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Abstract: The paper focuses on the robust identification of geometrical and elastostatic parameters of 

robotic manipulator. The main attention is paid to the efficiency improvement of the identification 

algorithm. To increase the identification accuracy, it is proposed to apply the weighted least square 

technique that employs a new algorithm for assigning of the weighting coefficients. The latter allows 

taking into account variation of the measurement system precision in different directions and throughout 

the robot workspace. The advantages of the proposed approach are illustrated by an application example 

that deals with the elasto-static calibration of industrial robot.   
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1. INTRODUCTION 

The problem of robot calibration is in the focus of the 

research community for many years (Stone 1987, 

Hollerbach 1989, Elatta 2004). However, there is a very 

limited number of works that directly address the issue of the 

identification accuracy and reduction of the calibration errors 

(Mooring 1991, Sun 2008, Hollerbach 2008). In general, 

there exist two main methods to improve the identification 

accuracy without increasing the number of experiments. The 

first of them consists in optimization of the manipulator 

measurement configuration used for the calibration 

experiments. The second method deals with proper tuning of 

the identification algorithms used for estimation of the 

manipulator parameters (fine choosing of the weighting 

coefficients, for instant). As follows from the literature 

analysis, the first method has been studied in a number of 

papers (Khalil 1991, Borm 1991, Daney 2002), while the 

second one received less attention in robotic research. For 

this reason, taking into account particularities of the 

measurement system used in our experiments, this paper 

focuses on the enhancement of the second method, which 

looks rather promising here.  

To identify the desired parameters, most of the robot 

calibration procedure employ the ordinary least-square 

technique, where all identification equations are treated 

similarly, with the same weights. This approach perfectly 

suits to the measurement systems that provide roughly the 

same precision in all directions and in all workspace points. 

Mathematically, it corresponds to the i.i.d.-hypothesis 

concerning the measurement noise (i.e. to the assumption that 

all measurement errors are unbiased, independent and 

identically distributed). However, in this study, at least one of 

these assumptions is violated because the precision of the 

laser-tracker used in the calibration experiments essentially 

depends on the direction and the target marker location in the 

manipulator workspace.  

To overcome this difficulty, the weighted least-square 

technique can be applied. As known from literature, for the 

linear regression it gives rather good improvement and allows 

essentially reducing the measurement errors impact. It is 

evident that for the robotic calibration problem, similar 

benefits can be gained, but the weighting coefficient selection 

is non-trivial here because of the high non-linearity of the 

equations describing the robotic manipulator.  

To address this problem, the remainder of this paper is 

organized as follows. Section 2 defines the research problem 

and also presents some experimental data concerning 

statistical properties of the measurement errors. In Sections 3, 

the identification algorithm is presented that is based on the 

weighted least-square. Section 4 deals with selection of the 

weighting coefficients that ensure robustness of the 

identification algorithm with respect to the measurement 

noise. Section 5 presents an application example, which 

illustrates benefits of the proposed approach. And finally, 

Section 6 summarizes the main contributions of the paper.  

 

2. PROBLEM STATEMENT 

In robotics, the calibration procedure can be treated as the 

best fitting of the experimental data using corresponding 

manipulator model  

   0arg min ( ,, , , , ii if  k p L k pΠqΠ , )iF  (1) 

which describes its geometrical and elastostatic behavior 

defined by the known function (.)f  whose parameters 

should be tuned. Here i  is the vector of measurements (the 

Cartesian coordinates of the end-effector target points), the 
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vector L  collects all geometrical parameters, i  is the vector 

of actuated coordinates, the vector  collects errors in 

geometrical parameters, the vector  collects all 

compliances of the manipulator, the vectors  and i  are 

used for elastostatic calibration only and correspond to the 

measurement position without loading and applied external 

loading respectively.  
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In usual engineering practice it is assumed that all 

measurements ( i  and ) are corrupted by the same 

measurement noise 

p
0

ip
2 )(0,N  , which induces errors iε  with 

zero expectation  and diagonal covariance matrix 

i i . However, for many measurement devices 

such as laser-trackers, the precision highly depends on the 

measurement direction and vary throughout the robot 

workspace. In this case, the covariance matrix can be still 

assumed to be diagonal, but with non-equal principle 

elements, i.e. i i xi yi zi
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2 2( ,iag 2, )  ε ε , where xi , yi , 

zi  are different and vary from measurement to 

measurement. This phenomena is illustrated by experimental 

data presented in Table 1, which includes dispersions of the 

measurement errors for the Cartesian coordinates x, y, z for 

several measurement configurations used in conventional 

calibration experiments. These results has been obtained by 

processing the measurement data for 15 configurations and 

18 independent experiments for each of them (i.e. by using 

data set which consists of 810 values). It should be noted that 

the manipulator repeatability, which is about 60μm, does not 

have influence on the presented results because of specificity 

of the measurement experiments, where only difference in the 

Cartesian coordinate variations were evaluated (before and 

after applying external loading). As follows from the 

presented results, the measurement error dispersion vary from 

17μm to 153μm and highly depends both on the direction (x, 

y or z) and the end-effector location in the manipulator 

workspace (corresponding to the configurations #1-#15). In 

particular, for the same configuration xi , yi , zi  can differ 

by the factor 5. Besides, from one configuration to another 

corresponding dispersions may differ by 7 times. 

 

Table 1.  Dispersions of measurement errors in 

deflections for different test configurations  

σx, [ȝm] σy, [ȝm] σz, [ȝm] 
Configuration 

mean std mean std mean std 

Conf. #1  150 ±1 64 ±1 33 ±1 

Conf. #2 57 ±4 86 ±8 118 ±15 

Conf. #3 97 ±9 70 ±5 44 ±8 

Conf. #4 28 ±1 19 ±1 35 ±1 

Conf. #5 72 ±3 48 ±4 17 ±1 

Conf. #6 153 ±8 46 ±3 22 ±1 

Conf. #7 112 ±6 66 ±3 53 ±4 

Conf. #8 74 ±5 55 ±3 59 ±1 

Conf. #9 80 ±9 63 ±7 102 ±15 

Conf. #10 69 ±2 73 ±1 79 ±1 

Conf. #11 80 ±3 36 ±1 26 ±3 

Conf. #12 53 ±4 39 ±1 29 ±1 

Conf. #13 26 ±1 29 ±1 29 ±1 

Conf. #14 88 ±4 121 ±1 42 ±1 

Conf. #15 90 ±6 52 ±3 50 ±1 

 

Hence, usual assumptions incorporating in robot calibration 

techniques concerning measurement noise properties should 

be revised. This  motivates the principle goal of the paper that 

is aimed at developing of the robust identification algorithm 

that takes into account variations of xi , yi , zi .  

 

3. IDENTIFICATION ALGORITHM 

In manipulator geometric calibration, the basic expression i 

usually written as follows 

( ) ( ·, )g p
i i i  L qp J Π  (2) 

where g
ip

( )p
iJ

 is the difference between the computed via direct 

geometrical model and measured end-effector position, the 

matrix  is the geometrical Jacobian and the superscript 

'(p)' specifies only components that are related to the robot 

position. It is clearly the linearized model, but it is valid here 

since in practice the geometrical errors are low enough 

compared to the nominal values of the manipulator 

parameters. 

Similarly, for the elastostatic calibration, the basic expression 

can be presented in the form 

( ) ( , , ·)e p
i i ii  L q Fp A k  (3) 

where e
ip  is the vector of the end-effector displacements 

under the loading i , the vector  collects all compliances 

of the manipulator, the matrix 

F k
( )p
iA  defines the mapping 

between the joint compliances k  and the and-effector 

displacements. For the further convenience, both expression 

(2), (3) can be integrated in a single one  

( ) , ·( , )p
i i i i  L q Fp B X  (4) 

where ip  is the vector of measurements and  , X Π k  

the vector of the unknown parameters that should be 

identified, ( )p
iB  is corresponding matrix function.  

Using above defined notations, the calibration can be reduced 

to the following optimization problem 

( ) ( )

1
( ) ( )

m p T p
i i i ii

F     
X

B X p B X p min  (5) 

that can be solved using the least square approach. It leads to 

the following solution  

   1
( ) ( ) ( )
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ˆ ·
Tm mp p p

i i i ii i


   X B B B

T p  (6) 

If the measurement noise is Gaussian (as it is assumed in 

conventional calibration techniques) the covariance matrix 

for the parameter estimates  can be computed as follows X̂

  1
2 ( ) ( )

1

ˆcov( )
Tm p p

i ii
 

 X B B
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 (7) 

where ( ) ( )

1

p p
i ii B B  is the so-called information matrix.  

However, if the measurement noise varies from configuration 

to configuration the previous expression should be revised. It 

     



 

 

 

can be proved that in general case the covariance matrix is 

expressed as  

   1 1
( ) ( ) ( ) 2 ( ) ( ) ( )ˆcov( ) · · · ·

T T Tp p p p p p
a a a a a a

 X B B B Σ B B B   (8) 

where the matrix 1 2 3( , ,..., )mdiag   Σ
( )p
iB

 describes the 

statistical properties of the measurement errors and the matrix 

 aggregates all matrices  from expression (4).  ( )p
aB

In order to improve the identification accuracy, it is 

reasonable to modify the objective function (5) and rewrite it 

in the form  

( ) 2 ( )

1
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m p T p
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 (9) 

where 1 2 3  is the matrix of weighting 

coefficients. This leads to slightly different expression for the 

parameter estimates  

( , ..,, . mwd ag w wiW
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where a  aggregates . In this case, the covariance 

matrix can be computed as 

p ip
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and, as follows from detailed analysis, the best selection of 

the weighting matrix corresponds to the equation · W Σ I .  

Hence, to assign the weighting coefficients, the measurement 

noise variance should be known. However, in practice, exact 

values of xi , yi , zi  are unknown and the estimates can be 

used only. On the other hand, as follows from practical 

experience, small variations in the weighting coefficients are 

not critical and they do not affect significantly the 

identification accuracy. Nevertheless, if the weights are 

assigned using small number of experiments, the 

identification results can be unpredictably affected. 

Therefore, the problem of computing of the weighting 

coefficients that are able to ensure robustness of the 

identification algorithm is important here and it will be in the 

focus of next Section. 

 

4. ASSIGNING WEIGHTING COEFFICIENTS  

It can be proved that for the linear model, the weighing 

coefficients ensuring the lowest variance of the unknown 

parameters can be computed as  

/iw a i  (12) 

where i  is the standard deviation of the measurement noise 

for the i-th identification expression and the constant  is the 

scalier factor introduced to avoid the problem of the units. 

For example, for the linear regression with a single scalar 

parameter, this approach allows to reduce the variance from 

a

2 22 2/ ( i( )i i

Applying this idea to the problem of robot calibration, it is 

possible to transform the covariance matrix expression (11) 

to the form 

  1
( ) 2 ( )ˆcov( ) · ·

Tp p
a a

X B Σ B  (13) 

where all elements are essentially lower compared to (8). 

Hence the problem of interests is to obtain i  for each 

experiment (and for each coordinate), which will be used for 

computing weighting coefficients .  iw

As it was mentioned before, computing i  is based on a few 

measurement may have the opposite effect - decrease 

identification accuracy. But this remark does not refer to our 

case since we have a group of points (18) in the vicinity of 

single robot configuration which allows us to estimate s.t.d. 

of measurement noise for x-, y- and z-directions with quite 

good precision (see Table 1). It should be noted that obtained 

values of i  are considerably higher than the claimed 

accuracy of the measuring system (10 μm). Nevertheless, this 

value can be used as a normalized coefficient . Besides, 

since in real experiments it is not possible to be insured 

against poor distribution of the measurement errors, in order 

to increase robustness of the identification algorithm, it is 

proposed to introduce steady component in the i

a

  that in 

practice can be assigned by the claimed precision of 

measurement system 0 10 m  . Finally. expression for the 

weights takes a form  

0 0/ ( )·iw i     (14) 

where   is a scalar factor that allows to tune the impact of 

i , 0  is normalization factor that also allows to avoid 

division by zero.  

5. APPLICATION EXAMPLE 

The developed calibration algorithm has been applied to the 

industrial robot KR-270. To take into account the 

compensator influence while remaining approach developed 

for serial robots without compensators (Pashkevich 2011), an 

equivalent virtual spring with non-linear stiffness depending 

on the joint variable 2  is used. Using this idea, it is 

convenient to consider several independent parameters 2i  

corresponding to each value of 2 . So, the set of desired 

parameters 21 22 3 6  can be denoted as the vector 

. This allows us to obtain linear form of the identification 

equations.  

q

,...k
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q

( , ...), ,k k k
k

To find optimal measurement configurations, the design of 

experiments has been carried out using industry-oriented 

performance measure proposed in (Klimchik 2012) for five 

different angles  that are distributed between the joint 

limits. For each 2  three optimal measurement 

configurations have been found taking into account physical 

constraints that are related to the joint limits and the 

possibility to apply the gravity force (work-cell obstacles and 

safety reasons). The results of the calibration experiment 

design are presented in Table 2.  

2q
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Table 2.  Measurement configurations  

Joint angles, [deg] 

q1 q2 q3 q4 q5 q6 

79.20 -5.57 51.00 -97.52 -91.67  

63.00 -12.22 -56.49 41.42 150.55 

63.00 

-0.01 

-47.98 -70.04 -61.55 177.16  

95.00 33.00 129.69 -98.10 90.57 

95.00 -107.01 109.95 -61.19 174.21 

105.00 

-25.24 

14.30 55.21 41.26 -152.97 

56.60 44.54 -55.11 41.90 152.06 

56.60 64.73 -129.65 -98.260 -90.55 

144.80 

-56.9 

104.49 -69.41 61.67 -6.33  

-41.00 -91.68 55.12 41.53 -152.48 

-143.00 -32.64 110.31 -61.47 -6.29 

-143.00 

-99.85 

-72.01 129.65 -98.09 90.82 

133.00 147.68 129.64 -97.90 90.99 

-60.00 7.59 -110.09 -61.36 -174.09 

-60.00 

-140 

-52.00 -124.89 -41.62 27.78 
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Fig. 1. Experimental setup for the identification of the 

elastostatic parameters  
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Fig. 2. End-effector used for elastostatic calibration 

experiments  

To generate elastostatic deflections, the gravity forces have 

been applied to the robot end-effector (see Fig 1) using 

specific calibration tool (see Fig. 2). To obtain the desired set 

of initial data, the manipulator sequentially passed through 

several measurement configurations. Using the laser tracker 

with the claimed precession 10 m , the Cartesian coordinates 

of the reference points have been measured twice, before and 

after loading. To increase identification accuracy, three 

reference points (markers) have been used and the loading of 

the maximum allowed magnitude 250-280 kg have been 

applied. In addition, to ensure high identification accuracy for 

each configuration, the experiments were repeated six times. 

In total the experimental data include 270 measurements 

which give 810 equations for identification of 9 desired 

parameters. 

The identification has been performed using Ordinary Least-

Square (OLS) and Weighted Least Square (WLS) techniques. 

For the second approaches the weights have been obtained 

using non-compensated deflections after identification joint 

compliances, normalization factor 0  has been assigned to 

the claimed precession of the laser tracker (10 m ). 

Corresponding values of the elastostatic parameters are 

presented in Table 3, where for WLS the results for 

0.5, 1, 2   are proposed. It also includes the confidence 

intervals computed as 3 , where the standard deviation   

has been evaluated based on the experimental data using 

expressions (8) and (13). The results show that the 

confidence intervals for OLS and WLS have intersections for 

all parameters of interest, moreover, the confidence intervals 

for WLS are always inside confidence intervals for OLS and 

considerably lower (see Table 4). Another important 

conclusion is that the choice of the coefficient   does not 

influence on the final results and for simplicity can be 

assigned to one.  

Table 3.  Identified values of manipulator elasto-static 

parameters using different approaches, [rad/N×ȝm] 

WLS 
ki OLS Ȝ=0.5 Ȝ=1.0 Ȝ=2.0 

k21 0.297 ±0.010 0.287 ±0.0003 0.287 ±0.0003 0.287 ±0.0003 

k22 0.287 ±0.012 0.277 ±0.0004 0.277 ±0.0004 0.277 ±0.0004 

k23 0.315 ±0.018 0.302 ±0.0005 0.302 ±0.0005 0.302 ±0.0005 

k24 0.302 ±0.032 0.293 ±0.0010 0.293 ±0.0010 0.293 ±0.0010 

k25 0.251 ±0.020 0.246 ±0.0007 0.246 ±0.0007 0.246 ±0.0007 

k3 0.396 ±0.031 0.416 ±0.0011 0.416 ±0.0011 0.416 ±0.0011 

k4 3.017 ±0.248 2.786 ±0.0071 2.786 ±0.0071 2.786 ±0.0071 

k5 3.294 ±0.506 3.483 ±0.0120 3.483 ±0.0120 3.483 ±0.0120 

k6 2.248 ±0.725 2.074 ±0.0267 2.074 ±0.0267 2.074 ±0.0267 

 

It should be noted that the best weighing coefficients can be 

computed iteratively, where starting from the second 

iterations the residuals have been computed for the 

elastostatic parameters identified using WLS with the weights 

obtained on the previous iteration. This allows us to increase 

additionally identification accuracy by the factor 3-20 

comparing with single iteration WLS. Finally, the 

identification accuracy have been increased by the factors 27-

42 and the errors do not overcome 1.23% for the 6  and is 

0.09-0.34%. for the remainder parameters of interest (such 

non-equivalent distribution of the identification errors is 

caused by the specific of design of calibration experiment, 

where the position accuracy after compensation of the elastic 

deflections has been chosen as a performance measure 

(Klimchik 2012)). The benefits of WLS are summarized in 

Table 4. It includes mutual locations of the results for OLS 

and WLS, identification accuracy and the benefits of new 

identification algorithm comparing with old one. The 

convergence of the iterative procedure presented in Figure 3. 

Figure 3a shows variation in 21k  from iteration to iteration 

and Figure 3b provides corresponding Confidence intervals. 

This results shows that parameter value does not change 

k
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Table 4.  Benefits of WLS 

ki Mutual location of CI CIOLS CIWLS σOLS/σWLS 

k21  3.4% 0.09% 40.5 

k22  4.2% 0.13% 33.2 

k23  5.9% 0.18% 33.9 

k24  10.7% 0.33% 33.1 

k25  7.8% 0.27% 30.1 

k3 
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