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Simulation of Vickers indentation of silica glass.
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aUniv. Bordeaux, 12M, UMR 5295, F-33400 Talence, France
bArts et Metiers ParisTech, 12M, UMR 5295 CNRS F-33400, TaeRrance

Abstract

The indentation response of glasses can be classified uméertieadings: normal, anomalous and intermediate,
depending on the deformation mechanism and the crackimgpmes. Silica glass, as a typical anomalous glass,
deforms primarily by densification and has a strong tendéadprm cone cracks that can accompany median,
radial and lateral cracks when indented with a Vickers tighisTis due to its propensity to deform elastically
by resisting plastic flow. Several investigations of thismalous behavior can be found in the literature. The
present paper serves to corroborate these results nuityedsimg the discrete element method. A new pressure-
densification model is developed in this work that allowsda@uantitative estimate of the densification under very
high pressure. This model is applied to simulate the Vickedgntation response of silica glass under various
indentation forces using the discrete element method &rgl,then a discrete-continuum coupling method with
large simulation domains to suppress the sifleats and reduce the computational time. This coupling Vel
the discrete element method (DEM) and the constrained alaglement method (CNEM). The numerical results
obtained in this work compare favorably with past experitakresults.

Keywords: Brittle, Amorphous, Glassy silica, Densification, Fraetundentation, Discrete elements,
discrete-continuum coupling

1. Introduction

Because of their excellent physical (i.e. mechanicalnia¢iand optical) properties in addition to excellent chemi-
cal resistance, several types of glasses have become thdauas of several researchers. According to the depen-
dence of various properties such as density, hardnesactigé index, Young'’s and shear moduli with the pressure
and fictive temperature (defined in a simple manner as theeie at which the glass would be in thermal
equilibrium), glasses can be classified under three headimaymal, intermediate and anomalous. Normal glasses,
such as soda-lime silicate glass, exhibit properties dsarg with increasing fictive temperature and pressure.
Anomalous glasses, such as germania, exhibit the opposité in these properties. Intermediate between normal
and anomalous glasses are expected to have some profdaatiasetindependent of these parameters (i.e. pressure
and fictive temperature). Of particular interest is silit@sg which is known to exhibit anomalous behavior in its
thermal and mechanical properties [1, 2]. Furthermordateproperties of this type of glass such as the Young’s
and shear moduli and the density show an anomalous dependarthe fictive temperature. When indented with
a Vickers tip, silica glass exhibits a cracking pattern tkahore complex than in a typical normal glass, such as
soda-lime silicate [3, 4]. Specifically, silica glass hagrarg) tendency to form ring cracks at the periphery of the
indenter impression, but other crack systems typical ofmabiglasses, i.e. median, radial and lateral cracks, can
be introduced [5, 6]. The anomalous cracking responseigagilass is due to its propensity to deform elastically
by resisting inelastic flow. In the region of ordinary hydei& pressures (up to approximatelyz®a), silica glass
behaves in a perfectly elastic manner. However, and cgntoacrystalline solids, when the hydrostatic pressure
is in the 8GParange or beyond, silica glass begins to exhibit signs of peent deformation. The permanent
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deformation of silica glass, which is an amorphous solideiy different from the plastic flow found in crystalline
solids. Indeed, the plastic flow in crystalline solids isurak-conservative and initiates under shear stress only.
The spherical part of the stress tensor has no influence grldktc flow. However, the permanent deformation of
silica glass is always accompanied by a volume change. liti@udas found in several previous works [7, 8, 9, 10],
it can initiate under hydrostatic pressure. There are aéwarks on this subject in the literature, some of which
are controversial. It began with the works of Bridgman anii@&i [7]. They demonstrated that amorphous silica
exhibits permanent densification which translates to a premt volume decrease of approximately % at ap-
proximately 20GPa They also demonstrated that this propensity decreases other substances are added, such
as sodium oxideNa,O. However, at that time, technicalfficulties prevented the generation of strictly hydrostatic
conditions at pressures abov&PBa[7]. Uniaxial pressures were applied on thin disks to stindydensification of
glasses. Unfortunately, these tests induced additiorrs$iresses, which explain the systematic fracturingeof th
samples.

Cohen and Roy [11] studied the densification of silica powalgder uniaxial pressures. They found that the
densification begins at approximatelPa(10GPain Bridgman and Simon’s work [7]) and the volume reduction
can far exceed.B %. According to Reference [12], theflidirence between the previous results is due to the shearing
effects, which are most important in the case of silica powddradiows a greater densification level to be reached.
This explanation was belied later by Cohen and Roy [13], wiadueled the shearingfiects on the densification
level. For more details, the reader can refer to [14]. Séwher works treating the shearin¢fects can be found

in the literature [15, 16, 17]. At present, this subject hasheen resolved, and the role of the shearing stresses in
densification remains ambiguous.

In the present work, the densification of silica glass isisthdiumerically using a discrete element method devel-
oped by Andréet al. [18, 19] for brittle continuous media. A new densification dabbased on the compressive
stress in the cohesive bonds between the neighboring tisel@ments is proposed. As will be shown later, this
model provides a relatively good quantitative estimateilmfasglass densification under high hydrostatic pressure
(in comparison to previous numerical studies [8]). Subseatly, the influence of the densification on the cracking
response of silica glass indented with a Vickers tip is itigated using a new fracture model recently developed
by Andréet al. [20]. This model, based on the notion of virial stress [21], 22curately simulates the cracking
mechanisms at both the macroscopic and microscopic scales.

This paper is organized as follows: in Section 2, the elamsbdel of silica glass is briefly reviewed. Subsequently,
the densification model developed in this work is presentéden, the calibration procedure using hydrostatic
compression on thick samples (spheres) is detailed. $ettieviews the fracture model used to model the cracking
behavior of silica glass indented with a Vickers tip. In $@ct4, the Vickers indentation process in silica glass
is simulated using the discrete element method first, aml tie discrete-continuum coupling method, between
the discrete element method (DEM) and the constrained adaglement method (CNEM) [23], is introduced to
reduce the sidefiects and the computational time. Low indentation forcesagugied, initially, to study the
densification behavior in the absence of fracturing. Nagt indentation forces are applied to study the influence
of densification on the cracking behavior. Section 5 prestr conclusions.

2. Silica behavior modeling

2.1. Elasticity

The variation of the discrete element method (DEM) used letteat developed by Andrét al. [18] and imple-
mented in the GranOO workbench (softwareYhe elastic behavior of silica glass is modeled using dyigal
elastic “cohesive beams” having geometric (lengtand dimensionless radiug, defined as the ratio of the beam
radius to the mean particle radius) and mechanical prgsef¥ioung’s modulug&, and Poisson’s ratig,) between

the adjacent discrete elemenisg. 1).

The Euler-Bernoulli analytical model of a beam [24] is usedampute the beam forces and torques on the discrete
elements connected to this beam ((1), (2), (3) and (4)). &fexe the subscript” denotes microscopic quantities.

httpy/www.granoo.org
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Figure 1:Elastic beam model between two adjacent discrete elements

Table 1: The microscopic elastic parameters of silica glass (obthby calibration)

Young’s Modulus| Poisson’s ratio Dimensionless radius

E, = 414GPa v, =03 F, = 057
FOE = +E#S#AI—L“X + B'Tg'“ (= (022 + O12)y + (B2y + 61y)2) 1)
FRE2 = —EﬂSﬂAI—l“x - B'Tg'“ (—(622 + 617)y + (B2y + 62y)2) )

M
TR = 2% g T (0 + 28y)y + (8 + 26202 ®
H H
To82 = B0, 1 gy yx - 2 (a4 )y + (20, + 012 @

1, 1,

Where:
e R(X,Y, 2) is the beam local frame whereis the beam axis.

o FDFL and FPF2 are the beam force reactions acting on discrete elements 2 &rpnnected to this beam
bond).

o TPEL and T2 are the beam torque reactions acting on discrete element$ 2. a
e |, andAl, are the initial beam length and the longitudinal deflection.

o 61(01x, b1y, 617) and@2(62x, b2y, 627) are the rotations of the beam cross sections expressed lvetim local
frame.

e S,, lo, andl, are the beam cross-sectional area, the polar moment otired the moment of inertia with
respect to they and z axes, respectively.

e E, andG, are the Young's and shear moduli, respectively.

Table 1 presents the microscopic elastic cohesive beanegiep that produce the expected macroscopic elastic
behavior of silica glass. These properties have been dietednby calibration tests as explained in Reference [18].

2.2. Densification

2.2.1. Densification model

This subsection details how the densification behaviorliobsglass is modeled. As explained in Section 1, several
studies examined the densification of glasses, in partisillaa glass. Nearly all previous studies agreed that this
behavior takes place under high hydrostatic pressuresettmwthe &ects of shearing on this phenomenon remain
a central issue of several scientific studies on glasses.
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Figure 2:Densification model between two adjacent discrete elements

In this work, it is assumed that thé&ects of shearing on the densification are insignificant aesetare dominated
by the hydrostatic pressurdfects. Therefore, densification of silica glass will be siggubto occur only under
high hydrostatic pressures. There are many physical antlanaal reasons that support this assumption:

e According to the characteristics of materials, two main lna@isms can explain a permanent deformation
due to shear stresses: (i) In the case of crystalline sqgti@sticity is due to dislocation slip, defined as
crystallographic defects within the crystalline struetuSSilica glass which is an amorphous material lacks
the long-range order characteristic of a crystal. Theegfitris very dificult for dislocation to develop and
move within its irregular structure [25]. (ii) In the caselittle materials, such as rock and concrete, per-
manent deformation is caused predominantly by slip at recagks. This generally weakens the material in
guestion and degrades its mechanical properties [26]. i$matt the case for silica glass. In fact, permanent
deformation in silica glass enhances the mechanical ptiepg8, 14].

e Because silica glass is an isotropic material, permandatrdation due to shear stress is volume-conservative.
Therefore, even if a shear stress can cause silica glageiyashis does not fiect the densification level
(volume change at given pressure). For an infinitesimainstifae volume change can be expressed as:

dv
— =J-1=tracee)
Vo

wheredV is the volume changd/y is the initial volume J is the determinant of the Jacobian matrix and
the strain tensor. If only shear stresses are apgliadg() = 0, and thereforelV = 0.

Based on the previous assumption (the shearferts on the densification are insignificant compared witkeho
of hydrostatic pressure), a densification model adaptedifarete element models is developed in this work. A
“spring-slider” system is connected in series with eachesole beam linking two particles, as shown in Figure 2.
When the compression stress in the associated beguy, reaches the microscopic densification pres&ﬁ,ethe
slider activates and the densification mechanism takes plaee densification level beyomr.;f is controlled by the
microscopic tangential modull@, which is adjustableRig. 3). Finally, to model the saturation stage, the slider
stops slipping above a certain limit controlled by the maximmicroscopic permanent deformation of cohesive
bondsef "

As shown in the literature [8, 14, 27], the macroscopic meitta properties of silica glass increase with densifi-
cation. According to Ji [8], Young’s modulug&) and Poisson’s ratio/f increase by 46% and 56%, respectively, at
the end of the densification proce$sd. 4). For the sake of simplicity, in the present work, the vaoias in these
two parameters with hydrostatic pressurey( 4) are approximated by linear piecewise functions. The macha
properties remain constant until the densification presByiis reached, then increase linearly betw®grandPg

(the saturation pressure) and remain constant aBgve

To take into account the macroscopic mechanical propatgpsndence with pressure in the densification model,
it is necessary to find the variations in the microscopic ssteebeam properties, which implies such macroscopic
variations. In other words, it is necessary to find relatips between the macroscopic and microscopic (of
cohesive beams) mechanical properties. Based on the wa@kdr€ et al. [18], the following conclusions can be
drawn:

e The microscopic Poisson’s ratio of cohesive beapnisas no influence on the macroscopic elastic behavior.
The latter depends only on the dimensionless cohesive bagirsr, and the microscopic Young’s modulus
E,..

U
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Figure 5:Behavior of equivalent cohesive bond, taking into accoaariation of the mechanical properties with densifica-
tion

e The macroscopic Poisson’s rattadepends only om,” The function relating these two parameters may be
approximated by a second-order polynomial.

e The macroscopic Young's modulisis a function of bothr; andE,. For a given value of,; E depends
linearly onE,, whereas it is a second-order functionrpfiér a constang,..

According to these facts, the relationships between theasiopic and macroscopic parameters can be written as
in (5) and (6):

P, =ag+av + ap? (5)
E(E..Ty) = bo(fy,) + bi(f,) EL
bo(f.) = boo+ boafy + boof? (6)
bl(Fﬂ) = b10 + bllfﬂ + blZF,%

The various parameters of Equations (5) and (6) were datedry calibration tests. Knowing of these relation-
ships ((5) and (6)), the variations of the microscopic prtee of silica glass with pressure can be determined and
taken into account in the densification model. Figure 5 prsste cohesive bond behavior taking into account
the variation of the microscopic mechanical propertiehwiénsification. As can be shown in this Figure, the
relaxation slope (current microscopic Young’s modulusye@ases with the densification state.

2.2.2. Calibration of the microscopic densification paraens

The densification model involves three microscopic paramethich are the microscopic densification pressure
4, the microscopic tangential modul&, and the maximum permanent deformation of the beam befitf8"

The macroscopic densification parameters are the densificatessurePy, the saturation pressui; and the
volume change ratiq% (or density change ratiég). Several studies have measured the densification of silica
glass, and dierent values of the macroscopic densification parameterbedound in the literatureT@ble 2). In

the present work, Ji's results [8], which were obtained gisiiick samples, are usetiable 2) (because Ji conducted

a complete experimental study of densification and Vickedgmtation for several types of glasses).

In this section, the microscopic densification parametellsoe calibrated numerically to find the desired macro-
scopic densification behavior. A 1@@mdiameter sphere model (thick model) subjected to hydtiostampres-
sion is used for the calibration study.

One major problem of the discrete methods is the dependeneEsts on the discrete element numbip)
used to discretize the numerical sample. Therefore, theendfle of this parameter on the densification response
is first studied. The sphere model was discretized usinguwamumbers of discrete elemeis (from 100 to
20000). The microscopic densification parameters were fsefbllows: the microscopic densification pressure
crﬂ = 5GPa the microscopic tangential modulEﬁ = 0GPaand the maximum permanent deformation of the
beam bonds:; " = 0.05. Figure 6 presents the results of this study. For a smatiben of discrete elements
(Np), the densification response fluctuates greatly with thiamater Fig. 6a). These fluctuations can be reduced

6



Table 2:Macroscopic densification parameters of silica glass

Densification pressurd®y | Saturation pressur®s | Volume change%
Literature [1, 2, 14, 35, 36] 59-10GPa 20-30GPa 17.4%
Ji [8]: retained parameters in this work 8GPa 20GPa 174%

P vs. %
T30 =30 : .
% % — N, =10000
E: 25 E: o5 e N, = 14000
< < N, = 16000
S 20 Q200 == N, =20000
& &
8 15 X 15
g g
S S
9 10 9 10
s s
§ 5 § 5
hS S
;: U ;: U L L L L
T 0 5 25 Sy 0 5 10 15 20 25
Volume change, % (%) Volume change, % (%)
(a) Small number of discrete elemeni,f (b) Great number of discrete elemenig)

Figure 6:Sensitivity of the macroscopic densification behavior ®riamber of discrete elements,)

by increasingNp. BeyondN, = 10000, the densification response becomes very wedldgtad by the discrete
element numberHig. 6b).

In the remainder of this sectioiN, = 10000 discrete elements will be used to discretize the nicalesamples.

To simplify the calibration process, the influence of thenoscopic densification parameters on the macroscopic
silica behavior is studied. Figure 7a shows that the maopmisadensification pressuf®y depends linearly on the
microscopic onerg. In addition, as observed in Figures 7b and 7c, this paranmseéfectively independent of the
other microscopic properties, i.E}, ands;, "

Figure 8 shows the influence of the various microscopic patara on the macroscopic saturation presfye
This parameter depends linearly on the microscopic deasiit pressure-?, and it depends on the microscopic
tangential modquEL (around 12% variation foEL up to 100G Pa). However, it is &ectively independent of the
maximum permanent deformation of the beam basfd8™ (Fig. 8¢), only 5% Ps variation foref, "**up to Q12.
Concerning the third macroscopic paramegér Figure 9 shows that this parameter depends onligjpands;; ™

and it is dfectively independent ofg.

After studying the influence of the microscopic parametershe macroscopic densification behavior, calibration
becomes fairly easy. Because the macroscopic densifigatessurd?y depends only on the microscopic cxmg,

this parameter must be calibrated first. Subsequently, theostopic tangent moduILEL can be calibrated to
ensure the expected value of the macroscopic saturatiasyree Finally, the maximum permanent deformation
of the beam bondsf; ™ can be set to find the appropriate global volume change. Tapiees the calibrated
microscopic densification parameters that must be usedstoethe correct macroscopic densification behavior of
silica glass.

2.2.3. Validation

This subsection attempts to validate the microscopic fieaon parameters obtained by calibratidralfle 3).
The same geometric model as for the calibration study is usds section. The various microscopic densification
parameters of cohesive beams are set as indicated in Tabléhi8. model is subjected to various hydrostatic

7
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Table 3:The microscopic densification parameters of silica glabsfned by calibration)

Micro. dens. pressure Micro. tangential modulus Max permanent def in the bonds
o =7.13GPa E, = 9882GPa g, =0.067

22 ys. P
Po

:
® ® [y (Ji, 2007)

20t DEM computation °

Ap
> po

Density change

0 5 10 15 20 25 30 35 40
Hydrostatic compression, P (GPa)

Figure 10:Density change with pressure: comparison between expetai|8, 9] and numerical results.

pressures. The associated permanent deformations aremnegasd compared to Ji's [8] experimental results
(Fig. 10). As can be observed in Figure 10, the numerical resultsnaagrieement with the experimental ones.

3. Fracture

The approaches most commonly used to model fracture inedésaonethods, e.g. DEM [18, 19], are based on the
computation of bond strain [28] or stress [29]. The bond kseithe associated strain (or stress) exceeds a given
value, generally determined by calibration tests. On theroszopic scale, this criterion is moderately satisfactor
[19]. However, on the microscopic scale, it cannot repredcarrectly the cracking mechanisms [20]. Recently,
another criterion based on the computation of an equivaletite stress tensor at each particle has been proposed
by Andréet al. [20]. This criterion is detailed in the remainder of this tsat.

The equivalent Cauchy stress is computed with the help ofi¢tien of virial stress which is the most commonly
used definition of stress in discrete particle systemsiqoaatly in Molecular Dynamics (MD) [21]. This “stress”
includes two parts [21]: the first part depends on the masstangelocity (or, in some versions, the fluctuation
of the velocity) of particles; the second part depends oeriparticle forces and particle positions, providing a
continuum measure for the internal mechanical interastlmtween particles. In this definition, the average virial
stress over a volum@ around a particléis given by (7)

1.1
H:a(—mui®ui+§;rij®fij) )

wherem; andu; are, respectively, the mass and the velocity of the paiticle = r; —rj, r is the position vector of
particlei, f;; is the inter-particle force acting on partidlexerted by particlg and® denotes the tensor product.
The virial stress (7) is widely used to compute an equivatéi@auchy stress in discrete systems. Recently, Zhou
[22] demonstrated that this quantity is not a measure fohawgical forces between material points and cannot be
regarded as a measure of mechanical stress. Zhou propasteéraiormulation to compute the average mechanical

11



stress, including only the second part of (7). For a re§daaround a particlé, the average stress is:

E:%Zzn,@f” (8)

ieQ j#i

The expressions (7) and (8) are developed for Molecular Byeg (MD), where the inter-particle forces are a
function of the Lennard-Jones potent{h(ri;) and the distance between the particles. In this instameetvio
expressions of stress (7) and (8) lead to symmetric tenslamsever, this cannot be generalized to all other discrete
models. The variation of the DEM used here, where the pastiate linked by cohesive beams, does not ensure the
symmetry condition of the resulting tensors. Aneétéal. [20] proposed a slight modification of (8) to restore the
symmetry condition of the stress tensor as follows:

_ 1 1
azﬁégz(r”m” + fi;®T13) (9)

An equivalent Cauchy stress tensor for each discrete ekanmeoomputed using (9), whete = Q;, the volume of
i (10).

_ 1 1
ai:E;E(r”@fiﬁf”@r”) (10)
According to Grifith theory [30, 31], the fracture of brittle solids initiatesder tensile stress. Therefore, the new
criterion postulates that a discrete elemerd released from its neighbors when the hydrostatic str@é%i =

%trace(&i)) is positive (tension state i and exceeds the microscopic fracture strengﬁHd(). In this case, all the
beam bonds linking this particle to its neighbors break amdat intervene any more to compute the inter-particle
forces and torques in the next time step. The microscopitura strength of silica glass, determined by calibration
tests, iSD'?yd =67MPa

4. Vickers indentation

As shown previously, silica glass experiences permanamgifiteation under high compressive pressure. Compa-
rable hydrostatic stresses can be reached beneath a stianpeinduring indentation loading. This section studies
Vickers indentations in silica glass using various levél&identation forces. First, low indentation forces areduse
to study the densification behavior at micro-scales (witioacture). Subsequently, high indentation forces are
used to study to densification influence on the cracking kieha¥ silica glass.

A hemispherical model with a radius of A& is used for the Vickers indentation studiésg. 11). This model,
whose the spherical part (dome) is fixed, is discretizedgubip = 100000 discrete elements (i.e., the average
radius of the discrete elements is arounifn) to capture the microscopic mechanisms of the densificatios
indented with a square-based pyramidal indenter havirlgded face angles of 13gVickers indenter) and 2m

in height Fig. 11). This indenter undergoes a moderate displacement iz theection until the reacting force
reaches the desired indentation force.

Table 4 presents a comparison between the experimenta2][&n8 the present numerical indentation results for
low indentation forcesKingent = 0.1 N andFjngent = 0.5 N).

For Fingent = 0.1 N, the DEM simulation yielded a relatively good estimate @& tlolume of the indentation print
V-~ and the volume of the piled-up material around the indeviterThe densified volum&¢ which is a function

of V™ andV* compare favorably with the experimental results [32, 8cmparison to previous numerical studies
[8]). Furthermore, a good numerical result was obtainedHerdiagonal length of the indentation primi) (vhich

is used to compute the hardness. However, the indentatjath Bevas low compared with the experimental results
[32, 8]. This can be explained by the fact that in the expentaleests, micro-cracks can initiate under the indenter
tip (zone of high stress concentration), causing measureensors inD. The experimental value @ can includes
not only the depth of the indentation but also the depth otthek.
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Figure 11:DEM indentation model

For Fingent = 0.5N, the densification state becomes more significant and adateyrdensification print is obtained
(Fig. 13). Compared with the experimental results, the DEM numegsgaulation provided a relatively good
estimate of the volume of the piled-up material around teivterV* and the diagonal length of the indentation
print. ConcerningD, the analysis of th&i,qent = 0.1 N case remains valid. However, this time, the volume of
indentation printv~ is slightly high. This can be explained by the sidgeets. In the case d¥ingent = 0.5N, the
densified zone is relatively important compared with théogl@eometric model. Consequently, tiEeets of the
overstated fixation conditions applied to the dome (the spilepart of the geometric model) become significant.
This can increase the region where the densification prefsuran be reached and thefr.

One way to reduce the sidéfects is to use larger domains. However, such a solution cafifgrnonsiderably
the computational time, because a very fine discretizatiostrbe applied to capture the microscopic densifica-
tion effects. To circumvent the computational time problem, therdige-continuum coupling model is used, a
hybrid between the discrete element method and the camstraiatural element method (CNEM-DEM coupling)
[23]. The discrete element model is applied in the indeotategion where the densification pressu?g)(can be
reached, whereas the continuum model (CNEM) is applied theremainder of the body being modeled. Figures
12 presents the coupling model which is a box ofu80on each side. The discrete subdomain where the DEM
is applied is the same as in the previous study (DEM compmuiptiThe remainder of the box is modeled using
CNEM and discretized with 10 000 nodes. Ar2-thick bridging zone is used between these two models torensu
correct wave propagation between them. Because the CNEMidamfar from the indentation region, it will
experience only elastic deformations. Therefore, onlyetlastic behavior is modeled in this region.

As shown in Table 4, in the case Bfygent = 0.1 N, the DEM and CNEM-DEM coupling results are practically
the same. However, in the case Bfq4ent = 0.5N where the sideféects became significant, the CNEM-DEM
coupling results are better than those obtained using $wede model (DEM) only. Furthermore, the CNEM-
DEM coupling improved the shape of the densified zone as shiowigure 14 which presents a cut-away view
of the indented model in the caseBfgent = 0.5N. It can be observed that the densified zone obtained from the
coupling method Kig. 149 is closer to Ji's experimental resultBig. 148 [8] than the densified zone obtained
from the DEM computationsHig. 14b). Indeed, it is less deep and broader in the former (coupksglt) than in
the latter (DEM result).

The previous paragraph showed that the densification mdeetloped in this work, gives a relatively good quan-
titative estimate of silica glass densification at micrates when low indentation forces are applied (in comparison
to previous numerical studies [8]). Next, a high indentafiorce Fingent = 30N) is applied to study the influence
of densification on silica glass cracking behavior.
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Table 4:Vickers indentation results: low indentation forces

| [V (@) [V @) [ VO (an®) [ D () [ L) |

Num (DEM): Present 1.304 0.136 1.168 0.159 | 4.758
Num (CNEM-DEM): Present 1.302 0.131 1171 0.159 | 4.758
Findent= 0.LN Num [8] - — 0058 | —- -
Exp [8] 0727 | 0108 | 0605 | 0377 | 4707
Exp [32] 1.034 0.018 0.952 0.421 | 5157
Numerical (DEM) 14534 1174 13360 | 0.397 | 9.318
Numerical (CNEM-DEM) 13628 0.920 12708 | 0.409 | 9.957
Findent= 0.5N Num [8] - — 0.61 — -
Exp [8] 9971 | 1138 | 8805 | 0908 | 10371
\ / | Experimentalerror[8] | +4% | +7% | +10% | 6% | +2% |

V- andV* are, respectively, the volumes of the indentation printairitie piled-up material around the inde¥t, is the
densified volumeD is the indentation depth andis the diagonal length of the indentation print.

A model similar to the one presented in Figure 11 is used fisrgtudy. Because the indentation force is high,
the region where the densification pressBgecan be reached becomes large. Hence, the radius of the nsodel i
increased to 120m. As shown in previous studies [33, 34], brittle materialdented with a spherical indenter
produce a cone crack. However, when a Vickers tip is usednaloglasses produce median, radial and lateral
cracks. Instead, silica glass has a strong tendency to fazane crack, even when indented with a Vickers tip.
Because of its important densification behavior, a sphledieasified zone is formed beneath the Vickers indenter
which in turn operates as a spherical indenter, so that a@awk is set up that can accompany median, radial and
lateral cracks. Figure 15 presents the numerical cracldeganse of silica glass indented with a Vickers tip at the
beginning of fracture (before the cracking becomes uns}alh this figure, only the discrete elements where the
fracture criterion is reached are shown. Qualitativelg, rasult is in good agreement with those obtained in other
studies [6, 5]. Moreover, the radius of the cone crack obthimumerically (530 = 41.14um) is in good agreement

with the experimental works of Aroret al. [6] (re3p° ~ 40um).

5. Conclusion

This paper attempted to reproduce numerically the anoradbehavior of silica glass and increase the compre-
hension of this behavior. Understanding permanent defiiomsin this type of glass represents a considerable
challenge. An assumption has been made that the densifi¢alies place only under high compressive pressure
and that no shearing stresses influence the final permankmtndgion levels. Based on this assumption, a den-
sification model, adapted for discrete element methodsevsldped in this work. The densification behavior is
modeled by a “spring-slider” system incorporated betweean-linked particles at the micro scale. This system
activates only under compression stress. The densificatimthel involves three microscopic parameters which
can be determined by calibration tests. As shown previotisgycalibration process of these parameters is fairly
easy. The macroscopic densification presgyes a linear function of microscopic densification pressmge)nly.
Therefore,o-fj| can be determined independently from the other microsqogriameters. Subsequently, the micro-
scopic tangential modulus can be calibrated taking into@atcthe macroscopic saturation presdegeFinally, the
maximum permanent deformation can be set to adjust the s@api volume chang%\o—’ (or the density change

%). It is shown that, after calibration, this model gives gaondcroscopic densification results compared with
those obtained experimentalliFzig. 10). To validate this model at microscopic scales, simulatiohthe Vickers
indentation process were performed with threedéent indentation forces. First, low forcesl(® and 05 N) were
used to validate microscopically the densification modehaabsence of fracture. A comparison of these results
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Figure 15:Cracking pattern of silica glass indented with a Vickers Epgent = 30N; only the discrete elements where the
fracture criterion is reached are shown in (b) and (c)

with experimental ones [8] shows that this model is alsaledéd at microscopic scales (when microscopic loading
is applied) and represents an advancement in the compieheigpermanent deformation in silica glass.

The influence of the densification behavior on the crackispoase was studied by applying a high indentation
force (30N). As can be observed in Figur€ig. 15), the silica glass forms primarily a cone crack. This is due
to the densification behavior, which leads to the formatiba spherical densified region. This, in turn, behaves
as a spherical indenter that will induce in most brittle miate a cone crack at the beginning of fracture. When

the indentation force further increases, other types afking appear and induce the complete destruction of the
sample.

The developments in this work have been implemented in ta@G® workbench, which now provides a robust nu-

merical tool to simulate brittle continuous media. For mietails, the reader is referred to httwww.granoo.org.
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