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Abstract

In recent work a class of quasi port Hamiltonian system expressing the first and second principle of thermodynamics as a structural

property has been defined: Irreversible port-Hamiltonian system. These systems are very much like port-Hamiltonian systems but

differ in that their structure matrices are modulated by a non-linear function that precisely expresses the irreversibility of the system.

In a first instance irreversible port-Hamiltonian systems are extended to encompass coupled mechanical and thermodynamical

systems, leading to the definition of reversible-irreversible port Hamiltonian systems. In a second instance, the formalism is used to

suggest a class of passivity based controllers for thermodynamic systems based on interconnection and Casimir functions. However,

the extension of the Casimir method to irreversible port-Hamiltonian systems is not so straightforward due to the ”interconnection

obstacle”. The heat exchanger, a gas-piston system and the non-isothermal CSTR are used to illustrate the formalism.
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1. Introduction

Port Hamiltonian systems (PHS) [1] have been widely used

in modelling and passivity-based control (PBC) of mechanical

and electro-mechanical systems [2]. On the state space R
n ∋ x,

a PHS is defined by the following state equation,

ẋ = J(x)
∂U

∂x
(x) + g(x)u(t) (1)

where U : Rn → R is the Hamiltonian function, J(x) ∈ Rn×Rn

is a skew-symmetric structure matrix, g(x) ∈ R
m × R

n is the

input map and u(t) ∈ R
m is a time dependent input. For those

systems, the Hamiltonian function represents the total electro-

mechanical energy of the system and the skew-symmetric struc-

ture matrix represents the energy flows between the different

energy domains of the system. Furthermore the structure ma-

trix J(x) relates to symplectic geometry as it defines a Poisson

bracket, if it satisfies the Jacobi identities, else it is a pseudo-

Poisson bracket (see [3]). If J is constant in some local coordi-

nates then it satisfies the Jacobi identities [4]. In the sequel we

will consider only true Poisson brackets (not pseudo-Poisson

brackets). The Poisson bracket of two C∞(Rn) functions Z and

G is expressed as:

{Z,G}J =
∂Z

∂x

⊤

(x)J(x)
∂G

∂x
(x). (2)

If its structure matrix is not full-rank, then the Poisson bracket

a admits a kernel which is characterized by its Casimir func-

tions [4], that is C∞(Rn) functions that satisfy {C,G}J = 0 for

any function G. These Casimir functions are invariants of any

Hamiltonian systems defined with respect the Poisson bracket.

The PHS dynamics may be expressed in term of the Poisson

bracket:

ẋ = {x,U}J + g(x)u(t). (3)

The properties of Poisson brackets such as its skew-symmetry

and the existence of Casimir functions correspond to the exis-

tence of conservation laws or balance equations for open sys-

tems [2]. This is the base of the control using PBC methods

[5].

In the case when dissipation is taken into account, Hamilto-

nian systems have been extended by considering structure ma-

trices which are no more skew-symmetric, defining a so-called

Leibniz bracket [6]. A dissipative PHS [4] with Hamiltonian

function U is defined by a Leibniz bracket which expresses the

loss of energy induced by some dissipative phenomenon. How-

ever, in this case the Hamiltonian function U is no more invari-

ant, and the dissipative PHS does not represent the conservation

of energy. Even due dissipative Hamiltonian systems have re-

ported excellent results in control applications [5], the fact that

the Hamiltonian is not an invariant of the system leads to the

well known dissipation obstacle [7].

For physical systems representing irreversible phenomena,

i.e., transformations that involve irreversible entropy creation,

it is not sufficient to express only the conservation of energy

(first principle of thermodynamic); it is also necessary to ex-

press the irreversible entropy creation (second principle of ther-

modynamic) as a system theoretic property. The first and sec-

ond principle express, respectively, the conservation of energy

and the irreversible transformation of entropy. It is possible to
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represent this by the following equations

dU

dt
= 0 and

dS

dt
= σ

(

x, ∂U
∂x

)

≥ 0 (4)

where the Hamiltonian U is the total energy, S denotes an en-

tropy like function (that may be equal to the total entropy S )

and σ
(

x, ∂U
∂x

)

the irreversible entropy creation which in general

depends on the state and the gradient of the total energy. By

skew-symmetry of the Poisson bracket the total energy of the

system satisfies the energy balance equation

dU

dt
=
∂U

∂x

⊤

gu. (5)

Indeed, since g(x)u(t) represents the flows through the

controlled-ports of the system the only energy variation is due

to the interaction with the environment. The entropy variation

on the other hand is given by

dS

dt
=
∂S

∂x

⊤

J(x)
∂U

∂x
+
∂S

∂x

⊤

gu.

A consequence of the second principle of thermodynamic is

that the entropy variation due to internal transformations is al-

ways greater than or equal to zero. This actually requires J(x)

to explicitly depend on ∂U
∂x

,

∂S

∂x

⊤

J
(

x, ∂U
∂x

) ∂U

∂x
= σint ≥ 0, (6)

since this should hold for any generating function U(x). In

order to include the second principle an alternative geometric

structure has to be considered. This is the reason that for phys-

ical systems embedding the internal energy and expressing si-

multaneously the energy conservation and the irreversible en-

tropy creation as it occurs in chemical engineering for instance,

the Hamiltonian formulation has to be questioned.

Several attempts have been made in order to preserve as

much as possible of the PH structure, leading to a class of sys-

tem called quasi PHS [8, 9, 10, 11, 12]. These systems retain

as much as possible the port Hamiltonian structure, but differ

by their structure matrices and input vector fields which depend

explicitly on the gradient of the Hamiltonian. An important re-

mark is that, although the forms of PHS (1) and quasi PHS are

very similar and both embed, by skew-symmetry of the struc-

ture matrix, the conservation of energy, in the latter the drift

dynamic is a nonlinear function in the gradient ∂U
∂x

(x). In this

sense the symplectic structure of the PHS, given by the Poisson

tensor associated with the structure matrix J(x), is destroyed.

In this paper we shall present a class of quasi PHS where the

skew-symmetric structure matrix is defined in such a way that

both the conservation of the total energy (i.e. the first principle

of Thermodynamics) and the irreversible creation of entropy

(i.e. the second principle of Thermodynamics) are encoded.

These systems have been suggested in [13, chap. 2][14, 15]

for models of homogeneous thermodynamic systems and have

been called Irreversible Port Hamiltonian Systems (IPHS). In

this paper, after having recalled their definition we shall elab-

orate two main ideas. Firstly, we shall show how these sys-

tems may be extended in order to handle systems that couple

(reversible) mechanical systems with (irreversible) thermody-

namical systems. This actually encompasses the modelling and

control of the so called multi-energy systems, also known as

multi-physical systems. Secondly we shall show how the no-

tion of Casimir function may easily be extended from the struc-

ture matrix J to the modulated matrix RJ as their left kernel are

identical, hence the Casimir-based control schemes may also be

used for the stabilization of IPHS.

2. Irreversible PHS for homogeneous thermodynamic sys-

tems

2.1. Definition of Irreversible Port Hamiltonian Systems

There is a large class of thermodynamic systems that can be

expressed as quasi PHS if the Hamiltonian function is selected

as a thermodynamic potential such as the internal energy or the

entropy [16, 17, 13]. In this paper we shall use the internal

energy as generating potential and we shall recall in this section

the definition of IPHS according to [13, chap. 2][14, 15] and

give some illustrative examples.

Definition 1. [13] An Irreversible Port Hamiltonian Systems

(IPHS) is the nonlinear control system

ẋ = R
(

x, ∂U
∂x
, ∂S
∂x

)

J
∂U

∂x
(x) +W

(

x, ∂U
∂x

)

+ g
(

x, ∂U
∂x

)

u, (7)

where x (t) ∈ R
n is the state vector, u (t) ∈ R

m is the control

input, and defined by

• two (smooth) real functions called Hamiltonian function

U(x) : C∞(Rn) → R and entropy function S (x) :

C∞(Rn)→ R,

• the structure matrix J ∈ R
n × R

n which is constant and

skew-symmetric,

• a real function R = R
(

x, ∂U
∂x
, ∂S
∂x

)

defined as the product of

a positive definite function and the Poisson bracket of S

and U:

R
(

x, ∂U
∂x
, ∂S
∂x

)

= γ
(

x, ∂U
∂x

)

{S ,U}J , (8)

with γ(x, ∂U
∂x

) = γ̂(x) : C∞(Rn) → R, γ̂ ≥ 0, a non-linear

positive function of the states and co-states of the system

that may be expressed as a function of the states only.

• two vector fields W(x, ∂U
∂x

) ∈ Rn and g(x, ∂U
∂x

)u ∈ Rn asso-

ciated with the ports of the system.

The main difference with the definition of a PHS is that

R
(

x, ∂U
∂x
, ∂S
∂x

)

depends on the co-state variables destroying the

linearity of any Poisson tensor, considering the mapping ∂U
∂x

to the drift dynamics R
(

x, ∂U
∂x
, ∂S
∂x

)

J ∂U
∂x

and associated with the

matrix RJ. Furthermore, the two vector fields W
(

x, ∂U
∂x

)

and

g
(

x, ∂U
∂x

)

u may also depend on states and co-states.

Let us comment the Definition 1 for the particular case of

thermodynamic systems. The first principle of thermodynamic

states that the energy of the system is conserved. This condi-

tion is also true for PHS in mechanics. It is then logical that
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the Hamiltonian function of IPHS is chosen to be the energy

(as for PHS). As for PHS, there is sometimes more than one

conserved quantity that may be used as Hamiltonian function.

For instance in mass balance systems a conserved quantity fre-

quently used as Hamiltonian function is the total mass of the

system [18, 11]. In the case of IPHS there may also exist more

than one conserved quantity depending on the constraints of the

system. For instance in the case of a continuous stirred tank re-

actor (CSTR) with constant pressure and volume, the enthalpy

is a conserved quantity and may be used as Hamiltonian func-

tion.

The second item of Definition 1 states that J is a constant

skew-symmetric matrix. As it has been exposed in [1, 19, 20],

PHS arise systematically from network models of physical sys-

tems. In network models of complex physical systems the over-

all system is seen as the interconnection of energy-storing el-

ements via basic interconnection (balance) laws as Newton’s

third law in mechanics or Kirchhoff’s laws in electrical circuits,

as well as power conserving elements, like transformers to-

gether, with energy-dissipating elements. PHS formalize these

basic interconnection laws together with the power conserving

elements by a geometric structure. In PHS the structure ma-

trix J(x) and the input matrix g(x) are directly associated with

the network interconnection structure, while the Hamiltonian

is the sum of the energies of all the energy-storing elements.

In thermodynamics there is a similar network relation between

different domains. The efforts (intensive variables) of one do-

main generates the flows in other domains (time evolution of

the extensive variables). We expect the IPHS to represent this

network-like interconnection, thus we also expect J to be con-

stant with coefficients given by the network structure of the sys-

tem. We will show that for a simple thermodynamic system as

the heat exchanger J will just indicate the direction of the flows,

thus its elements will be −1, 0, or 1, while for more complex

systems such as chemical reactions it is given by the stoichiom-

etry of the chemical network.

The fact that in the definition of IPHS the structure matrix J

is a constant matrix forces the function R
(

x, ∂U
∂x

)

to capture all

the state and co-state dependent behaviour of the internal inter-

connection of the system. Let us now comment the definition

of the modulating function R
(

x, ∂U
∂x

)

with respect to the energy

and entropy balance equations.

Firstly by the skew-symmetry of J, the energy obeys a con-

servation law. Indeed, computing dU
dt

along the trajectories of

(7) we obtain

dU

dt
=
∂U

∂x

⊤
(

RJ
∂U

∂x

)

+
∂U

∂x

⊤

(W + gu)

= R

(

∂U

∂x

⊤

J
∂U

∂x

)

+
∂U

∂x

⊤

(W + gu)

=
∂U

∂x

⊤

(W + gu)

(9)

due to the skew-symmetry of J. Since the energy of the system

is conserved, the only admissible energy variation is through the

input and output ports (interaction point with the environment)

of the system. In the terminology of PHS [2], the gradient ∂U
∂x

is

a vector of efforts, and the vector fields W and gu are vectors of

flows. The energy balance equation (9) may then be interpreted

as the power product of two port conjugated variables.

The entropy balance of the system is given by

dS

dt
= R
∂S

∂x

⊤

J
∂U

∂x
+
∂S

∂x

⊤

(W + gu) .

If it is assumed that the system is isolated (W = 0 and g = 0)

the balance becomes

dS

dt
= R
∂S

∂x

⊤

J
∂U

∂x

and by definition of the modulating function in (8), it may be

written

dS

dt
= R
∂S

∂x

⊤

J
∂U

∂x
= γ

(

x, ∂U
∂x

)

{S ,U}2J = σint, (10)

where σint is called the internal entropy production. As the

function γ
(

x, ∂U
∂x

)

is defined as positive, the internal irreversible

entropy production is always positive according to the second

principle of Thermodynamics: σint ≥ 0. Hence for the open

system (W , 0 and g , 0) the entropy balance equation is

dS

dt
= γ

(

x, ∂U
∂x

)

{S ,U}2J
︸              ︷︷              ︸

=σint≥0

+
∂S

∂x

⊤

(W + gu) (11)

Recall that with the choice of the internal energy as Hamilto-

nian function, the entropy is a state variable and the gradient

of the entropy ∂S
∂x

is a vector whose elements are either 1 or

0. Since the Poisson bracket is defined with respect to the con-

stant matrix J, the bracket {S ,U}J is a linear combination of the

co-energy variables (elements of ∂U
∂x

) and it appears that it actu-

ally defines the thermodynamic driving force of the irreversible

phenomena in the system.

The next two subsections give a brief illustration of this defi-

nition through the examples of a heat exchange process and the

CSTR.

2.2. Example: the heat exchanger

Consider two simple thermodynamic systems, indexed by 1

and 2 (for instance two ideal gases), which may interact through

a conducting wall with compartment 2 interacting with the en-

vironment through a heat conducting wall. The dynamics of

this system is given by the two entropy balance equations of

each compartment

[

Ṡ 1

Ṡ 2

]

= λ

[
T2(S 2)

T1(S 1)
− 1

T1(S 1)

T2(S 2)
− 1

]

+ λe

[

0
Te(t)

T2(S 2)
− 1

]

where S 1 and S 2 are the entropies of subsystem 1 and 2, Te(t)

a time dependent external heat source and λ > 0 and λe > 0

denotes Fourier’s heat conduction coefficients. The temper-

atures are modelled as exponential functions of the entropies

T (S i) = T0 exp
(

S i

ci

)

[21], where T0 and ci are constants. This

system may be written as a quasi PHS

[

ẋ1

ẋ2

]

= λ





1
∂U
∂x2

−
1
∂U
∂x1





[

0 −1

1 0

] [ ∂U
∂x1
∂U
∂x2

]

+ λe





0
1
∂U
∂x2

− 1
u




u,
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with state variable x = [S 1, S 2]t, Hamiltonian U(x1, x2) =

U1(x1) + U2(x2) being the total internal energy of the overall

system composed of the addition of the internal energies of each

subsystem, temperatures T (x) = [T1(x1),T2(x2)]t =
[
∂U
∂x1
, ∂U
∂x2

]t

and u(t), the controlled input that corresponds to the external

heat source at temperature Te(t). This system admits a IPHS

formulation (7)

ẋ = R(x,T )JT (x) + g(T )u(t), (12)

with modulating function R(x,T (x)) = λ
(

1
T2
− 1

T1

)

, constant

structure matrix J =
[

0 −1
1 0

]

and vector field gu = λe

[
0

(

1
T2
− 1

u

)

]

u.

The total entropy of the system is given by the sum of the en-

tropies of each compartments S = S 1+S 2. The Poisson bracket

{S ,U}J is then simply the difference of temperatures between

the compartments which is the driving force of the heat con-

duction

{S ,U}J =
∂S

∂x

⊤

J
∂U

∂x
=

[

1

1

]⊤ [

0 −1

1 0

] [

T1

T2

]

= T1 − T2.

And one may express the modulating function according to the

Definition 1

R(x,T ) = λ

(

1

T2

−
1

T1

)

= λ
T1 − T2

T1T2
= γ (T ) {S ,U}J ,

with γ (T ) = λ
T1T2

. Since λ, T1 and T2 are greater than zero,

γ is a positive function. The vector field g(T2)u defines the

entropy flow generated by the interaction of subsystem 2 and

the external heat source, hence corresponds to the port of the

system. �

2.3. Example of the CSTR

Consider a continuous stirred tank reactor (CSTR) with a sin-

gle reaction and the following reaction scheme in gas phase

ν1A1 + . . . + νlAl ⇋ νl+1Al+1 + . . . + νmAm, m > l ≥ 1.

The dynamical model consists firstly in the mass balance equa-

tions of each species [22]

ṅi = Fei − Fsi + riV i = 1, . . . ,m (13)

where ni is the number of moles of the species i, Fei and

Fsi are respectively the inlet and outlet molar concentrations,

ri = ν̄ir, with r being the reaction rate of the reversible reaction

r = (r f − rb), where r f and rb are the rates of the forward and

backward reactions respectively. Each reaction rate depends

only on the temperature and reaction concentration, and νi is the

stoichiometric coefficient of the species i: ν̄i = −νi if it appears

on the left hand side of the reaction scheme, ν̄i = νi in the other

case (we assume here that each species appears solely either in

the educt or product). Following the usual assumptions [22, 23],

V the volume in the reactor is assumed to be constant as well

as the pressure. The assumptions of constant volume and pres-

sure impose a constraint over the total outlet flow Fs =
∑m

i=1 Fsi

rendering the outlet flows Fsi of each species i, state dependent

[21]. Under the previous assumptions the internal energy of the

CSTR, derived from Gibbs’ equation, is given by

U =

m∑

i=1

ni[cvi(T − T0) + u0i],

where cvi, u0i are respectively the heat capacity and reference

molar energy.

Secondly, for a non-isothermal CSTR, we shall complete the

model with the entropy balance equation

Ṡ =

m∑

i=1

(Feisei − Fssi) +
Q

Tw

+ σ, (14)

where

σ =

m∑

i=1

Fei

T
(hei − T sei − µi) +

Q

T
−

Q

Tw

−

m∑

i=1

µiνi
r

T

is the entropy creation due to mass transfer, heat transfer and

chemical reactions.

The formulation of the dynamics of the CSTR as an IPHS

has been presented in detail in [13, chap. 2][15] where its lift to

the complete Thermodynamic Phase Space as a control contact

system has also been presented. In this paragraph we rapidly

recall its formulation as IPHS as an illustration and in order to

prepare the control section.

The dynamical equation of the CSTR may be expressed as

the IPHS

ẋ = R
(

x, ∂U
∂x
, ∂S
∂x

)

J
∂U

∂x
(x) +W(x, Fe) + g

Q

T
(15)

with state vector x = [n1, . . . , nm, S ]⊤, the internal energy U(x)

as Hamiltonian function,

J =





0 . . . 0 ν̄1

0 . . . 0
...

0 . . . 0 ν̄m
−ν̄1 . . . −ν̄m 0





a constant skew-symmetric matrix whose elements are the sto-

ichiometric coefficients of the chemical reaction mapping the

network structure of the reaction, and

R = γ
(

x, ∂U
∂x

)

{S ,U}J =

(
rV

TA

)

A

where γ = rV
TA

may be shown to be a strictly positive func-

tion [15] and the Poisson bracket {S ,U}J = A, which is the

chemical affinity of the reaction A = −
∑m

i=1 ν̄iµi and indeed

corresponds to thermodynamic driving force of the chemical

reaction [21, 24]. The port of the IPHS is given by W + gQ and

is composed by the extended input and output flow vector and

the thermal interaction vector defined respectively as

W =





Fe1 − Fs2

...

Fem − Fsm

ω





, g =





0
...

0

1





Q

T

with ω = 1
T

∑m
i=1(Feisei − Fsisi).
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3. Irreversible PHS for coupled mechanical and thermody-

namic systems

In this section we shall extend the formulation of Irreversible

PHS [13, chap. 2], [14, 15] recalled in the Definition 1, to

multi-domain physical systems composed of a mechanical sys-

tem coupled to a simple thermodynamic system.

3.1. Definition of Reversible-Irreversible Port Hamiltonian

Systems

In this case we have to compose the reversible transforma-

tion of an ideal lossless mechanical system (port-Hamiltonian

system) with the irreversible transformation occurring in a sim-

ple thermodynamic system. This leads to define an irreversible

port-Hamiltonian system where the skew-symmetric structure

matrix is the sum of a structure matrix J0 (x) of a Poisson

bracket and the skew-symmetric matrix RJ of the quasi-Poisson

bracket.

Definition 2. A Reversible-Irreversible Port Hamiltonian sys-

tem (RIPHS) is defined by the dynamical equation

ẋ = Jir

(

x, ∂U
∂x
, ∂S
∂x

) ∂U

∂x
(x) +W

(

x, ∂U
∂x

)

+ g
(

x, ∂U
∂x

)

u, (16)

where the skew symmetric matrix Jir is defined as the sum :

Jir

(

x, ∂U
∂x
, ∂S
∂x

)

= J0 (x) + R
(

x, ∂U
∂x
, ∂S
∂x

)

J (17)

where J0 (x) is the structure matrix of a Poisson bracket and

R
(

x, ∂U
∂x
, ∂S
∂x

)

and J are defined according to Definition 1 of an

IPHS. Furthermore the entropy function S (x) is a Casimir func-

tion of the Poisson structure matrix J0 (x).

This definition may be commented as follows. The RIPHS

may be seen as the composition of a PHS and an IPHS with

structure matrices being the sum of a Poisson structure matrix

and a quasi-Poisson structure matrix in the sense of Definition

1 and with common Hamiltonian function.

Computing the time derivative of the Hamiltonian U (x), by

skew-symmetry of Jir

(

x, ∂U
∂x
, ∂S
∂x

)

, the Hamiltonian obeys the

same balance equation (9) as for IPHS, depending only on

the power product at the port of the system. Now computing

the time derivative of the total entropy for an isolated system

(W = 0 and g = 0), one obtains

dS
dt
= ∂S

∂x

⊤
Jirr

∂U
∂x

= ∂S
∂x

⊤
J0
∂U
∂x
+ R

(

x, ∂U
∂x
, ∂S
∂x

) (
∂S
∂x

⊤
J ∂U
∂x

)

= {S ,U}J0
+ γ

(

x, ∂U
∂x

)

{S ,U}2J

= γ
(

x, ∂U
∂x

)

{S ,U}2J

using that S (x) is a Casimir function of the Poisson structure

matrix J0 (x), that is it satisfies {S ,U}J0
= 0 for any Hamilto-

nian U (x). In consequence the entropy balance equation of the

RIPHS (16) is identical with the entropy balance equation (10)

of the IPHS.

The benefit of the energy based formulation of IPHS (Hamil-

tonian given by the internal energy) is clearly emphasised in

this case, since it allows to naturally perform the interconnec-

tion with conventional PHS. This is not the case for quasi-

Hamiltonian formulations of thermodynamic systems where for

instance the entropy (or some function of the entropy) is used

as Hamiltonian. As an illustration, let us consider the example

of a gas-piston system where a homogeneous simple thermody-

namic system (the gas) interacts with a mechanical system, the

piston.

3.2. Example of the gas-piston system

Consider a gas contained in a cylinder closed by a piston sub-

mitted to gravity. The thermodynamic properties of this system

may be decomposed into the properties of the piston in the grav-

itation field and the properties of the perfect gas. The proper-

ties of the piston in the gravity field are defined by the sum of

the potential and kinetic energies: Hmec =
1

2m
p2 + mgz, where

z denotes the altitude of the piston and p its kinetic momen-

tum. The properties of the perfect gas may be defined by its

internal energy U(S ,V) where S denotes the entropy variable,

V the volume variable and the number of moles N is constant

as the system is closed (there is no exchange of matter) and

hence becomes an index. The total energy of the system is:

E(x) = U((S ,V)) + Hmec(z, p), where x = [S ,V, z, p]⊤ is the

vector of state variables. The co-energy variables are defined

by the gradient of the total energy

∂E
∂S

, T
∂E
∂V

, −P
∂E
∂z
= mg , Fg

∂E
∂p

, v

(18)

where T is the temperature, P the pressure, Fg the gravity force,

and v the velocity of the piston.

The gas in the cylinder under the piston may undergo a non-

reversible transformation when the piston moves. We assume

that in this case a non-adiabatic transformation due to mechani-

cal friction (and/or viscosity of the gas), and that the dissipated

mechanical energy is converted entirely into a heat flow in the

gas. The resisting mechanical force due to friction is Fr = νv.

The entropy balance equation is then

dS

dt
=

1

T
νv2 = σint

which is the irreversible entropy flow at the temperature T , in-

duced by the heat flow νv2 due to the friction of the piston. As

the temperature is positive and the irreversible entropy flow is

a quadratic term in the velocity v, it is indeed positive. The

coupling between the piston and the gas consists in relating the

force Fe and pressure P on the piston and the velocity v of the

piston and the variation of volume f e
V

of the gas

[

f e
V

Fe

]

=

[

0 A

−A 0

] [

(−P)

v

]

(19)

where A denotes the area of the piston.
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The dynamics of the gas-piston system is then given by

dS

dt
=

1

T
νv2 , σint

dV

dt
=Av

dz

dt
=v

dp

dt
= − Fg + AP − Fr = −mg + AP − νv

The first equation is the entropy balance accounting for the ir-

reversible creation of entropy due to mechanical friction. The

second equation indicates that the motion of the piston induces

a variation of the volume of the gas. The third equation defines

the velocity of the piston. The last equation is simply Newton’

law applied to the piston. This control system may be written

in state space representation form as follows

d

dt





S

V

z

p





=





0 0 0 νv
T

0 0 0 A

0 0 0 1

− νv
T
−A −1 0





︸                     ︷︷                     ︸

Jirr(T,v)





T

−P

F

v





(20)

This system is a quasi-Hamiltonian system as its skew-

symmetric structure matrix depends on two co-energy vari-

ables, the velocity v and the temperature T . However it may

be written in RIPHS form according to Definition 2 by decom-

posing further its structure matrix as the sum

Jirr (T, v) = J0 + R
(

x, ∂U
∂x
, ∂S
∂x

)

J

with the constant Poisson structure matrix

J0 =





0 0 0 0

0 0 0 A

0 0 0 1

0 −A −1 0





and the structure matrix associated with the dissipative phe-

nomenon, the friction of the piston

J =





0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0





The Poisson structure matrix J0 is indeed associated with

the reversible coupling composed of the symplectic coupling
(

0 1
−1 0

)

between the kinetic and potential energies of the me-

chanical system and the coupling through the piston area A.

The modulating function for the irreversible phenomenon is

R
(

x, ∂U
∂x
, ∂S
∂x

)

= γ
(

x, ∂U
∂x

)

{S ,U}J with the Poisson bracket

{S ,U}J =
[

1 0 0 0
]

J





T

−P

F

v





= v

which is the velocity of the piston and indeed the driving force

of the friction and function

γ
(

x, ∂U
∂x

)

= γ (T ) =
ν

T

which is strictly positive as the temperature and the friction co-

efficient are strictly positive. It may be easily checked that the

entropy is a Casimir function of J0 as its first row (and column)

is zero.

Assuming now that there is an external force Fmot acting on

the piston and that the gas is subject to an exchange of heat with

a thermostat at temperature Te through a wall with Fourier’s

heat conduction coefficient λe > 0, the system may be com-

pleted to the control system (16) with input vector [u1, u2] =

[Te, Fmot] and the vector field associated with the port:

gu =





λe

(
1
T
− 1

u1

)

0

0 0

0 0

0 1





u (21)

4. Passivity-based control of IPHS

The Port Hamiltonian formulation may be used in a straight-

forward way for passivity-based control methods [25, 4] by

using the associated energy balance equation (5). Moreover,

the port-Hamiltonian structure and the Poisson structure matrix

J (x) in (1) allow to use other invariants and their associated bal-

ance equations, defined by the Casimir functions for synthesis

methods based on the interconnection-reduction method or in

the Interconnection and Damping Assignment Passivity-based

methods (IDA-PBC) [7, 5, 26, 27, 2].

IPHS share a similar structure with PHS with the precise

difference that the Poisson structure matrix J is multiplied by

the modulating function R
(

x, ∂U
∂x
, ∂S
∂x

)

depending on the gradi-

ent ∂U
∂x

. Obviously the energy balance equation (9) may also

be used for passivity-based control. Moreover the notion of

Casimir function may easily be extended from the structure

matrix J to the modulated matrix RJ as their left kernel are

identical, hence the Casimir-based control schemes may also

be used. On the other side the entropy balance equation (11)

clearly shows the controllability problems which may arise due

to the irreversible entropy creation.

In this section, we shall elaborate on the control by embed-

ding and reduction by Casimir functions, also called control by

interconnection [7, 5].

4.1. Control by interconnection of IPHS

Let us first recall the method of stabilization by modulated

interconnection and adapt it to the IPHS. Consider first an IPHS

(7), where we assume the vector field W = 0; this might be for

instance obtained by a change of the control variable.

The first step is to embed the IPHS into a higher dimensional

system by interconnecting it with a PHS through a feedback

interconnection. In this paper we shall consider the most simple
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Hamiltonian system namely a simple integrator with controller

state xc ∈ R
m with Hamiltonian and dynamical model

Σc

{

ẋc = uc

yc =
∂Hc

∂xc
(xc)

This is indeed a Hamiltonian system with structure matrix Jc =

0 and Hamiltonian Hc (xc).

Remark 3. In the case where this system is a constant source,

the Hamiltonian is chosen as Hc (xc) = −u∗ xc.

Consider the following feedback interconnection of the two

systems modulated by the m × m matrix β (x)

(

u

uc

)

=

(

0 β (x)

−β (x) 0

) (

y

yc

)

The total system, embedding the IPHS, may then be expressed

as follows

d
dt

(

x

xc

)

=

(

R J g (x) β (x)

−βt (x) gt (x) 0

) ( ∂Hcl

∂x
∂Hcl

∂xc

)

y =
(

g (x)t , 0
)
( ∂Hcl

∂x
∂Hcl

∂xc

)

where Hcl (x, xc) = U (x) + Hc (xc) with structure matrix

Jcl (x, xc) =

(

R J g (x) β (x)

−βt (x) gt (x) 0

)

.

This again defines a quasi-Poisson bracket as the modulating

function is R = γ
(

x, ∂U
∂x

)

{S ,U}J and depends on the co-energy

variables as ∂U
∂x
=
∂Hcl

∂x
.

The second step is to prepare the reduction of the embed-

ding system by analysing the condition for the existence of m

Casimir functions C (x, xc) of the structure matrix Jcl (x, xc).

Therefore we look for Casimir functions C (x, xc) of the type

C (x, xc) = F (x) − xc.

Then the function F (x) should satisfy

(

∂F

∂x

t

, −Im

) (

R J g (x) β (x)

−βt (x) gt (x) 0

)

= 0

which is equivalent to

−R J ∂F
∂x
+ β (x) g (x) = 0
∂F
∂x

t
g (x) β (x) = 0

(22)

If the system (22) has a solution F (x) then the interconnected

system is again IPHS with structure matrix

(

R J g (x) β (x)

−βt (x) gt (x) 0

)

= R





J J ∂F
∂x

−
(

J ∂F
∂x

)T
0



 .

Indeed denoting

Je (x) =





J J ∂F
∂x

−
(

J ∂F
∂x

)T
0





the entropy function S (x) does not depend on the control state

variables xc hence {S ,U}J = {S , Hcl}Je
and one may express the

modulating function

R = γ
(

x, ∂Hcl

∂x

)

{S ,U}Je
.

The third step consists, assuming that (22) has a solution F (x),

to reduce the embedding system by restriction to the invariant

manifold C (x, xc) = F (x) − xc = 0. In a similar way as for

PHS, it may be shown that this manifold admits as coordinates

x and its dynamics may be written

dx
dt
= R J

∂H0

∂x
+ g (x) β (x) ∂Hc

∂xc
(F (x))

= R J
∂H0

∂x
+

(

R J ∂F
∂x

)
∂Hc

∂xc
◦ F (x)

Hence the reduced system is the following IPHS with identical

structure matrix and modified Hamiltonian

dx

dt
= R J

∂

∂x
(H0 + Hc ◦ F) . (23)

It is equivalent to the IPHS with the state feedback u (x) =

β (x) ∂Hc

∂xc
◦F (x) which may be interpreted as shaping the Hamil-

tonian to Hcl (x) = (U + Hc ◦ F) (x).

Remark 4. In the case where the control is a constant source

u∗, then the control is u (x) = β (x) u∗ and the shaped Hamilto-

nian is (U − u∗F (x)) (x).

The fourth step is the stabilizing control synthesis. Now as-

sume that (x∗, u∗) defines some equilibrium of the IPHS. And

assume that there exists a solution F (x) of (22) such that the

shaped Hamiltonian is a Lyapunov function for the closed-

loop system (23). Then, by Lasalle’s theorem, the control

u (x) = β (x)
(
∂Hc

∂xc
◦ F

)

(x) + v with v = −k gt (x) ∂Hcl

∂x
stabi-

lizes the system to the largest invariant set included in the set
{

x ∈ Rn s.t. gt (x) ∂Hcl

∂x
= 0

}

.

4.2. Application to the heat exchanger system

Consider now the IPHS representation of the heat exchanger

as presented in the Section 2.2. Let us first perform the follow-

ing change of input variable u′ =
(

u
T2
− 1

)

which is regular as

the temperature is positive: T2 > 0. Then the heat exchanger is

written as IPHS with input vector field g′ = λe

(
0
−1

)

. It may be

noticed that g′ is Hamiltonian with respect to J and generated

by (−λe S 1)

g′ = λe

(

0

1

)

=

(

0 −1

1 0

)

∂

∂S
(−λeS 1)

= J
∂

∂S
(−λeS 1) .

Secondly, let us characterize the equilibria (x∗, u∗) of the control

system. As the matrix J is symplectic, the equilibrium point
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(x∗, u∗) is given by the equivalent conditions

R J ∂U
∂x

(x∗) + g′u′∗ = 0

⇔ R ∂U
∂x

(x∗) + u′∗ ∂
∂S

(−λe S 1) = 0

⇔






R (x∗) ∂U
∂x1

(x∗) − λe u′∗ = 0

R (x∗) ∂U
∂x1

(x∗) = 0

⇔






R (x∗) = 0

u∗ = T ∗
2

⇔






T ∗
1
− T ∗

2
= 0

u∗ = T ∗
2

Let us now check the existence of a Casimir function. The con-

dition (22) is equivalent to

−R ∂F
∂x
+ β (x) λe

(

1

0

)

= 0

∂F
∂x

t
λe

(

0

−1

)

β (x) = 0

which is equivalent to ∂F
∂x2
= 0 and

β (x) =
1

λe

R
∂F

∂S 1

(S 1)

where F (x1) is freely chosen as the transversality condition is

always satisfied

∂F

∂x

t

λe

(

0

−1

)

β (x) =

(

∂F

∂x1

, 0

)

λe

(

0

−1

)

β (x) = 0.

Choosing the control system Hamiltonian to be Hc (xc) = −u∗,

the feedback is u′ (x) = u∗β (x) which may be interpreted as

shaping the Hamiltonian to Hcl (S ) = (U (S ) − u∗F (S 1)) (x) =

U1 (S 1) − u∗F (S 1) + U2 (S 2).

Let us now choose u∗F (S 1) = A
(

S 1, S
∗
1

)

as the energy based

availability function of compartment 1 1

A(S 1, S
∗
1) = U1(S 1) −

[

U1(S ∗1) + ∂U1

∂S 1

⊤
(S ∗1)(S 1 − S ∗1)

]

≥ 0.

(24)

For simple homogeneous thermodynamic systems, the en-

ergy based availability function A(S 1, S
∗
1
) is a strictly convex

function with an unique minimum at S ∗
1
, where S ∗

1
is the de-

sired equilibrium. This follows from the second law of ther-

modynamics, where the internal energy is a convex function

[28, 29].

Then by the properties of IPHS one has the energy balance

equation dHcl

dt
= 0. However this cannot lead to stability of

the desired equilibrium point as the Hamiltonian Hcl (S ) =

A(S 1, S
∗
1
) + U2 (S 2) has a strict minimum in its first compo-

nent by energy shaping but the second component is invariant

and has no strict minimum. Although discouraging, this “inter-

connection obstacle”, is not entirely unexpected, since it may

be interpreted in terms of the well known dissipation obstacle

for dissipative PHS [30].

This implies that for this system one has to use not only en-

ergy shaping methods by interconnection but needs also some

IDA-PBC synthesis methods which are beyond the scope of this

paper.

1We thank Yann Le Gorrec (ENSMM, Besançon, France) for pointing to

this Lyapunov function candidate.

5. Conclusion

A class of quasi port-Hamiltonian systems (PHS) that en-

compasses a large set of thermodynamic systems, includ-

ing heat exchangers and continuous stirred tank reactors

(CSTR) has been defined: Irreversible port-Hamiltonian Sys-

tems (IPHS). It includes as a structural property the conserva-

tion of energy and the irreversible production of entropy, ex-

pressed by a Poisson bracket evaluated on these two quantities.

The structure of the IPHS resembles classical PHS since the

constant structure matrix represents the network structure of the

system (direction of flows for the heat exchanger and stoichio-

metric chemical network for the CSTR). The modelling of cou-

pled mechanical-thermodynamical systems has also been stud-

ied and an extension of IPHS have been proposed: Reversible-

IPHS (RIPHS). These systems are composed by the intercon-

nection of a PHS and an IPHS, being the total Hamiltonian the

sum of the individual Hamiltonians of the systems. Addition-

ally, the skew-symmetric structure matrix of RIPHS is the sum

of a structure matrix of a Poisson bracket (with Casimir func-

tion the total entropy) and a skew-symmetric matrix of a quasi-

Poisson bracket.

The stabilization by interconnection of IPHS has been ad-

dressed. Since IPHS share a similar structure with PHS, with

the precise difference that the Poisson structure matrix J is mul-

tiplied by the modulating function R
(

x, ∂U
∂x
, ∂S
∂x

)

, it may seem

that the Casimir method could be extended to this kind of

systems in a rather straightforward manner. However the ir-

reversible entropy creation, related to R
(

x, ∂U
∂x
, ∂S
∂x

)

, limits the

Casimir method and makes it not possible to shape the closed-

loop Hamiltonian in all its components. This “interconnection

obstacle”, although discouraging, is not entirely unexpected,

since it may be interpreted in terms of the well known dissi-

pation obstacle for dissipative PHS [30].

Future work will study the IPHS for complex chemical reac-

tion networks and how to overcome the interconnection obsta-

cle and specialize these results for the stabilization of complex

thermodynamic systems, such as the CSTR.
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