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Abstract: The paper deals with the design of experiments for manipulator geometric and elastostatic cal-

ibration based on the test-pose approach. The main attention is paid to the efficiency improvement of 

numerical techniques employed in the selection of optimal measurement poses for calibration experi-

ments. The advantages of the developed technique are illustrated by simulation examples that deal with 

the geometric calibration of the industrial robot of serial architecture.  
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1. INTRODUCTION 

In the usual engineering practice, the accuracy of a manipula-

tor depends on a number of factors. Usually in robotics, the 

geometric and elastostatic errors are the most significant 

ones. Their influence on the robot positioning accuracy 

highly depends on the manipulator configuration and essen-

tially differs throughout the workspace. To achieve good ac-

curacy in all working points, adequate geometric and stiff-

ness models are required. While the model structure is usu-

ally well known, the identification of the model parameters 

(calibration) is rather time consuming and requires essential 

experimental work. For this reason, optimal selection of 

measurement poses for robot calibration is an important prob-

lem, which is still in the focus of numerous research papers 

(Daney 2002, Sun 2008). 

At present, the main activity in this area is concentrated 

around the geometric calibration (Khalil 2002). On the other 

hand, the elastostatic calibration which is also very important 

for many applications (such as precise machining) has at-

tracted less attention of the researchers (Meggiolaro 2005). 

However, for both of these calibration procedures, the prob-

lem of measurement pose selection is one of the key issues 

allowing to reduce essentially the measurement error impact 

(Klimchik 2011). At first sight, this problem can be solved 

using well known results from the classical design of experi-

ments theory. However, because of the specificity and 

nonlinearity of the manipulator geometric and elastostatic 

models, the problem solution is not so obvious. The main 

difficulties here are in the area of definition of a reasonable 

optimality criterion (which has clear engineering sense) and 

also in efficient solution of the relevant optimization prob-

lem, which has rather high dimension. 

Among related works, it is worth mentioning several papers. 

The majority of the measurement pose selection techniques 

relies on the optimization of some functions depending on the 

singular values of the identification Jacobian. For example, 

Zhuang used genetic algorithm for minimization of the condi-

tion number of this matrix (Zhuang 1996). In other work 

(Daney 2005), to decrease the sensitivity to local minima, 

Daney developed the local convergence method and Tabu 

search technique based on the observability index. However, 

the performance measures used in these works are rather ab-

stract and are not directly related to the robot accuracy. Be-

sides, the related objective functions are very difficult for the 

optimization due to existence of a number of local minima. 

To find the global one, heuristic search is usually used as the 

numerical algorithms, which often require tedious computa-

tions. All these motivate the research direction of this work. 

In this paper, the problem of optimal design of calibration 

experiments is studied for the case of robot manipulator of 

serial architecture. In contrast to other works, the optimiza-

tion problem related to measurement pose selection is formu-

lated using the proposed performance measure (test-pose 

approach), which has clear physical meaning and is directly 

related to robot accuracy. The main attention is paid to the 

efficiency improvement of the related numerical routines.  

2. PROBLEM STATEMENT 

2.1 Geometric and Elastostatic Models of Manipulator  

In industrial robot controllers, the end-effector position of the 

manipulator is usually computed using the geometric model. 

For some specific applications, such as high-speed machining 

that generate essential external loading, the elastostatic model 

should be also used. However, in practice, the robot geomet-

ric parameters essentially differ from the nominal values de-

clared in technical specifications and vary from one robot to 

another. In addition, elastostatic parameters of the manipula-

tor are not provided by the robot manufacturers and can be 

identified from the experiments only. So, the manipulator 

     



 

 

 

model parameter identification is an important step in practi-

cal application of industrial robots.  

The manipulator geometric model provides the posi-

tion/orientation of robot end-effector as a function of the joint 

variables and its inherent parameters. This model is usually 

presented as a product of homogeneous transformation matri-

ces, which after some transformations can be presented as the 

vector function 

 ,gp q П  (1) 

where vector denotes the end-effector position, vector  

aggregates all joint angles and П are the vector of unknown 

parameters to be identified. These unknowns differ with the 

applied parameterization methods in robot geometric model-

ling, such as the classical Denavit and Hartenberg approach 

and its modified version (Khalil 1986). In this paper, there 

are considered the most essential components of the vector 

, which are the deviations of the robot link lengths i

p q

П l  and 

the offsets i  in the actuated joints. Since the deviations of 

geometrical parameters   are usually relatively small, 

calibration usually relies on the linearized model  

q

П

   0 0, ,gg p q П J q П П
/

 p





 (2) 

which includes the conventional geometric Jacobian 

 computed for the nominal geo-

metric parameters . 
   0 0, ,g g  q П q ПJ Π

0П

The elastostatic properties of a serial robotic manipulator 

represent its resistance to deformations caused by external 

forces/torques and are usually described by the Cartesian 

stiffness matrix , which is computed as  CK

1
C θ θ θ

TK J K J  (3) 

where θ  is a diagonal matrix that aggregates the joint stiff-

ness values (that are the unknowns to be identified) and θ  is 

the corresponding elastostatic Jacobian. This model can be 

derived using the virtual joint method, which describes all 

elastostatic properties of compliant elements by localized 

virtual springs located in the actuated joints (Salisbury 1980). 

Using the Cartesian stiffness matrix, the elastostatic model 

(or force-deflection relation) can be expressed as 

K

J

1
θ θ θ

T  J Jw K  (4) 

where is the position deflection at the robot end-effector 

caused by the external wrench w , which integrates both the 

external force and torque. This linear relation can be further 

used for the calibration where the desired parameters to be 

identified are the components of matrix . 

p

θK

In the frame of this work, several assumptions concerning 

calibration of these models are accepted: 

A1: For the geometric calibration, each calibration experi-

ment produces two vectors  i i , which define the robot 

end-effector displacements and corresponding joint angles. 

,p q

The linear relation between the errors in geometric parame-

ters and the end-effector position deviations can be written as 

 = ( )i g ip J q Π  (5) 

where ( )g iJ q  is the Jacobian matrix that depends on ma-

nipulator configuration iq  and vector  collects the un-

known parameters to be identified. 

Π

A2: For the elastostatic calibration, each calibration experi-

ment produces three vectors , where  defines 

the applied forces and torques.  
 , ,i i ip q w

iw

In accordance with (Pashkevich 2011), the corresponding 

mapping from the external wrench space to the end-effector 

deflection space can be expressed as 

θ θ θ= ( ) ( )T

i i i
p J q k J q w

i
 (6) 

where θ is a matrix that aggregates the unknown compliance 

parameters 

k  nk t1,...,k  identified. o be

Hence, the calibration experiments provide the set of vectors  ,i ip q  and  , ,i i ip q w that allow us to estimate the de-

viations in geometric parameters (compared to the nomi-

nal values) and absolute values of the elastostatic parameters 

included in the diagonal matrix k . 

П
θ

2.2 Identification of the Model Parameters 

The problem of parameter identification of the robot manipu-

lator can be treated as the best fitting of the experimental data 

by corresponding models. These data are measured under 

several assumptions concerning the measurement equipment: 

A3: The calibration relies on the measurements of the end-

effector position only (Cartesian coordinates  , ,
x y z

p p p ). 

A4: The measurements errors i  accommodated in each 

measurement of end-effector position are treated as inde-

pendent identically distributed random values with zero ex-

pectation and standard deviation 

ε

 . 

For computational convenience and taking into account the 

influence of measurement errors, the geometric and elas-

tostatic models described by separate linear equations (5) and 

(6) can be expressed in the following integrated form  

( )i i i   p B q X ε  (7) 

where  ,   X Π k collects all unknown parameters (both 

geometric and elastostatic ones), and the matrix B  varies 

depending on different calibration cases 
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where  is the Jacobian matrix that can be obtained by differ-

entiating the manipulator geometric model with respect to the 

desired parameters; and matrix A  can be computed as 

J

1 1( , ) ( ) ( ) ,..., ( ) ( )T T
ii i n i iini i

   J J JA q w q q w Jq q w  (9) 

where  is the  column vector of the Jacobian ma-

trix for the  experiment.  is the number of joints. 

( )inJ q

-thi

-thn

n

Using usual approach adopted in the identification theory, the 

estimated unknown parameters  can be ob-

tained using the least square method, which yields  
 θ

ˆ ˆ ˆ,  X Π k 
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Using this expression, it can be proved that the covariance 

matrix for the identification errors in the parameters X  can 

be computed as 

1

2

1

ˆcov( )
m

T

i i

i

 


    X B B   (11) 

where  is the standard deviation (s.t.d.) of the measurement 

errors. Hence, the impact of the measurement errors on the 

parameter identification accuracy is defined by the matrix 

sum that is also called the information matrix. 
1

m

i T

i i
B B

It is obvious that, from practical point of view, the covariance 

matrix should be as small as possible. However, strict 

mathematical definition of this notion is not trivial and a 

number of different approaches are proposed in literature. In 

most of the related works, the optimal measurement poses are 

obtained based on minimization of the covariance matrix 

norm (Atkinson 1992). This approach may provide a solu-

tion, which does not guarantee the best position accuracy for 

typical manipulator configurations defined by the manufac-

turing process. Thus, here it is proposed the industry-oriented 

performance measure, 2

0 , which is defined as the mean 

square error in the end-effector position after compensation.  

To develop this approach, let us introduce several definitions: 

D1: Plan of experiments is a set of robot configurations 

and corresponding external loadings W  that are used for 

the measurements of the end-effector displacements and fur-

ther identification of the desired parameters. 

Q

D2. The accuracy of the error compensation 0  is the dis-

tance between the desired end-effector position and its real 

position achieved after application of error compensation 

technique. 

D3. The manipulator test-pose is one or set of robot configu-

rations 0  and corresponding external loadings 0W  for 

which it is required to achieve the best error compensation 

(i.e. ). 

Q

mi2

0 n
In the frame of the adopted notations, the distance defining 

the error compensation accuracy can be computed as  

0
ˆ(    p B X X)  (12) 

where the vectors   and  are the true parameters val-

ues and their estimates, respectively. Matrix 0B  corresponds 

to the test pose (see expressions (8)). Further, taking into ac-

count that 

X ˆX

p  is a function of the unbiased random variables 

, it can be easily proved that the expectation  1,..., mε ε
E( ) 0 p . Besides, the variance can be expressed as   T T 0 0
Var( ) E  p X B B X

0

T  

 (13) 

where  is the difference between the esti-

mated and true values of the parameters. Expression. (13) can 

be rewritten as 0 0t and after relevant 

transformations in accordance with (10), (11), yields the de-

sired expression for the compensation accuracy 

ˆ   X X X

race( E( ) )T T B X X B

1

2 2

0 0

1

trace ( ) ( )
m

T

i i

i

  



       B B q B q B  (14) 

As follows from this expression, the proposed performance 

measure can be treated as the weighted trace of the covari-

ance matrix (11), where the weighting coefficients are com-

puted using the test pose. 

Hence, the identification quality (evaluated via the error 

compensation accuracy) is completely defined by the set of 

matrices  1,..., mB B that depend on the manipulator configu-

rations  1,..., mq q . Optimal selection of these configurations 

will be in the focus of next Subsection. 

2.3 Problem of the Measurement Poses Selection 

Based on the performance measure presented in the previous 

Subsection, the corresponding optimization problem of the 

measurement pose selection can be defined as 

1

0
,

1

trace ( ) ( ) min

    subject to    ( , ) 0,      1,

i i

m
T T

i i

i

i i i
i r





       
 


q w

B B q B q B

C q w

0   (15) 

Here, the matrices  describe some constraints, 

which should be taken into account while solving optimiza-

tion problem. These constraints are imposed by the work-cell 

design particularities and usually include the manipulator 

joint limits, the work-cell space limits, measurement equip-

ment limitations, etc. It should be also mentioned that some 

constraints are imposed to avoid collisions between the work-

cell components and the manipulator. Besides, some direc-

tions of the applied loading are preferable for the reason of 

practical implementation.  

( , )i i iC q w

It should be mentioned that the component of the matrices 

i vary with different calibration cases and may include 

some very specific constraints. For instance, for the case of 

elastostatic calibration, they can be expressed as 

C

max min

max
1 min min

3 4 min
min

2 max

 ,     ,  

C

i i z z

i i
i i

i ii

q q p p

q q r r

F  
                      

C p p
C C

p p
F

 (16) 

where  and  are the joint limits, max

min

i
q max

i
q F  is the robot 

maximum payload,  is the minimum height between the 

end-point of the calibration tool and the work-cell floor,  

is the minimum radius to avoid collisions between the ap-

plied loading and robot body, 

min
zp

minr

min is the minimum angle 

between the direction of calibration tool and z-axis of robot 

base frame to ensure that the vertical loading can be applied, 

 and  are the boundaries of work-cell space. For the 

case of geometric calibration, the problem of applying exter-

nal loading does not exist. So, 2C , 3 are zero matrices, 

while ,  remain the same as in elastostatic calibration.  

min

i
p

ma

i
p

1C C

x

4

C

The procedure of solving such an optimization problem could 

be very tedious for the case when numerous measurement 

configurations are required for the calibration experiment. 

For this reason, the problem of interest is to find reasonable 

     



 

 

 

number of different measurement configurations and to im-

prove the efficiency of optimization routines employed in the 

measurement pose selection. 

3. MEASUREMENT POSE SELECTION TECHNIQUES 

To solve the above define problem, several techniques can be 

applied. This section presents the analysis and propose some 

approaches allowing to obtain acceptable solution in reason-

able time. The main difficulties here are related with a large 

number of variables and complex behaviour of the objective 

function that has many local minima.  

3.1 Using Conventional Optimization Techniques  

The simplest way to solve this problem is to apply conven-

tional optimization techniques incorporated in commercial 

mathematical software. It is clear that straightforward search 

with regular grid is non-acceptable here because of high 

complexity and enormous number of solutions to be com-

pared. For this reason, three other algorithms have been ex-

amined: (i) random search, (ii) gradient search, and 

(iii) genetic algorithm. Their comparison study is presented 

below and summarized in Tables 1 and 2, where two criteria 

have been used: computational time and the ability to find 

optimal solution (evaluated via 0 , the manipulator accuracy 

after calibration). For all computational experiments, it was 

assumed that the s.t.d. of the measurement errors is 0.03mm. 

The benchmark example deals with the calibration experi-

ments design for 6-dof industrial manipulator KUKA KR270, 

whose nominal parameters can be found on the manufacturer 

website (www.kuka.com). The robot has a serial architecture 

with six actuated revolute joints, so 24 independent geomet-

ric parameters should be identified in general case. But for 

this example, to reduce computational efforts and evaluate 

the algorithm capability before applying to the problem of 

real dimension, only nine of the most essential parameters 

were identified (which have major impact on the positioning 

accuracy). This allowed us to obtain realistic assessments of 

the conventional optimization techniques capabilities with 

respect to the considered problem where the number of de-

sign variables is high enough (72 for 12 configurations). 

The first of the examined algorithm (i) is based on the 

straightforward selection of the best solution from the set of 

ones generated in a random way. For this study, 10,000 solu-

tions were generated for different numbers of measurement 

configurations . As follows from the obtained 

results (see Tables 1 and 2), this algorithm is very fast and 

requires less than 2 minutes to find the best solution. How-

ever, this solution is essentially worse than the optimal one 

(by 15-30%). 

3, 4,6,12m 

The second algorithm (ii) employs the gradient search with 

built-in numerical evaluation of the derivatives that is avail-

able in Matlab. The starting points were generated randomly 

and, to avoid convergence to the local minima, the optimiza-

tion search has been repeated 5000 times (starting from dif-

ferent points). In this case, it has been obtained the best result 

in terms of the desired objective 0 , but computational cost 

was very high (it can overcome a hundred of hours). So, this 

technique is hardly acceptable in practice. It is worth men-

tioning that reduction of the iteration number is rather dan-

gerous here, because there are a number of local minima that 

the algorithm can converge to (see Table 1 that includes the 

minimum, maximum and average values of 0  obtained for 

random starting points). Moreover, as follows from our ex-

perience, 5000 iterations are also not enough here. 

Table 1. Efficiency of conventional optimization techniques  

Number of poses 
Algorithm 

3m   4 6m   m   12m   

min
0 [mm] 0.0825 0.0607 0519 0.0360 0.

mean
0 [mm] 1.9155 0.1939 0.0905 0.0500 

Random 

[m 29.878 14.9746 5608 0.0804 

[mm] 0.0637 0.0521 0426 0.0302 

Search 
max
0 m] 0.

0.min
0
mean
0 [mm] 0.0862 0.0610 0.0477 0.0335 Gradient 

[m 0.6534 0.2333 1319 0.0681 

0.0638 0.0521 0427 0.0301 

Search 
max
0 m] 0.

0.min
0 [mm] 

mean
0 [mm] 0.0689 0.0529 0.0433 0.0305 

Genetic 

Algo-

rithm max
0 [mm] 0.0802 0.0615 0446 0.0309 0.

The third of the examined techniques (iii) applies genetic 

algorithm (GA) that is based on adaptive heuristic search. 

The optimization has been carried out for 100 times with 

population size 50 and 20 generations (initial populations 

were randomly generated). For illustrative purposes, Fig.1 

presents the efficiency of this algorithm for selection of three 

optimal measurement configurations. It shows the algorithm 

convergence as well as divergence of the optimal solutions 

with respect to computing time. As follows from this figure, 

the optimization results are highly sensitive to the selection 

of initial population. In particular, the diversity of the optimal 

solutions got from sequential GA runs is about 25%. So, to 

achieve the global minimum, the GA should be repeated 

many times, which leads to essential increase of the computa-

tional efforts (more than 6 hours of computations for the con-

sidered example). However, compared to gradient search, GA 

provides acceptable accuracy (only 2% worse) while the 

computational time is 4 times less. 

Table 2. Computational time of examined algorithms 

Number of poses 
Algorithm 

3m   4m   6m   12m   

Random Search 41s 47s  1.7min  1min 

Gradient Search 24.2h 37.5h 

G  

56.3h 103.6h 

enetic Algorithm 6.5h 8.3h 10.5h 15.4h 

As follows from the ed re  the m obtain sults,  rando search is 

rather fast but inefficient here, since it may produce non-

acceptable solutions. In contrast, the gradient search is able to 

find the global minimum provided that it is repeated many 

times with different starting points. As a compromise, the GA 

     



 

 

 

provides intermediate results in terms of accuracy and com-

putational time. However, for problems of the real industrial 

size, the performances of the GA are also not sufficient. For 

this reason, the following Subsections are devoted to the im-

provement of the numerical optimization techniques em-

ployed in selection of optimal measurement poses. 

time, [h]  

Figure 1. Efficiency of GA for selection of three measure-

ires numerous repetitions 

of the parallel computing, the same 

ment poses (population size 50, 20 generations) 

3.2 Applying Parallel Computing  

Since the considered problem requ

of the optimization with different initial values, applying par-

allel computing looks attractive to speed up the design proc-

ess and to take advantage of multi-core architecture available 

in modern computers. 

To evaluate benefits 

benchmark example has been considered and two algorithms 

have been examined: (ii)' parallel gradient search, and (iii)' 

parallel GA with the same parameter settings. The computa-

tions were carried out on the workstation with 12 cores. The 

obtained results are presented in Table 3, which gives the 

computational time for different number of measurement 

poses (the attained value of the objective function 0  is very 

close to those presented in Table 1).  

The obtained results are quite expected and confirm essential 

algorithms using 

Number of poses 

reduction of computational efforts. For both optimization 

methods, the consumed time has been decreased by the factor 

of 10-12 (compared to the results in Table 2). However, it is 

not enough yet to solve the problem of real industrial size, 

where several dozen of parameters should be identified (in-

stead of nine in the benchmark example). 

Table 3. Computational time of examined 

parallel computing  

Algorithm 
3m   4m   6m   12m   

Parallel  

Gra ch 
2.1h 3.2h 4.9h 8.9h  

dient Sear

Parallel  

Genetic Algorithm 
36min 41min 52min 1.5h 

 

.3 Using Hybrid Approach  

h examined algorithms  and 

3

To take the advantages of bot

efficiency of the parallel implementation, a hybrid technique 

has been developed. It should be mentioned that some soft-

ware packages (Matlab, etc.) already implement this idea and 

use the final solution from GA as the initial point of gradient 

search. However, since the randomly generated initial popu-

lations in GA may cause high diversity of the optimal solu-

tions, the selection of these initial values is also an important 

issue. For this reason, the embedded hybrid option in GA 

cannot be directly used and requires additional modifications. 

To improve the efficiency of the existing technique, the start-

ing point selection strategy for the gradient search has been 

modified. To ensure better convergence to the global mini-

mum, it has been proposed to use the best half of final points 

obtained from GA as the starting points for the gradient 

search. From our point of view, it ensures better diversity of 

the starting points and allows to avoid convergence to the 

local minima.  

 

Figure 2. Efficiency of the hybrid approach for selection of 

on has been evaluated using the 

on of Problem Dimension 

e only 

three measurement poses 

The proposed modificati

same benchmark example. For comparison purposes, Fig 2. 

presents the convergence of the hybrid method for the prob-

lem of optimal selection of three measurement configurations 

studied in the previous Subsection (see Fig. 1). It shows the 

initial points (obtained from GA), optimal solutions as well 

as the solution improvement with respect to time. As follows 

from the figure, the hybrid algorithm can converge much 

faster, but if the number of measurement poses is increased 

up to 12, the computational time is over 1.6 hour that is still 

unacceptable for industry.  

3.4 New Approach: Reducti

Generally, as follows from the identification theory, th

way to improve calibration accuracy is to increase the num-

ber of measurements (provided that the reduction of the 

measurement errors is not possible). However, for the ma-

nipulator calibration problem, each measurement is associ-

ated with a certain robot configuration that also has influence 

on the final accuracy. It is clear that the best result is 

achieved if all measurement poses are different and have 

been optimized during the calibration experiment planning. 

     



 

 

     

 

 

s been 

tions provides almost the same performance as "full-

dimensional" optimal plan. Obviously, this reduction of the 

measurement pose number is very attractive for the engineer-

ing practice. 

4. CONCLUSIONS 

On the other hand, as follows from our experiences, the di-

versity of the measurement poses does not contribute signifi-

cantly to the accuracy improvement if m  is high enough. 

This allows us to propose an alternative which uses the same 

measurement configurations several times (allowing to sim-

plify and speed up the measurements). This approach will be 

further referred as "reduction of problem dimension". 

To explain the proposed approach in more details, let us as-

sume that the problem of the optimal pose selection ha

solved for the number of configurations that is equal to m , 

and the obtained calibration plan ensures the positioning ac-

curacy 0
m . Using these notations, let us evaluate the calibr -

tion accuracy for two alternative strategies that employ larger 

number experiments km : 

Strategy #1 (conventional): the measurement poses are found 

from the full-scale optim tio

a

 of 

iza n of size 

m the low-

km . 

Strategy #2 (proposed): the measurement poses are obtained 

by simple repetition the configurations got fro

dimensional optimization problem of size m . 

It is clear that the calibration accuracy 0
km  for strategy #1 is 

better than the accuracy corresponding to t e sh trategy #2 that 

can be expressed as 0
m k . However, a  follows from our 

study, this difference is not high if m  is larger than 3. This 

allows us to essential e the size of optimization prob-

lem employed in the optimal selectio  of measurement poses 

without significant impact on the positioning accuracy. 

To demonstrate the validity of the proposed approach, the 

benchmark example has been solved using strategies #

s

ly reduc

n

1 and 

#2 assuming that the total number of measurements is equal 

to 12 (i.e. using different factorizations such as 12 1 , 6 2 , 

4 3 , 3 4 ). Relevant results are presented in Table 4 (see 

the last line). As follows from them, the factor nizatio  12 1  

e easurement poses are different is only 6% better 

compared to the factorization 3 4  where measuremen  

repeated 4 times in 3 different configurations. At the same 

time the factorizations  6 2  a 3  give almost the same 

results as the optimal factorizations 12 1 . On the other hand, 

the computational time of the op l pose generation for 

3m   is much lower than for 1m

wher all m

ts are

nd 4

tima

2 . This demonstrates the 

efficiency of the proposed approach and justify its validity.  

Table 4. Calibration accuracy 0  for different factorizations 

of the experiment number 0m km  

N ber of different poses umNumber of meas-

urements m  0 3  0 4m  0 6m   0 12m   

3m   min
0  

0.0637
   

(3 1)  

4m   min
0   

0.0521
(4 1)  

  

6m   min
0  

0.0450 0.0426
(3 2)  

 
(6 1)    

12m   min
0  

0.0319
 (3 4)

0.0301
(4 3)  

0.0301
 (6 2)

0.0301
(12 1)  

Computing time 38min 45min 56min 1.6h 

Hence oncl that ing ment  

o tain the num  con

The paper presents ptimal selection of 

measurement poses In contrast to other 
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Klim

ar anthropo-

Meg
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Pash

with massive joints. 

Sali

Sun
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botics and Automation, 2, pp. 981-986. 

a new technique for o

in robot calibration. 

works, it is proposed to evaluate the quality of calibration 

plans via the manipulator positioning accuracy for a given 

test pose, and to reduce number of design variables in the 

related optimization problem by means of repeating meas-

urements with lower number of configurations. This tech-

nique allows us to essentially reduce the computational time 

for solving the problem of real industrial size. The advan-

tages of the developed technique were confirmed by a simu-

lation example, where the proposed approach permitted to 

decrease the computing time by more than 10 times while 

losing only 6% of manipulator positioning accuracy. Future 

work in this direction will deal with the efficiency improve-

ment of the manipulator elastostatic calibration. 
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