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Quantum Oscillations and π -States in Multiply Connected
Ferromagnet-Superconductor Hybrids

A.V. Samokhvalov · A.S. Mel’nikov · A.I. Buzdin

Abstract On the basis of Usadel equations, we consider su-
perconductivity nucleation and Josephson current in mul-
tiply connected mesoscopic superconductor/ferromagnet
(S/F) hybrids. We demonstrate that the exchange field can
provoke an increase in the critical temperature Tc of the su-
perconducting transition in the magnetic field. We study the
Josephson effect in S/F composites and demonstrate that the
negative sign of the critical current (π state) can be real-
ized in such structures despite a dispersion of the distances
between different segments of superconducting electrodes.

Keywords SF hybrids · Usadel equations · Little–Parks
oscillations · π state

The particularity of the proximity effect in superconduc-
tor/ferromagnet (S/F) hybrid structures is the damped os-
cillatory behavior of the Cooper pair wave function inside
the ferromagnet [1, 2] (for the reviews, see [3]). This spe-
cial type of the proximity effect results in the π Josephson
S/F/S junction [4], which has at the ground state the oppo-
site sign of the superconducting order parameter in the elec-
trodes. Both the damped oscillatory S/F proximity effect and
the π states are proven to be very robust vs. different types
of the impurities scattering (magnetic and nonmagnetic), in-
terface transparency, and exist in the diffusive (dirty) limit.
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Naturally, at the first stage, the S/F systems with pla-
nar (layered) geometry and well-controlled layers thickness
have been considered [3]. However, it may be of interest to
address a question how the unusual proximity effect and the
π states could manifest itself in multiply connected geom-
etry and/or in S/F structures with a poorly defined thick-
ness of ferromagnetic (F) spacer between superconducting
(S) electrodes. The goal of this paper is to study the hall-
marks of the π -superconductivity in two model hybrid S/F
systems (see Fig. 1). The first system consists of thin-walled
hollow S cylinder placed in electrical contact with a F core.
The second one is two S rod-shaped electrodes embedded in
a ferromagnet.

Vortex States in Thin-Walled S Cylinder The Little–Parks
effect [5] is known to be a sensitive experimental tool for ob-
servation of interference phenomena in multiply connected
systems, and thus it is natural to use it for the study of the
peculiarities of superconductivity nucleation in mesoscopic
S/F hybrids. We consider a generic example of hybrid S/F
systems with a cylindrical symmetry: F cylindrical filament
(core) surrounded by a thin-walled S shell (Fig. 1a).

The calculations of the second-order superconducting
phase transition temperature Tc were based on the linearized
Usadel equations [6] for the averaged anomalous Green’s
functions Ff and Fs for the F and S regions, respectively
(see [7, 8] for details). We look for a homogeneous along
core solution characterized by certain angular momentum L.
Figure 2 shows examples of dependences of the critical tem-
perature Tc on the external magnetic field H for different
values of the S/F interface resistance. The phase boundary
exhibits Little–Parks oscillations, indicating transitions be-
tween the states with different angular momenta L → L± 1
of the S order parameter. The interplay between the oscilla-
tions of Tc due to the orbital effect and the oscillations due to
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Fig. 1 The cross section of the hybrid S/F systems under considera-
tion: (a) thin-walled S shell around a F cylinder; (b) two identical S
cylindrical rod-shaped electrodes of radius Rs surrounded by a F metal

Fig. 2 The typical dependences of the critical temperature Tc on mag-
netic flux φf = πR2

f H/Φ0 enclosed in F cylinder for different values
of the S/F interface resistance RA < RB . The numbers near the curves
denote the corresponding values of vorticity L. The dashed line shows
the Little–Parks oscillations, when the exchange interaction is canceled

Fig. 3 Influence of the electrode radius Rs on the dependence of the
critical current Ic on the distance a between two S rod-shaped elec-
trodes embedded in F-metal. The numbers near the curves denote the
values of the radius Rs in the units of ξf

the exchange field results in breaking of the strict periodic-
ity of the Tc(H) dependence. We have also observed a slow
modulation of the amplitude of the quasiperiodic Tc(H) os-
cillations and a shift of the main Tc maximum to finite ex-
ternal magnetic field values.

S/F/S Junction Between Two Superconducting Rod Now
we proceed with calculation of the Josephson critical cur-

rent between two rod-shaped S electrodes of a radius Rs

surrounded by a F metal (Fig. 1b). The supercurrent Is(ϕ) =
Ic sin(ϕ) flowing across this S/F/S weak link depends on
the phase difference ϕ between the order parameters of the
rods: Δ1,2 = Δe±iϕ/2. In the dirty limit and for large enough
distance between the S cylinders (a = d − 2Rs > 2ξf ), the
strong exchange field (h � πTc) and Rs � ξf the expres-
sion for the critical current Ic reads (see [9] for details):
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Here, ξf = √
Df /h , ξn = √

Df /2πTc , Df , and σn are
the diffusion constant and the normal state conductivity of
the F-metal, and the parameter γb = Rbσn/ξn related to the
boundary resistance per unit area Rb . In Fig. 3 we present
some typical plots of the critical current Ic vs. the distance
a calculated from Eq. (1). The 0-π transitions are observed
to be very robust with respect to a geometry of the S/F/S
junction and are determined rather by the thickness of the
F spacer between S electrodes then by a shape of the elec-
trodes. For fixed thickness of the F spacer, these transitions
can be triggered by temperature variation. Note that a set of
superconducting particles embedded in a ferromagnetic ma-
trix realizes an intrinsically frustrated Josephson network,
which may reveal a spontaneous current.
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