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Abstract—The paper focuses on the calibration of serial 

industrial robots using partial pose measurements. In contrast 

to other works, the developed advanced robot calibration 

technique is suitable for geometrical and elastostatic calibration. 

The main attention is paid to the model parameters 

identification accuracy. To reduce the impact of measurement 

errors, it is proposed to use directly position measurements of 

several points instead of computing orientation of the end-

effector. The proposed approach allows us to avoid the problem 

of non-homogeneity of the least-square objective, which arises in 

the classical identification technique with the full-pose 

information. The developed technique does not require any 

normalization and can be efficiently applied both for geometric 

and elastostatic identification. The advantages of a new 

approach are confirmed by comparison analysis that deals with 

the efficiency evaluation of different identification strategies. 

The obtained results have been successfully applied to the 

elastostatic parameters identification of the industrial robot 

employed in a machining work-cell for aerospace industry. 

Keywords—Robot calibration, parameter identification, partial 

pose measurement, accuracy improvement.  

I. INTRODUCTION  

To achieve the desired accuracy, each industrial robot 
must go through the calibration procedure, which deals with 
proper parameter tuning of the mathematical model embedded 
in the robot controller. Because of its importance, the problem 
of robot calibration has been in the focus of research 
community for many years and has been studied from 
different aspects [1-5]. In spite of this, the issues of the 
identification accuracy and calibration error reduction have 

not found enough attention, only limited number of works 
directly addressed these important problems [3, 5-6]. 
Generally, two main approaches that allows us to improve the 
identification accuracy without increasing the number of 
experiments exist. The first one deals with the preliminary 
optimization of the manipulator measurement configurations 
(so-called design of calibration experiments). The second 
approach consists in enhancing the objective function to be 
minimized inside the identification algorithm (in order to 
minimize impact of the measurement noise). As follows from 
the literature analysis, the first approach has been considered 
in a number of papers [7-10], while the second one received 
less attention of the researches. For this reason, taking into 
account particularities of the measurement system used in our 
experiments, this paper focuses on the improvement of the 
second method, which looks rather promising here.  

In robot calibration, there exists a number of techniques 
that differ in the measurement equipment, the nature of the 
experimental data (position, orientation, distance, etc.) and in 
the optimization algorithm that produces the desired 
parameters [11-14]. At present, the most popular are the so-
called open-loop methods that utilise external measurement 
devices to obtain either full or partial pose of the end-effector 
(i.e. position and/or orientation) [12-14]. However, it should 
be noted that the manipulator end-effector orientation cannot 
be measured directly, so the orientation angles are calculated 
using positions of several points around the end-effector 
centre point (TCP). Relevant example can be found in [15], 
where the end-effector orientation is evaluated using three 
target points located on the special measurement flange (i.e., 
three orientation angles are computed from nine Cartesian 
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coordinates provided by the laser tracker). However this 
approach, which is based on the minimization of the squared 
sum of the position and orientation residuals, does not allow to 
minimize the measurement errors impact in the best way (in 
fact, the position and orientation components of the objective 
to be minimized are not weighted properly from the statistical 
point of view). To overcome this difficulty, in this paper it is 
proposed to use only direct measurement information, i.e. to 
replace the conventional objective function (squared sum of 
the position and orientation residuals) by a homogeneous 
squared sum of position residuals for all measurement points. 
It is clear that this approach is promising for the identification 
accuracy improvement, but it requires some revisions of the 
identification algorithm, which is proposed in this paper.  

To address the above defined problem, the remainder of 
this paper is organized as follows. Section 2 defines the 
research issue and basic assumptions. In Sections 3, the 
identification algorithm is presented. Section 4 proposes 
comparison of the developed identification algorithm with the 
conventional one. Section 5 presents an application example 
illustrating benefits of the proposed approach. Finally, Section 
6 summarizes the main contributions of the paper.  

II. PROBLEM STATMENT 

Let us consider a serial robot whose end-effector location 
 (position  and orientation φ ) is computed using 

the following vector function 
( , )t p φ p

  ( , , )gt q θ Π

where (.)g  defines the manipulator extended geometric 
model, q  is the vector of actuated coordinates,  is the vector 
of robot elastostatic deflections, and the vector of the 
parameters 0  is presented as the sum of the 
nominal component 0Π  and geometrical errors 

θ

 Π Π Π Π  to be 
identified via calibration.  

In addition to the geometric equation (1), let us consider 
the elastostatic model that allows us to compute the 
deflections  caused by the external loading  applied to the 
manipulator end-effector. Relevant equation can be presented 
in the following form [16] 

θ F

  T

θ θ· ·θ k J F

where the matrix θ  is the manipulator 
Jacobian with respect to the elastostatic deflections , and  
is the manipulator compliance matrix to be identified.  

( , , ) /g  θ ΠJ q θ
θ θk

Assuming that the values   and  are relatively small, 
equation (1) can be linearized and presented in the form 

Π θ

  0 θ θ θ· · · T  t g J J k JΠ F·

where the first term 0 0i  corresponds to the 
nominal geometric model (i.e. to the case when 

), and the matrix   is the 
manipulator Jacobian with respect to the geometrical 
parameters .  

( , , )gg q 0 Π

g,  θ 0 Π 0

Π

( , , ) / θ ΠJ q Π

The above presented equation (3) is the basic expression 
for the robot calibration that allows user to obtain the desired 
geometric and elastostatic  parameters   and θk . For this 
purposes a set of experiments are carried out, in which the 
end-effector locations 

Π

 it  are measured by an external 
device for several manipulator configurations defined by the 
vectors of the actuated coordinates  . It is also assumed 
that the corresponding vectors of the external loading 

iq  iF  
are known. It is clear that that corresponding system of linear 
equations can be solved for  θ,Π k  if the number of 
manipulator configurations  is high enough and the vectors m , 1,i i mq  are different to ensure non-singularity of the 
relevant observation matrix used in the identification 
procedure. However, there are some difficulties here related to 
the estimation of the orientation components  iφ  of the 
location vectors i( , )i it p φ . There are two main approaches 
here that are considered below. 
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Figure 1.  Typical measurement tool used for robot calibration 

Usual approach is based on the straightforward utilization 
of equation (3), where each configuration iq  produces six 
scalar equations corresponding to the components of the six-
dimensional location vector zi yixi zi . 
Corresponding  optimization problem allowing to compute the 
desired parameters 

, . .. T

i xi p   t ( ,yip p )

 θ,Π k  can we written as follows  


θ

2

0 θi θ θi
,

1

· · · m·
m

T

i

i i i i    
kΠ

t g J J k J FΠ in  
However, in practice, the orientation components y ii ix . )( . z    
cannot be measured directly, so these angles are computed 
using excessive number of measurements for the same 
configuration , ich p oduce Cartesian coordinates iq wh r , ) |, 1, ;( n np p 3xij yij zijp j  

 for several target points of the 
measurement tool attached to the manipulator mounting flange 
(Figure 1). Hence, instead of using  scalar equations, that 
can be theoretically obtained from the measurement data, this 
conventional approach uses only 6  scalar equations for the 
identification. These may obviously lead to some loss of the 
parameter estimation accuracy. Another difficulty is related to 
the definition of the vector norm in equation (4), where the 
six-dimensional residuals are not homogeneous. It is clear that 
the position and orientation components must be normalized 
before computing the squared sum, but it is a non-trivial step 
affecting the accuracy (in practice, the normalization factors 
are usually defined intuitively).  

3mn

m



To overcome this difficulty it is proposed to reformulate 
the optimization problem (4) using only data directly available 
from the measurement system, i.e. the Cartesian coordinates  
of all reference points  (Figure 1). This 
idea allows us to obtain homogeneous identification equations 
where each residual has the same unit (mm, for instance), and 
the optimization problem  is rewritten as follows 

( ,, T

ij xij yij zijpp pp )

θ

2

θij θ θi

( )
( ) (

j
,

)

0

1 1

· · · ·ij i

m n
p

p p T

ij

i j

j i         Π k
p g J J k J FΠ min

m

 
Here, the superscripts "(p)" indicate the position components 
(three Cartesian coordinates) of the corresponding location 
vectors, the index "i" defines the manipulator configuration 
number, while the index "j" denotes the reference point 
number. An obvious advantage of this formulation is 
simplicity in the vector norm definition (conventional 
Euclidian norm can be applied here reasonably, the 
normalization is not required) and elimination of the problem 
of the weighting coefficient selection. In fact, under 
assumption that the measurement noise is presented as a set of 
i.i.d. random values (similar for all directions x, y, z and for all 
measurement configurations), the optimal linear estimator 
should have equal weights. Besides, there are some potential 
benefits in the identification accuracy here, since the total 
number of the scalar equations increases from 6  to . m 3mn

To prove advantages of the second approach based on the 
objective function (5), the following sections will be devoted 
to the development of the dedicated identification algorithm 
and the comparison study of the conventional and proposed 
techniques. 

III. IDENTIFICATION ALGORITHM  

Let us assume that the measurement tool has  reference 
points ( ) that are used to estimate relevant vectors of the 
Cartesian coordinates  for  manipulator 
configurations. Using the homogeneous transformation 
technique, corresponding geometric model (1) can be 
presented as the matrix product  

n
3n 

( , , )j j j j

i xi yi

T

zip p pp

 (· , , )·base rob

j j

ot i i to li oT θ ΠT T q T  
where the vectors j

ip  are incorporated in the forth column of 
j

i , the matrix  defines the robot base location, the 
matrices 
T baseT

, ,j
T

θ

1j t loo  describe locations of the reference 
points that are observed by the measurement system (see 
Figure 1), and the matrix function robot i i  describes 
the manipulator geometry and depends on the current values 
of the actuated coordinates q , the robot elastostatic 
deflections , and the vector of the parameters  to be 
estimated.  

n

( , , )T q θ Π

Π

Taking into account that any homogeneous transformation 
matrix a  can be split into the rotational  and translational 

 components and presented as 

b
T

b

aR
b

a
p

  
1

b b
b a a
a

    
R p

T
0

the Cartesian coordinates of the reference points , 1,j

i j np  
corresponding to the configuration  can be expressed in the 
following form 

iq

( , , ) ( , , )j j

i tobase bas oe robot i i b lase robot i i
  θ Πp p R p q R R q pθ Π 

This equation should be accompanied by the elastostatic 
model θ θi i i i  that allows us to obtain 3  
scalar equations for the identification purposes, where the 
following vectors/matrices are treated as unknowns: , 

, ,  and . 

T ( ,· , )θ k J q Π Fθ

j

tool
p θk Π

· mn

basep

baseR

To simplify computations, it is proposed to split the 
identification procedure into two steps. The first one deals 
with the estimation of base , base , tool , which are related to 
the base and tool transformations (assuming that the 
manipulator parameters are known). The second step focuses 
on the estimation of θk  and  under assumption that the 
base and tool components are already identified. To achieve 
desired accuracy, these steps are repeated iteratively several 
times. 

p R

Π

j
p

Step 1. For the first step, taking into account that the errors 
in the base orientation are relatively small, the matrix  is 
presented in the following form  

baseR

  ~base base rR I  
where  is 3I 3  identity matrix, vector baser  includes the 
deviations in the base orientation, and the operator "  ~ " 
transforms the vector  in the skew symmetric 
matrix as  

, ,( T

x y zr rrr )

   0

~ 0

0

z

z

y

x

y x

r r

r

r r


r

      
r  

This leads to the following presentation of equation (8)  

  · ~base robot robot base

j i i i

i tobo lr t   p p p p r R u
j

oo  
that can also be rewritten in a matrix form as 

 ~j i i i

i
j

too

baseT

robot robot robot base

l

             
p

p p I p R r

u

 

where  and  are defined as follows  i

robot
p

i

robot
R

  ( , , ); ( , , )robot robot i i robot robot i i

i i p p q qθ θRΠ ΠR

and  

 bas

j j

to eol toolu R p  
Here the vectors ,  and basep baser , 1,j

tool j u n  are treated as 
unknowns. 

Applying to the linear system (12) the least-square 
technique, the desired vectors defining the base and tool 
transformations can be expressed as follows 



 
1

1 1

1; ; ;...
T T

m m
j j j

base base i i i i

i

n

tool tool

i



 
            p r A A A pu u

 

...

...

...




0



where 

  
~

~

... ... ... ... ... ...

~

T

robot robot

T

j robot robo

i i

i i

i

t
i

T

robot r

i

obot

           

I p R 0 0

0I p R

I p R

A

0 0

and the residuals are integrated in a single vector 

i i i  . Finally, the variables defining the 
location  to the reference points are computed using 
expression (14) as 

1;...; n   p p p

·j T jp R utool base tool . This allows us to find the 
homogeneous transformation matrices  and  that are 
contained in expression (6). 

baseT
j

tool
T

Step 2. On the second step, the remaining parameters  
and θ , which define the manipulator geometry and the 
elastostatic properties, are estimated. For this purpose, the 
principal system (6) is linearized and rewritten in the form 

Π
k

 ( ) ( )·ij j p

i robot i i  p J Π Ap ·j p χ  
where the subscript "(p)" denotes the positional components 
(three first rows) of the corresponding matrices, Π is the 
vector of geometrical errors, the vector χ  collect the 
unknowns that corresponds to all non-zero elements (by 
definition) of the compliance matrix θk  (structure of the 
matrix θ  defines in accordance with the assumptions of 
links\joins compliance before the identification), the matrix 

i

k

jJ
q

 is the geometric Jacobian computed for the configuration 

i  with respect to the reference point , and j ( )j p

iA  is derived 
by relevant transformation of the last term of equation (3) into 
the vector form: 

  1 1 ,...,j T T

i i i i ni ni i

j j j j A J J J FJF 
In the last expression, 1 i,...,i

j j

nJ J  denote the vector-columns 
obtained by splitting of the geometric Jacobian j

iJ . For the 
computational convenience expression (17) can be presented 
in the matrix form 

  ( ) ( ), ·j j p j p

i i i

        
Π

p J A χ

where t  is the residual vector corresponding to 
the jth reference point for the ith manipulator configuration. 

j j

i i ob

i

r o
  pp p

Appling to this system the least-square technique, the 
desired vectors , , defining the manipulator geometric 
and elastostatic properties, can be expressed as  

Π χ


1

( ) ( ) ( )

1 1 1 1

T
m n m n

Tj p j p j p j

i i i i

i j i j



   
             Π

B B B pχ
   

where . ( ) ( ) ( ),j p j p j p

i i i
   B J A

It should be noted that, to achieve the desired accuracy, the 
steps 1 and 2 should be repeated iteratively.  

IV. COMPARISON ANALYSIS 

To illustrate the efficiency of the proposed technique, let 
us compare its accuracy with the conventional one that 
operates with the full pose information. Their distinctions  and 
particularities can be described as follows: 

Approach #1 (conventional): The identification is based 
on the full pose information  0 0 0 , where both position 

0  and orientation 0  vectors are computed from the 
Cartesian coordinates of three reference points 

,t p φ
p φ  2 3, ,p p p1

 
located on the manipulator end-effector (see Figure 1). 

Approach #2 (proposed): The identification is based on 
the partial pose information, where three measurement points  , ,p p p1 2 3  are directly included in the objective function to 
be minimized by the identification algorithm. 

Let us consider a 3 d.o.f. serial manipulator whose 
geometry is described by the following equations 


2 2 3 2 3

2 2 3 2 3

1 2 2 3 2 3

2 3 1

( cos cos( )) cos

( cos cos( ))sin

sin sin( )

0; ;x y z

1

1

x l q l q q

y l q l q q

q

q

qz l l q q

qq

l

q  

 
 
 


 

  
  

where 1 2 3  are the actuator coordinates and 1 2 3  are 
the link lengths to be identified. The manipulator kinematics 
and procedure of the input data preparation for the approaches 
#1 and #2 are presented in Figure 2. 

,,q q q ,,l l l
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 Input data for idenfication

Figure 2.  Input data for two identification approaches 

For simulation study, the following manipulator 
parameters have been assigned: 1 , 21ml  0.8ml  , 

3 0.6ml  . It was assumed that the geometric errors in the 
link lengths and the actuated joint offsets are respectively 

1 3.0ml m , 2 2.0mml  , 3  and 15.0l  mm 1.0degq  , 

2 0.5dq eg , 3 2.0degq  . Besides, it was also assumed 
that the measurements errors are i.i.d. random variables with 
the standard deviation 0.01mm   (which perfectly 
corresponds to the precision of the equipment used for the 
experimental validations). The desired parameters were 
estimated using three measurement configurations, which 
were generated randomly. To obtain reliable statistics, the 
calibration experiments have been repeated 1000 times. 



Simulation results are summarized in Table I, which 
presents the standard deviations for the estimates of the 
desired parameters (corresponding mean values of the 
estimates are equal to the assigned values with the high 
accuracy). As follows from these results, the proposed 
approach ensures the accuracy improvement in the estimation 
of the link length deviations i  by the factor of 2.25 ... 3.83, 
while the accuracy improvement for the joint offsets 
estimations i  is slightly less, up to 3.33. This confirms 
advantages of the proposed approach, but it should be 
mentioned that these numbers are obtained for particular set of 
the measurement configurations and particular normalization 
factor utilized in the approach #1. However, as follows from 
our study, approach #2 always provides essentially better 
results.  

l
q

TABLE I.  IDENTIFICATION ACCURACY  
FOR DIFFERENT IDENTIFICATION APPROACHES  

Standard deviation 
Parameter 

Approach #1 Approach #2 

Improvement 

factor 

1l  0.069 mm 0.018 mm 3.83 

2l  0.019 mm 0.006 mm 3.17 

3l  0.009 mm 0.004 mm 2.25 

1q  0.187 mdeg 0.185 mdeg 1.01 

2q  3.742 mdeg 1.123 mdeg 3.33 

3q  1.432 mdeg 0.866 mdeg 1.65 

 

V. APPLICATION EXAMPLE 

The developed identification technique has been applied to 
the elastostatic calibration of industrial robot KR-270 
(Figure 3). To take into account the influence of the gravity 
compensator (which creates the closed-loop) and to apply the  
virtual joint modeling approach developed for strictly serial 
robot [16], an equivalent non-linear virtual spring is used (its 
stiffness depends on the joint variable 2 ). However, to 
implement this idea, it is reasonable to consider a set of the 
compliance coefficients  2  corresponding to a 
number of different joint angles  2  that cover 
relevant joint limits. This yields the extended set of the 
elastostatic parameters 

q


, 1,

, 1, 2,...i i 
iq i


2,...

21 22( , .. 3 6e .), ,...,   χ  to be 
identified and leads to the linear system of the identification 
equations similar to those considered in Section III.  

To find the measurement configurations that ensure the 
best identification accuracy, the design of experiments 
technique has been applied, which is based on the dedicated 
industry-oriented performance measure proposed in our 
previous work [17]. This yielded 15 optimal measurement 
configurations with five different angles 2  that are 
distributed between the joint limits almost uniformly. These 
optimal configurations have been obtained taking into account 
physical constraints that are related to the joint limits and the 
possibility to apply the gravity force (work-cell obstacles and 
safety reasons). The results of the calibration experiment 
design are summarized in Table 2. 

q

At the measurement step, the manipulator was sequentially 
moved from one configuration to another, where the external 
loading 250 kg was applied to the special end-effector 
presented in Figure 4 (it allowed us to generate both external 
forces and torques). Corresponding experiment setup is shown 
in Figure 3. To measure the reference point Cartesian 
coordinates, the laser tracker system Leica AT901 was used. 
To evaluate manipulator elastostatic deflections, the reference 
point coordinates have been measured twice, before and after 
application of the external loading. 

 
Figure 3.  Experimental setup for the identification of the elastostatic 

parameters 

TABLE II.  OPTIMAL MEASUREMENT CONFIGURATIONS 

Joint angles, [deg] 

q1 q2 q3 q4 q5 q6 

79.20 -5.57 51.00 -97.52 -91.67  

63.00 -12.22 -56.49 41.42 150.55 

63.00 

-0.01 

-47.98 -70.04 -61.55 177.16  

95.00 33.00 129.69 -98.10 90.57 

95.00 -107.01 109.95 -61.19 174.21 

105.00 

-25.24 

14.30 55.21 41.26 -152.97 

56.60 44.54 -55.11 41.90 152.06 

56.60 64.73 -129.65 -98.260 -90.55 

144.80 

-56.9 

104.49 -69.41 61.67 -6.33  

-41.00 -91.68 55.12 41.53 -152.48 

-143.00 -32.64 110.31 -61.47 -6.29 

-143.00 

-99.85 

-72.01 129.65 -98.09 90.82 

133.00 147.68 129.64 -97.90 90.99 

-60.00 7.59 -110.09 -61.36 -174.09 

-60.00 

-140 

-52.00 -124.89 -41.62 27.78 
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Figure 4.  Measurement tool with three markers on the end-effector used for 

elastostatic calibration experiments 



Using these measurement data, the two-step identification 
procedure has been applied (see Section III). On the first step, 
the tool and base transformations has been computed; 
corresponding results are presented in Table 3. On the second 
step, they have been used for the identification of the 
elastostatic parameters, which are presented in Table 4. Here 
values 21 25,...,   correspond to five different aggregated 
compliances of the second actuated joint (which take into 
account impact of gravity compensator and are obtained for 
different angles of 2q ) and 3 6,...,   are the compliances of 
actuated joints 3...6 respectively. These parameters have been 
further used for the compliance error compensation for the 
robotic based milling of a aircraft parts, where essential 
improvement of the precision has been achieved.  
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