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Abstract:  This paper is concerned with the integer quadratic multidimensional 

knapsack problem (QMKP) where the objective function is separable. Our objective is 

to determine which expansion technique of the integer variables is the most 

appropriate to solve (QMKP) to optimality using the upper bound method proposed 

by Quadri et al. (2007). To the best of our knowledge the upper bound method 

previously mentioned is the most effective method in the literature concerning 

(QMKP). This bound is computed by transforming the initial quadratic problem into a 

0-1 equivalent piecewise linear formulation and then by establishing the surrogate 

problem associated. The linearization method consists in using a direct expansion 

initially suggested by Glover (1975) of the integer variables and in applying a 

piecewise interpolation to the separable objective function. As the direct expansion 

results in an increase of the size of the problem, other expansions techniques may be 

utilized to reduce the number of 0-1 variables so as to make easier the solution to the 

linearized problem. We will compare theoretically the use in the upper bound process 

of the direct expansion (I) employed in Quadri et al. (2007) with two other basic 

expansions, namely: (II) a direct expansion with additional constraints and (III) a 

binary expansion. We show that expansion (II) provides a bound which value is equal 

to the one computed by Quadri et al (2007). Conversely, we provide the proof of the 

non applicability of expansion (III) in the upper bound method. More specifically, we 

will show that if (III) is used to rewrite the integer variables into 0-1 variables then a 
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linear interpolation can not be applied to transform (QMKP) into an equivalent 0-1 

piecewise linear problem. 

 

Keywords: integer quadratic knapsack problem; separable objective function; direct 

expansion; binary expansion; piecewise interpolation. 
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Introduction 

This paper deals with the integer quadratic multi-knapsack problem (QMKP) where 

the objective function is separable. Problems of this structure arise in numerous 

industrial and economic situations, for instance in production planning [12], reliability 

allocation [10] and finance [5]. These include the main application of (QMKP) which 

is in the portfolio management area where the investments are independent, see [4] 

and [5]. Nevertheless, solving (QMKP) efficiently will constitute a starting point to 

solve the more general and realistic portfolio management problem where the 

investments are dependent, i.e. the objective function is non separable. 

 

The integer quadratic multi-knapsack problem (QMKP) where the objective function 

is separable consists in maximizing a concave separable quadratic integer function 

subject to m linear capacity constraints. It may be stated mathematically as follows: 
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where the coefficients cj, dj, aij, bi are nonnegative. The bounds uj of variables xj are 

pure integers, with ( )jjj dcu 2/≤ . Indeed, the separable objective function is concave 

which implies that for all function fj, ( )jjj dcx 2/* ≤ , where x
*

j is the optimal solution of 

the program  ( )jjx
xf

j 0
max ≥ . 

 

The problem (QMKP) which is a NP-hard problem [3] is a generalization of both the 

integer quadratic knapsack problem [2] and the 0-1 quadratic knapsack problem 

where the objective function is subject to only one constraint [1]. 

 

Since, (QMKP) is NP-hard, one should not expect to find a polynomial time algorithm 

for solving it exactly. Hence, we are usually interested in developing branch-and-

bound algorithms. A key step in designing an effective exact solution method for such 

a maximization problem is to establish a tight upper bound on the optimal value. 

Basically, the available upper bound procedures for (QMKP) may be classified as 

attempting either to solve efficiently the LP-relaxation of (QMKP) (see [2] and [8]) or 

to find a good upper bound, of better quality than the LP-relaxation of (QMKP), 

transforming (QMKP) into a 0-1 linear problem easier to solve (see [4] and [9]). To 

the best of our knowledge, the upper bound method we have proposed in a previous 

work [11] is better than the existing methods (Djerdjour, Mathur and Salkin algorithm 

[4], a 0-1 linearization method, a classical LP-relaxation of (QMKP)) from both a 

qualitative and a computational standpoint. We have first used a direct expansion of 

the integer variables, originally suggested by Glover [7], and apply a piecewise 

interpolation to the objective function: an equivalent 0-1 linear problem is thus 

obtained. The second step of the algorithm consists in establishing and solving the 

surrogate relaxation problem associated to the equivalent linearized formulation.  

 

Nevertheless the transformed linear formulation encounters numerous 0-1 variables 

because of the direct expansion used (denoted by expansion (I) in the following). 

Consequently, other expansions techniques may be utilized to reduce the number of  

0-1 variables so as to make easier the solution to the linearized problem. Let us 
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consider the three basic expansions for rewriting the integer variables of (QMKP) into 

0-1 variables: 

 

• Expansion (I): direct expansion  

∑ = =ju

k jjk xy
1

, 

{ }jj ux K1∈ , { }1,0∈jky  

nj K1=∀ , juk K1=  

• Expansion (II): direct expansion with additional constraint 

∑ = =ju

k jjk xyk
1

' , 

∑ = ≤ju

k jky
1

' 1  

{ }jj ux K1∈   , { }1,0' ∈jky  

nj K1=∀ , juk K1=  

• Expansion (III): binary expansion. 

⎡ ⎤∑ = =)log(

1
2ju

k jjk
k xz , 

⎡ ⎤∑ = ≤)log(

1
2ju

k jjk
k uz  

{ }jj ux K1∈  , { }1,0∈jkz nj K1=∀ , ⎡ ⎤)log(1 juk K=  

 

The purpose of this note is to evaluate the impact of the use of the above expansion 

techniques, on the upper bound computation developed in [11]. More specifically, we 

will determinate which expansion is the most appropriate to be used in the upper 

bound method for (QMKP) [11]. We will compare theoretically the use of the direct 

expansion (I) with the direct expansion with additional constraints (II) and with the 

binary expansion (III). We will show that the use of (II) provides a bound which value 

is equal to the one computed in [11]. Conversely, we provide the proof of the non 

applicability of both (III) and a linear interpolation to transform (QMKP) into an 

equivalent 0-1 piecewise linear problem.  
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The paper is organized as follows. The next section summarizes the upper bound 

method developed in [11] detailing the direct expansion (I) of integer variables and 

the piecewise interpolation. In Section 3, the direct expansion with additional 

constraints (II) is applied to (QMKP) so as to compute the upper bound suggested by 

Quadri et al. [11].  Section 4 is dedicated to the binary expansion (III). We finally 

conclude in Section 5. 

In the remainder of this paper, we adopt the following notations: letting (P) be an 

integer or a 0-1 program, we will denote by ( P ) the continuous relaxation problem of 

(P). We let Z[P] be the optimal value of the problem (P) and Z[ P ] the optimal value 

of ( P ). Finally ⎡ ⎤x  (resp. ⎣ ⎦x ) will denote the smallest (resp. highest) integer greater 

(resp. lower) than or equal to x.  

 

 

Section 2. Direct expansion of the integer variables  

 In this section we summarize the upper bound method for (QMKP) proposed 

by Quadri et al. [11]. First, an equivalent formulation is obtained by using a direct 

expansion (I) of the integer variables xj as originally proposed by Glover [7] and by 

applying a piecewise interpolation to the initial objective function as discussed in [4].  

 

 The direct expansion of the integer variables xj consists in replacing each 

variables xj by a sum of uj 0-1 variables yjk such that∑ = =ju

k jjk xy
1

. Since the objective 

function f is separable a linear interpolation can then be applied to each objective 

function term fj. Consequently, (QMKP) is equivalent to the 0-1 piecewise linear 

program (MKP): 
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where, ∑ = =ju

k jjk xy
1

, 
1, −−= kjjkjk ffs  and 2kdkcf jjjk −= . 
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In the second step of the algorithm, a surrogate relaxation is applied to the LP-

relaxation of (MKP). The resultant formulation (KP, w) is the surrogate relaxation 

problem of (MKP) and can be written as: ( )[ ]{ }⎪⎪⎩
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= ===
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As proved by Glover [7], (KP, w) is a relaxation of (MKP). For any value of 0≥w  

[ ]wKPZ ,  the optimal value of ( )wKP,  constitutes an upper bound for [ ]MKPZ . But the 

value of the bound [ ]wKPZ ,  depends on the choice of the surrogate multiplier 

employed. It is proved in [10] that if w* is chosen as the optimal solution of the dual 

of ( )MKP  then the optimal value of (KP,w*) is a tight upper bound for (QMKP) and it 

is obtained in a very competitive CPU time. 

 

Nevertheless, the direct expansion used in the above upper bound procedure results in 

an increase of the size of the linearized problem. Indeed, the number of 0-1 variables 

is equal to∑ =
n

j ju
1

 whereas it is well known that fewer variables are included in the 

program so less running time is consumed. The purpose of the next sections is to try 

to reduce the equivalent linearized problem size, using other expansion techniques 

and to evaluate the impact of such techniques on the computation of the upper bound 

proposed in [11]. 

 

 

Section 3. Direct expansion of integer variables with additional constraints  

In this section we apply to the integer variables of (QMKP) the direct expansion with 

additional constraints (II). That is each variable xj is replaced by the following 

expression ∑ =
ju

k jkyk
1

'
where { }1,0' ∈jky , k =1,…,uj and j=1,…,n. Since the integer 

variables are now replaced by 0-1 variables, we transform the resultant 0-1 quadratic 
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program into a 0-1 linear problem as follows: we replace each objective function term 

fj(xj) by '

1

jk

u

k

jk yf
j∑=  where fjk = cjk – djk² .  

The problem (QMKP) is thus equivalent to the following problem (MKP2): 
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Following the upper bound method developed in [11] we then establish the surrogate 

problem (KP2,w)  associated to (MKP2). The problem (KP2,w) can be written as: 
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Utilizing the optimal solution *ω  of the dual of )( 2MKP  as the surrogate multiplier, 

the optimal value of the LP-relaxation of (KP2, *ω ) provides an upper bound of 

(QMKP). The following proposition and its corollary show that this upper bound, 

computed in this section through the use of expansion (II), is equal to the one 

computed in [11].  

Proposition 3.1 Let w be any real surrogate multiplier, w ≥ 0. The following result 

holds:  
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[ ] [ ].,2, wKPZwKPZ =  

Proof 3.1  

• We first show that: [ ] [ ].,,2 wKPZwKPZ ≤  
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Let us now show that )()'( ygyh ≤ . It suffices to prove that: 
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In the following we name jΛ  the quantity ( ) 1,,1 ++−
jj pjjpjj ff εε . We now 
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previously mentioned that .
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The solution y~  defined by ( jpj j
y ε−= 1~

, , jpj j
y ε=+1,
~ , 0~ =jky  for jpk ≠  

and 1+≠ jpk ) is clearly feasible for ( )jP  and of value jΛ . The 

complementary slackness conditions suggest to consider the following 

solution ( )βα ~
,~ for ( )jD : 
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We now prove that ( )βα ~
,~  is feasible for ( )jD . Since its value in ( )jD  is 

clearly jΛ , the feasibility of ( )βα ~
,~  for ( )jD  will imply by duality in linear 

programming that [ ]jj PZ=Λ . ( )βα ~
,~  is feasible for ( )jD  if and only if: 
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This last inequality implies that )()'( ygyh ≤  and therefore that: 

[ ] [ ].,,2 wKPZwKPZ ≤ . 
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• We now show that: [ ] [ ].,2, wKPZwKPZ ≤  

The proof is analogous to the one of the previous point. Let y  be an optimal 

solution for ( )wKP, . We derive from y  a solution 'y  feasible for ( )wKP ,2 , 

such that )'()( yhyg = . 
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which implies that 'y  verifies the surrogate constraint of ),2( wKP  (since y  

verifies the one of ),( wKP ). Since { }∑= ≤∈∀ ju

k

jkynj
1
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This last equality holds for the same reason as in the previous 
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paragraph (the coefficients of variables jky  in the unique knapsack 

constraint are identical and the coefficients of these variables in the 

objective function are in decreasing order). This implies that: 

∑∑ ==
= jj u

k

jkjk

u

k

jkjk ysyf
11

' . 

We thus get: )'()( yhyg = , wich implies the result [ ] [ ].,2, wKPZwKPZ ≤   

  

 

Corollary 3.2  The upper  bound obtained by the surrogate linearization [11] (using 

expansion (I)) and the upper bound obtained by the surrogate linearization using 

expansion (II) are equal: [ ] [ ]*,*, 2 ωKPZwKPZ = , where w* and *ω respectively 

stand for the optimal surrogate multiplier of the LP-relaxation of problems  (MKP) 

and (MKP2).  

 

Proof 3.2 The result of Proposition 3.1 is true whatever the surrogate multiplier w is 

used, so it remains true if we successively consider w* and *ω  as a surrogate 

multiplier.    

 

We thus have proved in this Section that solving (QMKP) with a linearization 

technique and a surrogate relaxation may be equivalently done with expansion (I) or 

with expansion (II) of the integer variables. We proved that expansions (I) and (II) are 

equivalent in the sense that they provide the same upper bound. However, expansion 

(II) involves n added constraints without improving the quality of the upper bound in 

comparison with expansion (I). 

 

Section 4. Binary expansion of integer variables  

This section is dedicated to the use of a binary expansion (referred as expansion (III)) 

of this integer variables in the upper bound procedure developed in [11]. Such 

expansion consists in rewriting each integer variable xj (j=1,…,n) as: 
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⎡ ⎤∑== )log(

0

2
ju

k

jk

k

j zx  where { }1,0∈jkz  (1) 

Using (1) involves only ⎡ ⎤∑=nj ju
1

2 )(log  0-1 variables instead of ∑=nj ju
1

 0-1 variables 

when a direct expansion is applied.  

As previously mentioned, the aim of this study is to compare other expansion 

techniques in the upper bound process developed in [11]. Since, the variables are now 

binary the next step of the algorithm of Quadri et al. [11] concerns with a piecewise 

linear interpolation of the objective function so as to obtain an equivalent 0-1 linear 

problem with only ⎡ ⎤∑=nj ju
1

2 )(log  0-1 variables. 

The following proposition shows the non applicability of both expansion (III) and a 

linear interpolation to transform (QMKP) into an equivalent 0-1 piecewise linear 

problem through the use of only ⎡ ⎤∑=nj ju
1

2 )(log  0-1 variables. 

Proposition 4.1 Considering the integer quadratic multi-knapsack problem (QMKP). 

If a binary expansion is used to rewrite the integer variables of (QMKP) as 

⎡ ⎤∑=
n

j

ju
1

2 )(log  0-1 variables then an equivalent 0-1 piecewise linear problem can not 

be established applying a linear interpolation. 

Proof 4.1 Assume that it is possible to replace each function fj(xj) = cjxj – djxj², for all 

j from 1 to n, by a linear function gj(zj) using exactly ⎡ ⎤)(log2 ju  0-1 variables. We 

denote by (H) this assumption.  

If (H) is true then it should exist coefficients gjk such that: 

⎡ ⎤ { } )2(1,)(

)(log

1

2
2

jj

u

k

jkjkjjjjjj uxzgxdxcxf
j

K∈∀=−= ∑=  
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with
⎡ ⎤ { } )3(1,0,2

)log(

0

∈= ∑=
ju

k

jkjk

k

j zzx . 

The assumption (H) must be satisfied for all problem data. Let us set uj = 3, cj = 10 

and dj = 4. 

Consequently,  

- if xj = 1 (cf. (2) and (3))  then gj1 = 6 (i), zj1 = 1 and zj2 = 0.  

- if xj = 2 (cf. (2) and (3)) then gj2 = 4 (ii), zj1 = 0 and zj2 = 1.  

- if xj = 3  then (cf.  (3)) then zj1 = zj2 = 1 which implies (cf. (2)) that 3cj – 9 dj = 

gj1 + gj2 = -6 (iii). 

The equations system (I), (II) and (III) has clearly no solution. Consequently there is a 

contradiction with (H).  

 

Proposition 4.1 shows the non applicability of a binary expansion of the integer 

variables for (QMKP) so as to transform the initial problem into a 0-1 linear program. 

Consequently, the upper bound method proposed in [11] can not be applied together 

with expansion (III).  

 

 

Section 5. Concluding remarks 

In this paper we have theoretically compared the use of three techniques to rewrite 

integer variables into zero-one variables in an upper bound procedure for (QMKP) 

developed by Quadri et al. [11], which provides, to the best of our knowledge a bound 

closer to the optimum than the existing methods. More specifically, we have 

compared a direct expansion of the integer variables, originally employed in [11] with 

a direct expansion with additional constraints (II) and with a binary expansion (III). 

We have proved that (II) provides the same upper bound as the one computed in [11] 

whereas it involves n additional constraints. We therefore do not expect an 

improvement of the upper bound computational time. Finally, we provide a proof of 
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the non applicability of both (III) and a linear interpolation to transform (QMKP) into 

an equivalent 0-1 piecewise linear problem through the use of only ⎡ ⎤∑=nj ju
1

2 )(log  0-1 

variables. 

A possible way to get a further decrease of the number of 0-1 variables would be the 

use of a classical linearization technique as suggested by Foret (1959) [6]. This 

linearization scheme would first consist in applying (III) to the integer variables and 

then using the basic linearization technique for 0-1 variables. Nevertheless, 

preliminary computational experiments have shown that the bound provided by this 

technique is of worst quality than the one computed in [11]. Moreover, this process 

seems to be more time consuming than [11].   
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