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Abstract

In railway traffic management, when an unexpected event perturbs the system, finding an effective train routing and
scheduling in real-time is a key issues. Making the right routing and scheduling decisions may have a great impact on the
efficiency of the system in terms of delay propagation. However, the time available for making these decisions is quite
short: in few minutes a viable set of routes and schedules must be delivered to the dispatching system. In this paper,
we assess the performance of a mixed integer linear programming (MILP) formulation exploited as a heuristic approach:
we seek for the best feasible solution given a limited and predefined computation time. We run an experimental analysis
on instances representing traffic in the Lille Flandres station, France. The results show that the approach tested is very
promising, often finding the optimal solution to the instances tackled. Moreover, we show how the performance can be
improved by tuning the parameters of the MILP solver.
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1 Introduction

When a disruption occurs, railway traffic management is a hard task which, in the practice, is typically handled
by dispatchers without the aid of effective optimization tools. The available tools often propose a solution,
optimized to some extent, in terms of train scheduling: it may be convenient to change train priorities at
strategic locations, letting a train pass before another one through a switch, for example. However, the best
priority order is typically quite difficult to identify. In most of the cases, the available tools are unable to change
train predefined routes at junctions, where a route is a sequence of track sections which connect an entry to an
exit point: at junctions, multiple lines cross and the presence of switches typically allows several possibilities for
crossing it, even if these possibilities are currently unexploited.

In the literature, several papers have proposed optimization algorithms for dealing with the problem of routing
and scheduling trains in case of perturbation. These algorithms can be grouped in terms of: train rerouting
possibility (exclusion of train rerouting in, e.g., [5] and [7], consideration of train rerouting in, e.g., [4] and [16]),
speed variation dynamics consideration (fixed-speed model in, e.g., [3] and [12], variable-speed model in, e.g., [6]
and [11]), and interlocking system representation (route-lock sectional-release in, e.g., [13] and [14], route-lock
route-release in, e.g., [2] and [15]).

In a previous work [13], we proposed a mixed integer linear programming (MILP) formulation for solving to
optimality the problem of scheduling and routing trains in case of perturbation, using a fixed-speed model and
representing the route-lock sectional-release interlocking system. This formulation proved to be quite promising,
even if the computation time for solving complex instances to optimality is often too long for real-time purposes.

In this paper, we assess the performance of this MILP formulation when it is used as a heuristic approach: we
fix a priori a limited computation time which is available to the MILP solver. In the following, we will refer
to this approach as the MILP-heuristic. We measure the performance of this MILP-heuristic as the difference
between the best feasible solution found and the optimal one, found running the MILP solver without imposing
a time limit.

We base this assessment on instances obtained by perturbing a real timetable representing traffic in the Lille
Flandres station, in the north of France, and we use the IBM ILOG CPLEX Concert Technology for C++
(IBM ILOG CPLEX version 12) [9] as MILP solver. We make a first assessment of the performance of the
MILP-heuristic by using the CPLEX default parameter settings. Moreover, we make a further assessment by
using CPLEX with the parameter settings selected thanks to an automatic tuning procedure.

The rest of the paper is organized as follows. Section 2 shortly describes the main features of the MILP
formulation which we use. Section 3 introduces the automatic tuning tool which we exploit for finding the
appropriate CPLEX parameter settings. Section 4 details the experimental analysis, and Section 5 concludes
the paper.

2 Main features of the MILP formulation

In the MILP formulation which we consider in this paper, continuous variables represent the relevant times
at which trains cross track sections, and binary variables represent precedence relations between trains using
common track sections. Moreover, we associate a binary variable to each pair of train and route: these variables
are valued one if the train uses the route, and zero otherwise.

Through these variables, we can define multiple sets of constraints:

• time concerning constraints: a train cannot be operated earlier than its arrival in the infrastructure, and it
must occupy for a certain amount of time each track section which it crosses. Sometimes, trains with passenger
transfers are scheduled (trains in connection); in this case, their arrival and departure time must be coherent;

• constraints for managing delays: delay can be assigned only at locations where a stop or deceleration order
can be actually transmitted to a driver in the practice, given the design of the infrastructure;

• constraints due to the change of rolling stock configuration: the arrival and departure time of trains resulting
from the turnaround, join or split of one another must be coherent;

• capacity constraints: at most one train uses a track section at a time.
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Fig. 1. Graphical representation of the computation performed by one iteration of the racing approach. As the evaluation
proceeds, the racing algorithm focuses more and more on the most promising candidates, discarding a configuration as
soon as sufficient evidence is gathered that it is suboptimal [1]: the number of candidate configurations tested decreases
throughout the iterations.

When an unexpected event occurs, trains may suffer a delay at their arrival in the infrastructure. This delay is
typically named primary delay and it may cause the emergence of conflicts within the infrastructure itself. The
additional delay due to these conflicts is named secondary delay. The objective function which we consider here
is the minimization of the total secondary delay.

For a detailed description of the problem and the formulation we refer the reader to Pellegrini et al. [13].

3 Parameter tuning

The aim of parameter tuning is identifying the appropriate parameter settings for effectively tackling a class
of instances through an algorithm. In our context, the aim is to identify the appropriate CPLEX parameter
settings for tackling instances representing traffic at Lille Flandres station through the formulation sketched in
Section 2.

Selecting the appropriate parameter settings for tackling a class of instances through an algorithm is an opti-
mization problem in itself. In fact, the set of possible configurations typically has a very large cardinality, where
a configuration is a combination of parameter settings, one setting for each parameter to be tuned. Performing
parameter tuning corresponds to exploring the space of configurations to identify the optimal (or a good subop-
timal) one: the objective function value associated to each point in the configuration space is the performance
of the algorithm to be tuned when run with the configuration itself. The difficulty of this optimization process
increases with the number of possible configurations and with the non-linearity of the relations between param-
eters. A further element of complexity is the measurement of the performance of the algorithm to be tuned:
such a performance on a whole class of instances can be only estimated, and this estimation requires a large
number of tests on as many instances as possible.

Iterated Race for Automatic Algorithm Configuration (IRace) [10] is an effective algorithm for tackling the
parameter tuning problem. It is an iterated racing algorithm [1] for choosing a candidate configuration out
of a set of possible ones. IRace performs a number of iterations, in each of which the optimization algorithm
to be tuned is run multiple times for testing its performance on several instances, given a set of candidate
configurations. On the basis of the results achieved after some instances, a configuration can be discarded if
it appears suboptimal: for each instance (each representing one step of the race) the ranking of the results
obtained using the different configurations is computed and a statistical test is performed for deciding whether
to discard some candidates or not. The set of configurations considered at a specific step h contains all the
candidates that survived after step h−1 (Figure 1). IRace bases the identification of candidates to be discarded
on the Friedman two-way analysis of variance by ranks [8]. An important advantage offered by this statistical
test is connected with the nonparametric nature of a test based on ranking, which does not require to formulate
hypothesis on the distribution of the observations.

Starting from a user-supplied domain for each parameter setting, IRace automatically selects the number of
candidates to be tested at each iteration: it obtains them through a random sample of the space of possible
configurations. The probability distribution considered at the first iteration is uniform. Subsequently, the pro-
bability is updated: the distribution is biased to increase the probability associated to configurations similar to
those which performed best so far.

The resources available for the tuning process are defined in terms of total number of runs, where a run is one
execution of the algorithm with a given configuration on one instance, or total computation time. When the
available resources have been completely exploited, the tuning process finishes and the candidate that appears
the best is returned.
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Fig. 2. Infrastructure of the control area including the Lille-Flandres station.

4 Experimental analysis

In this experimental analysis, we tackle 30 instances representing traffic in the Lille Flandres station, France
(Figure 2). They are obtained by perturbing a real one-day timetable. In particular, starting from the original
timetable, we impose a primary delay to 20% of trains: we randomly select the trains to be delayed and we
randomly draw their delay in the interval between 5 and 15 minutes [11]. Both these random selections are
based on uniform probability distributions. By replicating the random assignment of primary delay 30 times, we
obtain 30 different perturbed one-day timetables. For each of these 30 perturbed one-day timetable, we consider
four sets of instances differing in the time horizon: 30, 40, 50 and 60 minutes. Each time horizon includes the
peak-time of the day, ending at 7:30 am: we consider all trains which arrive in the infrastructure between 7:00
and 7:30 am, in the example of the 30-minute instances.

The allowed computation time is 180 CPU seconds for each instance, independently on the size of the time
horizon considered for the set of instances. We run the experiments on Intel Xeon 24 core 2.3 GHz processor
with 32 GB RAM, under Linux Ubuntu distribution version 12.04. In this setup, we consider only sequential
computation for CPLEX. We compare the performance of the MILP-heuristic when applied with the default
parameter settings and with the tuned one.

For tuning CPLEX parameters, we generate a additional 100 instances for each time horizon, and we let
IRace execute 1000 runs. We run a separate tuning for each set of instances. After few exploratory runs, it
appeared evident that a specific setting of two parameters allows a strong improvement of the performance of
the formulation on the instances representing traffic at Lille Flandres. Hence, we did not include these parameters
in the tuning phase and we imposed two fix non-default parameters: 4 for the MIP emphasis switch parameter
(MIPEmphasis) and 2 for the MIP dynamic search switch (MIPSearch). The former controls the trade-offs
between speed, feasibility, optimality, and moving bounds. The latter defines the search strategy adopted by
CPLEX, selecting between dynamic search and conventional branch-and-cut. Through IRace, we tune four
parameters:

• MIP probing level (Probe): it sets the amount of probing on variables to be performed before MIP branching;
• MIP dive strategy (DiveType): it controls the type of dive to perform in the branch-and-bound tree;
• symmetry breaking (Symmetry): it decides whether symmetry breaking reductions will be automatically
executed in the MIP model during the preprocessing phase;

• row multiplier factor for cuts (CutsFactor): it limits the number of cuts that CPLEX can add to the model: this
number is equal to the number of constraints of the original model multiplied by the value of this parameter.

Table 1
Parameter settings available for tuning. In italics: default settings.

param. settings param. settings param. settings param. settings

Probe −1, 0 , 1, 2, 3 Symmetry −1 , 0, 1, 2, 3, 4, 5 DiveType 0 , 1, 2, 3 CutsFactor 2, 3, 4 , 5, 6, 7, 8

Table 2
Summary of the main characteristics of the instances tackled: mean values on the 30 instances of each set. In the last
column, parameter settings selected through tuning: {Probe, Symmetry, DiveType, CutsFactor}.

hor. trains trains with total prim. parameter hor. trains trains with total prim. parameter

prim. del. del. (sec) setting prim. del. del. (sec) setting

30 22 3 609 {−1, −1, 3, 7} 40 29 5 611 {3,−1,3,5}

50 36 6 617 {−1,−1,0,5} 60 45 8 619 {−1,3,2,5}

Table 1 reports the settings tested for each parameter (for a detailed explanation of the meaning of each setting,
we refer the reader to the CPLEX manual [9]). We indicate in italics the default settings. In turn, Table 2
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Fig. 3. Distribution of the absolute error made by the two versions of the MILP-heuristic compared to the optimum.
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Fig. 4. Mean percentage error made by the two versions of the MILP-heuristic compared to the optimum.

reports the main characteristics of each instance set and the parameter setting selected by IRace.

The distribution of the absolute errors made by the two versions of the MILP-heuristic, namely the default and
the tuned one, shows a quite evident improvement achieved through tuning. Figure 3 reports these distributions
through boxplots: each box represents the distribution of the observations corresponding to the 30 perturbed
instances tackled. The horizontal line within the box represents the median of the distribution, while the extremes
of the box represent the first and third quartiles, respectively; the whiskers show the smallest and the largest
non-outliers in the data-set and dots correspond to the outliers. Figure 4 shows the mean percentage error made
by the two versions of the MILP-heuristic for each set of instances. The tuned version is always preferable with
respect to the default one when the error is computed in percentage terms. This relation is less evident when
considering the absolute error. It is due to the peculiar behavior of the two versions: the default version typically
makes a larger relative error than the tuned one on instances with small value of the optimum, resulting in a
small absolute error and a large percentage one. For example, consider two instances with optimum 10 and 100,
respectively. Let the default version make an absolute error of 5 and 10 on the two instances, and the tuned
one make an absolute error of 2 and 18. The mean absolute error will be 7.5 for the default version and 10 for
the tuned one. However, the corresponding mean percentage error will be 30% and 20%, respectively. Anyway,
despite the presence of cases as this one, the median of the distribution of the error of the tuned version is
always smaller than the one of the default version; the difference is statistically significant for both the 40 and
the 50-minute instances, according to the Wilcoxon rank-sum test with a confidence level of 0.95.

Table 3 reports the mean absolute and percentage error made by the two versions, as well as the number of
instances in which the corresponding version obtains the best results. This further representation of the results

Table 3
Mean absolute and percentage error, number of instances in which each version outperforms the other one (instances in
which best results) and on which each version attains the optimal solution (instances solved to optimality).

horizon mean mean instances in which instances solved

absolute error percentage error best results to optimality

default tuned default tuned default tuned default tuned

30 12 10 4% 2% 3 6 22 26

40 51 30 10% 5% 3 9 19 20

50 393 202 47% 22% 6 20 5 11

60 986 470 89% 81% 14 15 1 1
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supports the previous statement according to which parameter tuning appears promising, even if in the current
experiments it did not bring to striking improvements. The table also indicates the number of instances in
which each version attains the optimal solution. This number is very high for the sets of smaller instances and
it decreases, as expected, when the duration of the time horizon considered increases.

As for what concerns the overall performance of the tuned MILP-heuristic, we consider the results quite en-
couraging: in the most challenging set of instances including about 45 trains with a primary delay of more than
600 seconds, the mean absolute error is 470 seconds.

5 Conclusions

In this paper, we analyzed the performance of a heuristic algorithm for tackling the problem of routing and
scheduling trains in case of perturbation. This heuristic is based on a mixed integer linear programming for-
mulation: we limit the solver execution time and we measure the performance of the algorithm in terms of
error made when comparing the best solution found within the time limit to the optimum. We compare the
performance of the heuristic with the solver default parameters and after tuning them though an automatic
procedure.

We ran experiments on instances representing traffic in the Lille Flandres station, France, considering alternative
time horizons of 30, 40, 50 and 60 minutes at peak time. We limit the computation time to 180 CPU seconds.
The results show that the heuristic achieves encouraging results, especially when the solver parameters are
tuned. It can deal with difficult realistic instances even when a short computation time is available, as must be
done in the real-time railway traffic management. In particular, when instances represent traffic entering the
station within a time horizon of up to 40 minutes, the tuned version of the algorithm achieve a performance
only few percentage points worse than the optimum.

In future research, we will assess the advantages offered by alternative automatic tuning procedures. Moreover,
we will test our heuristic on instances with different characteristics and we will compare its performance with
those of other algorithms.
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