively good quantitative estimate of silica glass densification under high hydrostatic pressure
(in comparison to previous numerical studies [8]). Subsequently, the influence of the densification on the cracking
response of silica glass indented with a Vickers tip is investigated using a new fracture model recently developed
by Andréet al. [20]. This model, based on the notion of virial stress [21, 22], accurately simulates the cracking
mechanisms at both the macroscopic and microscopic scales.
This paper is organized as follows: in Section 2, the elasticmodel of silica glass is briefly reviewed. Subsequently,
the densification model developed in this work is presented.Then, the calibration procedure using hydrostatic
compression on thick samples (spheres) is detailed. Section 3 reviews the fracture model used to model the cracking
behavior of silica glass indented with a Vickers tip. In Section 4, the Vickers indentation process in silica glass
is simulated using the discrete element method first, and then the discrete-continuum coupling method, between
the discrete element method (DEM) and the constrained natural element method (CNEM) [23], is introduced to
reduce the side effects and the computational time. Low indentation forces areapplied, initially, to study the
densification behavior in the absence of fracturing. Next, high indentation forces are applied to study the influence
of densification on the cracking behavior. Section 5 presents the conclusions.

2. Silica behavior modeling

2.1. Elasticity
The variation of the discrete element method (DEM) used hereis that developed by Andréet al. [18] and imple-
mented in the GranOO workbench (software)1. The elastic behavior of silica glass is modeled using cylindrical
elastic “cohesive beams” having geometric (lengthlµ and dimensionless radius ˜rµ, defined as the ratio of the beam
radius to the mean particle radius) and mechanical properties (Young’s modulusEµ and Poisson’s ratioνµ) between
the adjacent discrete elements (Fig. 1).
The Euler-Bernoulli analytical model of a beam [24] is used to compute the beam forces and torques on the discrete
elements connected to this beam ((1), (2), (3) and (4)). Hereafter, the subscript “µ” denotes microscopic quantities.

1http://www.granoo.org
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Figure 1:Elastic beam model between two adjacent discrete elements

Table 1:The microscopic elastic parameters of silica glass (obtained by calibration)

Young’s Modulus Poisson’s ratio Dimensionless radius
Eµ = 414GPa νµ = 0.3 r̃µ = 0.57

FDE1
µ = +EµSµ

∆lµ
lµ

x +
6EµIµ

l2µ
(−(θ2z + θ1z)y + (θ2y + θ1y)z) (1)

FDE2
µ = −EµSµ

∆lµ
lµ

x −
6EµIµ

l2µ
(−(θ2z + θ1z)y + (θ2y + θ1y)z) (2)

TDE1
µ = +

GµIoµ
lµ

(θ2x + θ1x)x −
2EµIµ

lµ
((θ2y + 2θ1y)y + (θ2z + 2θ1z)z) (3)

TDE2
µ = −

GµIoµ
lµ

(θ2x + θ1x)x −
2EµIµ

lµ
((2θ2y + θ1y)y + (2θ2z + θ1z)z) (4)

Where:

• R(x, y, z) is the beam local frame wherex is the beam axis.

• FDE1
µ and FDE2

µ are the beam force reactions acting on discrete elements 1 and 2 (connected to this beam
bond).

• TDE1
µ andTDE2

µ are the beam torque reactions acting on discrete elements 1 and 2.

• lµ and∆lµ are the initial beam length and the longitudinal deflection.

• θ1(θ1x, θ1y, θ1z) andθ2(θ2x, θ2y, θ2z) are the rotations of the beam cross sections expressed in the beam local
frame.

• Sµ, Ioµ andIµ are the beam cross-sectional area, the polar moment of inertia and the moment of inertia with
respect to they andz axes, respectively.

• Eµ andGµ are the Young’s and shear moduli, respectively.

Table 1 presents the microscopic elastic cohesive beam properties that produce the expected macroscopic elastic
behavior of silica glass. These properties have been determined by calibration tests as explained in Reference [18].

2.2. Densification

2.2.1. Densification model
This subsection details how the densification behavior of silica glass is modeled. As explained in Section 1, several
studies examined the densification of glasses, in particular silica glass. Nearly all previous studies agreed that this
behavior takes place under high hydrostatic pressures. However, the effects of shearing on this phenomenon remain
a central issue of several scientific studies on glasses.

3



Figure 2:Densification model between two adjacent discrete elements

In this work, it is assumed that the effects of shearing on the densification are insignificant and these are dominated
by the hydrostatic pressure effects. Therefore, densification of silica glass will be supposed to occur only under
high hydrostatic pressures. There are many physical and mechanical reasons that support this assumption:

• According to the characteristics of materials, two main mechanisms can explain a permanent deformation
due to shear stresses: (i) In the case of crystalline solids,plasticity is due to dislocation slip, defined as
crystallographic defects within the crystalline structure. Silica glass which is an amorphous material lacks
the long-range order characteristic of a crystal. Therefore, it is very difficult for dislocation to develop and
move within its irregular structure [25]. (ii) In the case ofbrittle materials, such as rock and concrete, per-
manent deformation is caused predominantly by slip at micro-cracks. This generally weakens the material in
question and degrades its mechanical properties [26]. Thatis not the case for silica glass. In fact, permanent
deformation in silica glass enhances the mechanical properties [8, 14].

• Because silica glass is an isotropic material, permanent deformation due to shear stress is volume-conservative.
Therefore, even if a shear stress can cause silica glass plasticity, this does not affect the densification level
(volume change at given pressure). For an infinitesimal strain, the volume change can be expressed as:

dV
V0
= J − 1 � trace(ε)

wheredV is the volume change,V0 is the initial volume,J is the determinant of the Jacobian matrix andε is
the strain tensor. If only shear stresses are applied,trace(ε) = 0, and thereforedV = 0.

Based on the previous assumption (the shearing effects on the densification are insignificant compared with those
of hydrostatic pressure), a densification model adapted fordiscrete element models is developed in this work. A
“spring-slider” system is connected in series with each cohesive beam linking two particles, as shown in Figure 2.
When the compression stress in the associated beamσc

beamreaches the microscopic densification pressureσd
µ, the

slider activates and the densification mechanism takes place. The densification level beyondσd
µ is controlled by the

microscopic tangential modulusEt
µ, which is adjustable (Fig. 3). Finally, to model the saturation stage, the slider

stops slipping above a certain limit controlled by the maximum microscopic permanent deformation of cohesive
bondsεp max

µ .
As shown in the literature [8, 14, 27], the macroscopic mechanical properties of silica glass increase with densifi-
cation. According to Ji [8], Young’s modulus (E) and Poisson’s ratio (ν) increase by 46% and 56%, respectively, at
the end of the densification process (Fig. 4). For the sake of simplicity, in the present work, the variations in these
two parameters with hydrostatic pressure (Fig. 4) are approximated by linear piecewise functions. The mechanical
properties remain constant until the densification pressure Pd is reached, then increase linearly betweenPd andPs

(the saturation pressure) and remain constant abovePs.
To take into account the macroscopic mechanical propertiesdependence with pressure in the densification model,
it is necessary to find the variations in the microscopic cohesive beam properties, which implies such macroscopic
variations. In other words, it is necessary to find relationships between the macroscopic and microscopic (of
cohesive beams) mechanical properties. Based on the work ofAndréet al. [18], the following conclusions can be
drawn:

• The microscopic Poisson’s ratio of cohesive beamsνµ has no influence on the macroscopic elastic behavior.
The latter depends only on the dimensionless cohesive beam radius ˜rµ and the microscopic Young’s modulus
Eµ.
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Figure 3:Equivalent cohesive bond behavior

Figure 4:Variations in mechanical properties with densification (taken from the experimental works of Ji [8])

5



Figure 5:Behavior of equivalent cohesive bond, taking into account the variation of the mechanical properties with densifica-
tion

• The macroscopic Poisson’s ratioν depends only on ˜rµ. The function relating these two parameters may be
approximated by a second-order polynomial.

• The macroscopic Young’s modulusE is a function of both ˜rµ andEµ. For a given value of ˜rµ, E depends
linearly onEµ, whereas it is a second-order function of ˜rµ for a constantEµ.

According to these facts, the relationships between the microscopic and macroscopic parameters can be written as
in (5) and (6):

r̃µ = a0 + a1ν + a2ν
2 (5)























E(Eµ, r̃µ) = b0(r̃µ) + b1(r̃µ) Eµ
b0(r̃µ) = b00 + b01r̃µ + b02r̃2

µ

b1(r̃µ) = b10 + b11r̃µ + b12r̃2
µ

(6)

The various parameters of Equations (5) and (6) were determined by calibration tests. Knowing of these relation-
ships ((5) and (6)), the variations of the microscopic properties of silica glass with pressure can be determined and
taken into account in the densification model. Figure 5 presents the cohesive bond behavior taking into account
the variation of the microscopic mechanical properties with densification. As can be shown in this Figure, the
relaxation slope (current microscopic Young’s modulus) increases with the densification state.

2.2.2. Calibration of the microscopic densification parameters
The densification model involves three microscopic parameters which are the microscopic densification pressure
σd
µ, the microscopic tangential modulusEt

µ and the maximum permanent deformation of the beam bondsε
p max
µ .

The macroscopic densification parameters are the densification pressurePd, the saturation pressurePs and the
volume change ratio∆V

V0
(or density change ratio∆ρ

ρ0
). Several studies have measured the densification of silica

glass, and different values of the macroscopic densification parameters can be found in the literature (Table 2). In
the present work, Ji’s results [8], which were obtained using thick samples, are used (Table 2) (because Ji conducted
a complete experimental study of densification and Vickers indentation for several types of glasses).
In this section, the microscopic densification parameters will be calibrated numerically to find the desired macro-
scopic densification behavior. A 100mm-diameter sphere model (thick model) subjected to hydrostatic compres-
sion is used for the calibration study.
One major problem of the discrete methods is the dependence of results on the discrete element number (Np)
used to discretize the numerical sample. Therefore, the influence of this parameter on the densification response
is first studied. The sphere model was discretized using various numbers of discrete elementsNp (from 100 to
20 000). The microscopic densification parameters were fixedas follows: the microscopic densification pressure
σd
µ = 5GPa, the microscopic tangential modulusEt

µ = 0GPa and the maximum permanent deformation of the
beam bondsεp max

µ = 0.05. Figure 6 presents the results of this study. For a small number of discrete elements
(Np), the densification response fluctuates greatly with this parameter (Fig. 6a). These fluctuations can be reduced
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Table 2:Macroscopic densification parameters of silica glass

Densification pressure,Pd Saturation pressure,Ps Volume change,∆V
V0

Literature [1, 2, 14, 35, 36] 5.9− 10GPa 20− 30GPa 17.4 %
Ji [8]: retained parameters in this work 8GPa 20GPa 17.4 %

(a) Small number of discrete elements (Np) (b) Great number of discrete elements (Np)

Figure 6:Sensitivity of the macroscopic densification behavior to the number of discrete elements (Np)

by increasingNp. BeyondNp = 10 000, the densification response becomes very weakly affected by the discrete
element number (Fig. 6b).
In the remainder of this section,Np = 10 000 discrete elements will be used to discretize the numerical samples.
To simplify the calibration process, the influence of the microscopic densification parameters on the macroscopic
silica behavior is studied. Figure 7a shows that the macroscopic densification pressurePd depends linearly on the
microscopic oneσd

µ. In addition, as observed in Figures 7b and 7c, this parameter is effectively independent of the
other microscopic properties, i.e.Et

µ andεp max
µ .

Figure 8 shows the influence of the various microscopic parameters on the macroscopic saturation pressurePs.
This parameter depends linearly on the microscopic densification pressureσd

µ, and it depends on the microscopic
tangential modulusEt

µ (around 12% variation forEt
µ up to 100GPa). However, it is effectively independent of the

maximum permanent deformation of the beam bondsεp max
µ (Fig. 8c), only 5%Ps variation forεp max

µ up to 0.12.
Concerning the third macroscopic parameter∆V

V0
, Figure 9 shows that this parameter depends only onEt

µ andεp max
µ

and it is effectively independent ofσd
µ.

After studying the influence of the microscopic parameters on the macroscopic densification behavior, calibration
becomes fairly easy. Because the macroscopic densificationpressurePd depends only on the microscopic oneσd

µ,
this parameter must be calibrated first. Subsequently, the microscopic tangent modulusEt

µ can be calibrated to
ensure the expected value of the macroscopic saturation pressure. Finally, the maximum permanent deformation
of the beam bondsεp max

µ can be set to find the appropriate global volume change. Table3 gives the calibrated
microscopic densification parameters that must be used to ensure the correct macroscopic densification behavior of
silica glass.

2.2.3. Validation
This subsection attempts to validate the microscopic densification parameters obtained by calibration (Table 3).
The same geometric model as for the calibration study is usedin this section. The various microscopic densification
parameters of cohesive beams are set as indicated in Table 3.This model is subjected to various hydrostatic

7



(a) Et
µ = 0GPa, εp

µ = 0.05

(b)σd
µ = 5GPa, εp

µ = 0.05

(c) σd
µ = 5GPa, Et

µ = 0GPa

Figure 7: Variation of macroscopic densification pressure (Pd) with the microscopic densification parameters: microscopic
densification pressure (σd

µ), microscopic tangential modulus (Et
µ) and maximum permanent deformation of the beam bonds

(εp max
µ )
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(a) Et
µ = 0GPa, εp

µ = 0.05

(b)σd
µ = 5GPa, εp

µ = 0.05

(c) σd
µ = 5GPa, Et

µ = 0GPa

Figure 8:Variation of macroscopic saturation pressure (Ps) with microscopic densification parameters: microscopic densifica-
tion pressure (σd

µ), microscopic tangential modulus (Et
µ) and maximum permanent deformation of the beam bonds (ε

p max
µ )
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(a) Et
µ = 0GPa, εp

µ = 0.05

(b)σd
µ = 5GPa, εp

µ = 0.05

(c) σd
µ = 5GPa, Et

µ = 0GPa

Figure 9:Variation of volume change (∆V
V0

) with microscopic densification parameters: microscopic densification pressure (σd
µ),

microscopic tangential modulus (Et
µ) and maximum permanent deformation of the beam bonds (ε

p max
µ )
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Table 3:The microscopic densification parameters of silica glass (obtained by calibration)

Micro. dens. pressure Micro. tangential modulus Max permanent def in the bonds
σd
µ = 7.13GPa Et

µ = 98.82GPa ε
p max
µ = 0.067

0 5 10 15 20 25 30 35 40

Hydrostatic compression, P (GPa)
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5

10

15
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D
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s
it
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e
,

∆
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ρ
0

∆ρ

ρ0
vs. P

Exp (Ji, 2007)

DEM computation

Figure 10:Density change with pressure: comparison between experimental [8, 9] and numerical results.

pressures. The associated permanent deformations are measured and compared to Ji’s [8] experimental results
(Fig. 10). As can be observed in Figure 10, the numerical results are in agreement with the experimental ones.

3. Fracture

The approaches most commonly used to model fracture in discrete methods, e.g. DEM [18, 19], are based on the
computation of bond strain [28] or stress [29]. The bond breaks if the associated strain (or stress) exceeds a given
value, generally determined by calibration tests. On the macroscopic scale, this criterion is moderately satisfactory
[19]. However, on the microscopic scale, it cannot reproduce correctly the cracking mechanisms [20]. Recently,
another criterion based on the computation of an equivalentof the stress tensor at each particle has been proposed
by Andréet al. [20]. This criterion is detailed in the remainder of this section.
The equivalent Cauchy stress is computed with the help of thenotion of virial stress which is the most commonly
used definition of stress in discrete particle systems, particularly in Molecular Dynamics (MD) [21]. This “stress”
includes two parts [21]: the first part depends on the mass andthe velocity (or, in some versions, the fluctuation
of the velocity) of particles; the second part depends on inter-particle forces and particle positions, providing a
continuum measure for the internal mechanical interactions between particles. In this definition, the average virial
stress over a volumeΩ around a particlei is given by (7)

Π̄ =
1
Ω

(−mi u̇i ⊗ u̇i +
1
2

∑

j,i

ri j ⊗ f i j ) (7)

wheremi andu̇i are, respectively, the mass and the velocity of the particlei, ri j = r j − ri, ri is the position vector of
particlei, f i j is the inter-particle force acting on particlei exerted by particlej and⊗ denotes the tensor product.
The virial stress (7) is widely used to compute an equivalentof Cauchy stress in discrete systems. Recently, Zhou
[22] demonstrated that this quantity is not a measure for mechanical forces between material points and cannot be
regarded as a measure of mechanical stress. Zhou proposed another formulation to compute the average mechanical
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stress, including only the second part of (7). For a regionΩ around a particlei, the average stress is:

σ̄ =
1

2Ω

∑

i∈Ω

∑

j,i

ri j ⊗ f i j (8)

The expressions (7) and (8) are developed for Molecular Dynamics (MD), where the inter-particle forces are a
function of the Lennard-Jones potentialΦ(ri j ) and the distance between the particles. In this instance, the two
expressions of stress (7) and (8) lead to symmetric tensors.However, this cannot be generalized to all other discrete
models. The variation of the DEM used here, where the particles are linked by cohesive beams, does not ensure the
symmetry condition of the resulting tensors. Andréet al. [20] proposed a slight modification of (8) to restore the
symmetry condition of the stress tensor as follows:

σ̄ =
1

2Ω

∑

i∈Ω

∑

j,i

1
2

(ri j ⊗ f i j + f i j ⊗ ri j ) (9)

An equivalent Cauchy stress tensor for each discrete element i is computed using (9), whereΩ = Ωi , the volume of
i (10).

σ̄i =
1

2Ωi

∑

j,i

1
2

(ri j ⊗ f i j + f i j ⊗ ri j ) (10)

According to Griffith theory [30, 31], the fracture of brittle solids initiatesunder tensile stress. Therefore, the new
criterion postulates that a discrete elementi is released from its neighbors when the hydrostatic stress (σ̄

hyd
i =

1
3 trace(σ̄i)) is positive (tension state ini) and exceeds the microscopic fracture strength (σ

hyd
f ). In this case, all the

beam bonds linking this particle to its neighbors break and do not intervene any more to compute the inter-particle
forces and torques in the next time step. The microscopic fracture strength of silica glass, determined by calibration
tests, isσhyd

f = 67MPa.

4. Vickers indentation

As shown previously, silica glass experiences permanent densification under high compressive pressure. Compa-
rable hydrostatic stresses can be reached beneath a sharp indenter during indentation loading. This section studies
Vickers indentations in silica glass using various levels of indentation forces. First, low indentation forces are used
to study the densification behavior at micro-scales (without fracture). Subsequently, high indentation forces are
used to study to densification influence on the cracking behavior of silica glass.
A hemispherical model with a radius of 12µm is used for the Vickers indentation studies (Fig. 11). This model,
whose the spherical part (dome) is fixed, is discretized using Np = 100 000 discrete elements (i.e., the average
radius of the discrete elements is around 0.2µm) to capture the microscopic mechanisms of the densification. It is
indented with a square-based pyramidal indenter having included face angles of 136◦ (Vickers indenter) and 2µm
in height (Fig. 11). This indenter undergoes a moderate displacement in thez direction until the reacting force
reaches the desired indentation force.
Table 4 presents a comparison between the experimental [8, 32] and the present numerical indentation results for
low indentation forces (Findent = 0.1N andFindent= 0.5N).
For Findent = 0.1N, the DEM simulation yielded a relatively good estimate of the volume of the indentation print
V− and the volume of the piled-up material around the indenterV+. The densified volumeVd which is a function
of V− andV+ compare favorably with the experimental results [32, 8] (incomparison to previous numerical studies
[8]). Furthermore, a good numerical result was obtained forthe diagonal length of the indentation print (L) which
is used to compute the hardness. However, the indentation depthD was low compared with the experimental results
[32, 8]. This can be explained by the fact that in the experimental tests, micro-cracks can initiate under the indenter
tip (zone of high stress concentration), causing measurement errors inD. The experimental value ofD can includes
not only the depth of the indentation but also the depth of thecrack.
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Figure 11:DEM indentation model

For Findent= 0.5N, the densification state becomes more significant and a far greater densification print is obtained
(Fig. 13). Compared with the experimental results, the DEM numerical simulation provided a relatively good
estimate of the volume of the piled-up material around the indenterV+ and the diagonal lengthL of the indentation
print. ConcerningD, the analysis of theFindent = 0.1N case remains valid. However, this time, the volume of
indentation printV− is slightly high. This can be explained by the side-effects. In the case ofFindent = 0.5N, the
densified zone is relatively important compared with the global geometric model. Consequently, the effects of the
overstated fixation conditions applied to the dome (the spherical part of the geometric model) become significant.
This can increase the region where the densification pressure Pd can be reached and thenV−.
One way to reduce the side effects is to use larger domains. However, such a solution can amplify considerably
the computational time, because a very fine discretization must be applied to capture the microscopic densifica-
tion effects. To circumvent the computational time problem, the discrete-continuum coupling model is used, a
hybrid between the discrete element method and the constrained natural element method (CNEM-DEM coupling)
[23]. The discrete element model is applied in the indentation region where the densification pressure (Pd) can be
reached, whereas the continuum model (CNEM) is applied overthe remainder of the body being modeled. Figures
12 presents the coupling model which is a box of 30µm on each side. The discrete subdomain where the DEM
is applied is the same as in the previous study (DEM computation). The remainder of the box is modeled using
CNEM and discretized with 10 000 nodes. A 2µm-thick bridging zone is used between these two models to ensure
correct wave propagation between them. Because the CNEM domain is far from the indentation region, it will
experience only elastic deformations. Therefore, only theelastic behavior is modeled in this region.
As shown in Table 4, in the case ofFindent = 0.1N, the DEM and CNEM-DEM coupling results are practically
the same. However, in the case ofFindent = 0.5N where the side-effects became significant, the CNEM-DEM
coupling results are better than those obtained using the discrete model (DEM) only. Furthermore, the CNEM-
DEM coupling improved the shape of the densified zone as shownin Figure 14 which presents a cut-away view
of the indented model in the case ofFindent = 0.5N. It can be observed that the densified zone obtained from the
coupling method (Fig. 14c) is closer to Ji’s experimental results (Fig. 14a) [8] than the densified zone obtained
from the DEM computations (Fig. 14b). Indeed, it is less deep and broader in the former (couplingresult) than in
the latter (DEM result).
The previous paragraph showed that the densification model,developed in this work, gives a relatively good quan-
titative estimate of silica glass densification at micro-scales when low indentation forces are applied (in comparison
to previous numerical studies [8]). Next, a high indentation force (Findent = 30N) is applied to study the influence
of densification on silica glass cracking behavior.

13



Figure 12:CNEM-DEM coupling indentation model

Figure 13:Top view of indentation print (blue: negative volume change) and piled-up material around indenter (red: positive
volume change). Left: indentation forceFindent= 0.1 N; right: indentation forceFindent= 0.5 N.
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Figure 14:Cut-away view of the indented region;Findent= 0.5 N; top: experimental results from Ji [8], middle: DEM numerical
results; bottom: CNEM-DEM coupling numerical result
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Table 4:Vickers indentation results: low indentation forces

V− (µm3) V+ (µm3) Vd (µm3) D (µm) L (µm)

Findent = 0.1N

Num (DEM): Present 1.304 0.136 1.168 0.159 4.758
Num (CNEM-DEM): Present 1.302 0.131 1.171 0.159 4.758

Num [8] −− −− 0.058 −− −−

Exp [8] 0.727 0.108 0.605 0.377 4.707
Exp [32] 1.034 0.018 0.952 0.421 5.157

Findent = 0.5N

Numerical (DEM) 14.534 1.174 13.360 0.397 9.318
Numerical (CNEM-DEM) 13.628 0.920 12.708 0.409 9.957

Num [8] −− −− 0.61 −− −−

Exp [8] 9.971 1.138 8.805 0.908 10.371

/ Experimental error [8] ±4% ±7% ±10% ±6% ±2%

V− andV+ are, respectively, the volumes of the indentation print andof the piled-up material around the indent,Vd is the
densified volume,D is the indentation depth andL is the diagonal length of the indentation print.

A model similar to the one presented in Figure 11 is used for this study. Because the indentation force is high,
the region where the densification pressurePd can be reached becomes large. Hence, the radius of the model is
increased to 120µm. As shown in previous studies [33, 34], brittle materials indented with a spherical indenter
produce a cone crack. However, when a Vickers tip is used, normal glasses produce median, radial and lateral
cracks. Instead, silica glass has a strong tendency to form acone crack, even when indented with a Vickers tip.
Because of its important densification behavior, a spherical densified zone is formed beneath the Vickers indenter
which in turn operates as a spherical indenter, so that a conecrack is set up that can accompany median, radial and
lateral cracks. Figure 15 presents the numerical cracking response of silica glass indented with a Vickers tip at the
beginning of fracture (before the cracking becomes unstable). In this figure, only the discrete elements where the
fracture criterion is reached are shown. Qualitatively, the result is in good agreement with those obtained in other
studies [6, 5]. Moreover, the radius of the cone crack obtained numerically (rcone

num = 41.14µm) is in good agreement
with the experimental works of Aroraet al. [6] (rcone

exp ≈ 40µm).

5. Conclusion

This paper attempted to reproduce numerically the anomalous behavior of silica glass and increase the compre-
hension of this behavior. Understanding permanent deformations in this type of glass represents a considerable
challenge. An assumption has been made that the densification takes place only under high compressive pressure
and that no shearing stresses influence the final permanent deformation levels. Based on this assumption, a den-
sification model, adapted for discrete element methods, is developed in this work. The densification behavior is
modeled by a “spring-slider” system incorporated between beam-linked particles at the micro scale. This system
activates only under compression stress. The densificationmodel involves three microscopic parameters which
can be determined by calibration tests. As shown previously, the calibration process of these parameters is fairly
easy. The macroscopic densification pressurePd is a linear function of microscopic densification pressureσd

µ only.
Therefore,σd

µ can be determined independently from the other microscopicparameters. Subsequently, the micro-
scopic tangential modulus can be calibrated taking into account the macroscopic saturation pressurePs. Finally, the
maximum permanent deformation can be set to adjust the macroscopic volume change∆V

V0
(or the density change

∆ρ

ρ0
). It is shown that, after calibration, this model gives goodmacroscopic densification results compared with

those obtained experimentally (Fig. 10). To validate this model at microscopic scales, simulations of the Vickers
indentation process were performed with three different indentation forces. First, low forces (0.1N and 0.5N) were
used to validate microscopically the densification model inthe absence of fracture. A comparison of these results
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Figure 15:Cracking pattern of silica glass indented with a Vickers tip; Findent = 30N; only the discrete elements where the
fracture criterion is reached are shown in (b) and (c).

with experimental ones [8] shows that this model is also validated at microscopic scales (when microscopic loading
is applied) and represents an advancement in the comprehension of permanent deformation in silica glass.
The influence of the densification behavior on the cracking response was studied by applying a high indentation
force (30N). As can be observed in Figure (Fig. 15), the silica glass forms primarily a cone crack. This is due
to the densification behavior, which leads to the formation of a spherical densified region. This, in turn, behaves
as a spherical indenter that will induce in most brittle materials a cone crack at the beginning of fracture. When
the indentation force further increases, other types of cracking appear and induce the complete destruction of the
sample.
The developments in this work have been implemented in the GranOO workbench, which now provides a robust nu-
merical tool to simulate brittle continuous media. For moredetails, the reader is referred to http://www.granoo.org.
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