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Abstract

In railway timetabling, the train running times are often known as the shortest durations

between two stations increased of some percent of time. The running times are estimated

by constructing the speed profiles that the trains must hold along the track. In this paper, an

approach is proposed to compute several speed profiles for a same travel. The optimization

approach involves two objectives optimized concurrently: the minimization of the journey

duration and the minimization of the energy spent for the travel. Based on an evolutionary

bi-objective algorithm, the optimization approach is applied to three instances and results

are reported and analyzed.
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1 Introduction

The current policies in transportation insist on the need of reducing the emission of pollu-

tants but also on energy savings. Even if railway transportation is far more energy-efficient

than other transportation modes, it is still concerned by the need of reducing the energy

consumption. Several ways are possible for reducing this consumption, e.g. by improving

train aerodynamics or rolling stock, or by improving the train control. In this research, we

intend to develop a different approach which consists in constructing more energy-efficient

timetables. Since timetabling is based on the fastest running times increased of a percent-

age of time used as time-margin [1], we aim to build alternative running times in such a

way that the timetables produced are energy-compromises. In other words, they reduce the

global energy consumption by using longer running times involving energy-friendly driving

regimes, and also by reducing the trains’ speeds and hence their tractive effort.

Indeed, to reduce the energy consumption we can use running times longer than the run-

ning times normally used. Using longer running times allows to introduce energy-friendly

driving regimes during the trip. Introducing such driving regimes modifies the train’s speed

profile that indicates the speed that the train has to reach at each position.

In this paper, we address the problem of constructing multiple alternative train speed

profiles minimizing both running time and energy consumption. The efforts produced by
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the train to follow the roadmap will directly affect the train’s energy consumption. If the ac-

celeration effort is appropriately managed, the energy spent will be reduced while possibly

increasing the journey duration. Hence, by modifying the speed profile used for designing

the timetable, we may have a more eco-aware system.

As mentioned above, for the same trip the approach under consideration must be capable

of providing a set of speed profiles for the decision-makers. In such a way, they will be

able to choose a running time adapted to their needs in the timetabling process. Since

two objectives are involved in this work, we propose a bi-objective optimization of speed

tuning with energy saving. Given that evolutionary algorithms (EA) are well-suited to multi-

objective optimization [2], our approach is based on a state-of-the-art multi-objective EA:

the Indicator-Based Evolutionary Algorithm (IBEA) [3].

This paper extends and improves works presented in [4, 5]. In these previous works, the

authors proposed to build speed profiles according to a set of rules assumed to keep a good

diversity of solutions. However, the main drawbacks encountered in their approach were

that a lot of solutions produced by the evolutionary algorithm were infeasible because of the

rules themselves. In this paper, we propose an approach involving fewer decision variables

and using mechanisms of speed profiling that limit the production of infeasible solutions

during the optimization.

The paper is organized as follows. Section 2 concerns train dynamics and explains how

the driving regimes work and are evaluated. Then, Section 3 presents the problem under

study and its formulation. The solution assessment as well as the algorithms for building a

speed profile are presented and detailed in Section 4. In Section 5, we present the specific

components of the evolutionary algorithm. In Section 6, two case-studies (including one

real railway line) are presented. Results of speed profile optimization obtained on these

instances are reported and analyzed. Finally, Section 7 concludes the paper.

2 Driving regimes

In this section, we explain how the running times are estimated. Due to the lack of space,

all the formulas of train dynamics used in this work are not presented but an explanation

can be found in [6, 7]. The formulas used correspond to the point dynamics and the train

length is not yet integrated. They may be modified or replaced without changing the nature

of optimization problem defined in the following.

The symbols used for the train dynamics are summarized hereafter. Let T [s] be the

journey duration and E [J] the mechanical energy. Let v [m/s] be the train’s speed; FT (v)
[N] the tractive effort produced by the train, function of speed v; FR(v) [N] the sum of

resistances, function of speed v.

The mechanical energy needed to move the train can be calculated as the integral of the

mechanical power over the running time T [8]. For convenience, let F (t) and v(t) be the

tractive effort and the train speed at instant t, respectively: E =
∫ T

0
F (t) v(t) dt.

2.1 Setting sequences of driving regimes

The definition of accurate running times requires building speed profiles, which are indi-

cated in the roadmaps that the train driver must follow. According to the theory of optimal

control, there are four optimal regimes defined by application of the Maximum Principle

(see [9, 8] for details): Acceleration at full power; Cruising at constant speed; Coasting
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(inertia motion while the engine is stopped); Maximum braking (according to the service

braking, softer than emergency braking). Since acceleration is very energy-consuming,

the inefficiency of applying unnecessary sequences of braking followed by acceleration is

straightforward. Hence, it is a principle of the method that we propose in the paper. In the

roadmaps to provide for the drivers, a braking must not be followed by an acceleration.

The problem we deal with consists in designing the most suited speed profile over the

path. This path is composed of a sequence of sections, in which the speeds have to be tuned.

A section is defined by a length and a constant and fixed maximal speed. Consecutive

sections i always have a different maximal speed vm,i. Usually, a one-section journey

can be divided in four steps as depicted in Fig. 1 (we assume there is neither slope nor

curve in this example). Let vm be the maximal speed. First, the train accelerates (A)

in order to reach speed vm as quickly as possible. Then, a cruising phase (Cr) follows

during which the acceleration is nil and the traction effort equals the resistance to the train

advance. Given that the wheel/rail adhesion is weak, it is common to let the train coast over

long distances [10, 11]. The immediate consequence is the increase of journey duration

but also the reduction of the use of mechanical energy. Indeed, the energy consumption

may be further decreased with a consequent increase of journey duration. The sooner the

coasting starts, the greater the economy, but the longer the journey duration (see Points

Co(1), C0(2)). Point Co(0) indicates the last position from which the train can brake with

its normal service braking (B) for being able to stop at the end of the section.

The speed profile including no coasting allows the train to arrive at destination at the

earliest possible time. However, it is in this case that the train will need the greatest quantity

of energy.

Co(2)

m

Speed

Position

Co(1) Co(0)
v

0

A

Cr

Co

B

Figure 1: Usual speed profile over one section in four steps (assuming no slope): accelera-

tion (A), cruising (Cr), coasting (Co) and Braking (B).

2.2 Description of the driving regimes

As mentioned in Section 2.1, according to the Maximum Principle, four regimes can be

adopted by the train, when power recovery (regenerative braking) is not used [12]: acceler-

ation, cruising phase, coasting and braking. Energy consumption and running time evolve

differently during each of them.
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Table 1: Definition of symbols used in the problem

S sequence of sections composing the train path

n number of sections

i section index: 1 ≤ i ≤ n

pi starting position of section i

with respect to a reference point

li length of section i

vm,i maximum speed in section i

(remark that vm,i > 0 for all i = 1, ..., n)

lf,i length of the first part of section i

ls,i length of the second part of section i

tf,i duration of the first part of section i

ts,i duration of the second part of section i

ef,i energy spent in the first part of section i

es,i energy spent in the second part of section i

Acceleration

During this phase, the train accelerates at full power. Let Fm be the maximal tractive effort

that the train can produce according to speed v. Hence, during an acceleration: FT (v) =
Fm(v).

Cruising phase

This regime consists in maintaining the speed constant, i.e. the acceleration γ is nil: γ = 0.

In fact, the resistance is counterbalanced by the minimum necessary tractive effort: FT (v) =
FR(v). In other words, the train must adapt its effort to the resistance either by partially

braking or producing an effort according to the gradient and the resistances (line and vehi-

cle).

Coasting

The coasting corresponds to an inertia motion, while the engine is stopped. The tractive

effort is therefore nil: FT (v) = 0. As a consequence, the energy consumption during

coasting is nil.

Braking

The braking is computed using the maximum service braking bm. When braking, the trac-

tive effort is therefore nil: FT (v) = 0. Like in the coasting regime, the energy consumption

during coasting is nil.

3 Problem definition

In order to build a speed profile between two stations, we build the speed profile within each

section covered by the train, sequentially. Each section is then decomposed according to a

set of speeds for choosing the appropriate driving regimes. The main symbols used in this

section are defined in Table 1.
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3.1 Objectives formulation

The problem under study can be formulated as a set Φ of two objective functions to be

minimized while respecting constraints. The first represents the minimization of journey

duration T , and the second the reduction of energy consumption E.

Φ = (minT,minE). (1)

Objective values (Tu, Eu) of solution u are assessed by eval solution, which is a func-

tion defined by Algorithm 2 in Section 4.2.

3.2 Speed-based decomposition of a section

Using target-speeds as decision variables

The train path is decomposed into a set of n sections, in such a way that the speed profile

is successively built in each section. This construction is based on the use of target-speeds,

which allows to decompose each section into a sequence of driving regimes. For each

section i = 1, ..., n we define the following speeds: ve,i, vx,i, va,i, vb,i ∈ R. The speeds

va,i, vb,i are the decision variables searched for by the algorithm and they are at the basis of

the decomposition of the section. The speeds ve,i and vx,i are, respectively, the consequent

entrance and exit speed of section i.

Principle of decomposition of a section

Speed profiling is done in two phases, each depending on a set of speeds. The main idea

consists in splitting the section in two parts: a first part in which the acceleration at full

power (the most energy-consuming driving regime) can be used and a second part for using

energy-friendly (cruising) or energy-free (coasting, braking) driving regimes.

During the first part, the train enters at speed ve,i and has to reach the first target-speed

va,i by braking or accelerating. Then, during the second part, the train tries to reach speed

vb,i, initially by coasting. Additional regimes may be used to reach speed vb,i (braking) and

complete the rest of the section (cruising). Even if some of these driving regimes are not

used, globally, their use follows the order: coasting, cruising, braking. Building the profile

between the entrance speed ve,i and the first target-speed va,i allows the determination of

the length and the time necessary for the first part: lf,i and tf,i, respectively. This building

also allows to deduce the length of the second part of the section: ls,i = li − lf,i. The

construction of the second part starts from position pi + lf,i and depends on target-speeds

va,i and vb,i. The produced sequence of driving regimes conducts to determine the exit

speed vx,i of section i and, obviously, ve,i+1 = vx,i, i < n. The details of the construction

are explained right below.

Constraints During the solution construction, we impose the following constraints to the

decision variables for each section: va,i ≥ vb,i, ∀i = 1, ..., n; vm,i ≥ va,i, ∀i = 1, ..., n;

vb,i > 0, ∀i = 1, ..., n. As explained in the following, the value of vb,i, i = 1, ..., n, may

be changed during the evaluation of the objective function, in case the original one results

unfeasible.
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4 Solution assessment and running time estimation

In this section, the algorithms for building the speed profile and for assessing a solution

are given and detailed. But, at first, we provide algorithms for calculating train dynamics

corresponding to a driving regime. These algorithms are essential to compute distance trav-

eled, energy consumed and time spent during a driving regime. After this description, we

will give the algorithms of speed profiling according to the target-speeds defined in each

section. In the following, symbols ac, cr, co, br, respectively, represent acceleration,

cruising, coasting and braking.

4.1 Calculation of driving regime

Based on the description of the possible driving regimes, Algorithm 1 defines the function

apply regime, which determines these driving regimes depending on the characteristics

of the track and the train, and also of the speeds given in input. The principle at the basis

of this iterative function is to determine efforts, resistances, acceleration, speed, power and

energy at each instant t (let ∆t be the time-slot). Since function apply regime needs to

be interrupted when changing the driving regime, function end reached (not presented

here for sake of brevity) indicates when the current regime is implemented. The main

reasons to interrupt a regime are either that the target-speed is reached or that the limit

position beyond which the regime used must be changed is attained.

4.2 Objectives computation

For computing T and E, we apply the function eval solution described in Algorithm 2.

Within this function, T and E are calculated for each section consecutively by the function

eval section.

Algorithm 3 describes the function named eval section. Based on the characteris-

tics of a section and the values of the decision variables, this function returns the time and the

energy spent in the section itself. Within this function, we use two additional sub-functions

first part and second part, which respectively build the speed profile on the first

and the second part of the section under consideration (Algorithms 4 and 5, respectively).

Construction of the speed profile in the first part The first part corresponds to the en-

trance in the section and depends on two speeds: the entrance speed ve,i and the target-

speed va,i. The latter is a decision variable of the problem and it is searched for by the

evolutionary algorithm. The construction of the speed profile is carried out through Al-

gorithm 4, which identifies the regime to be used: acceleration if va,i > ve,i, braking

otherwise. If the two speeds are equal (ve,i = va,i), length, time and energy spent are nil:

lf,i = 0, tf,i = 0, ef,i = 0.

Construction of the speed profile in the second part This part depends on both variables

defined for section i, namely va,i and vb,i and it depends on the gradient, the maximum

speed of the following section and the capability to coast all over length ls,i. Let lco be the

length of coasting, lcr the length of cruising, lbr the length of braking. Algorithm 5 describes

the construction of the second part. It has to be noted that two additional functions are

used in the algorithm. The former is search for intersection which computes the
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Algorithm 1: Function apply regime(v1, v2, l, p, r)

Data: v1: initial speed, v2: speed to reach, l: distance to cover, p: start position, r: driving regime to use
Result: (t, l, e, R): a vector containing the time spent, the length and the energy used during the motion. R is a vector

containing the pairs (pt, vt).
Initialization

t = h; l, e = 0; R = ()
vt = v1; pt = p
begin

while not end reached(vt, v1, v2, p, p + l, r) do
Calculating FR as function of vt, pt

if r == { br or co } then
FT = 0
if r == br then

– – Setting the braking b to the maximum service braking bm
b = bm

else
Setting the braking b = 0

else

if r == cr then
FT = max(0,min(Fm, FR))
Calculating braking b if necessary

else
– – r == ac
FT = Fm

Setting the braking b = 0

Computing acceleration a =
FT −FR

ρ m
+ b, ρ = 1.07

vt = vt + a ∆t

pt = pt + vt ∆t
l = l + vt ∆t

e = e + FT vt ∆t

R = R ∪ (pt, vt)
t = t + ∆t

end

Algorithm 2: eval solution(u = (va,1, vb,1, ..., va,n, vb,n)).

Data: for each section i = 1, ..., n: va,i, vb,i, pi, li, vm,i

Result: vector (T,E) including the total running time and total energy consumption

(T,E) = (0, 0);
(T,E) = (T,E)+eval section(0, va,1, vb,1, va,2, p1, l1, vm,1, vm,2);
for i = 2, ..., n − 1 do

(T,E) = (T,E)+eval section(min{vb,i−1, vm,i}, va,i, vb,i, va,i+1, pi, li, vm,i, vm,i+1);

(T,E) = (T,E)+eval section(min{vb,n−1, vm,n}, va,n, vb,n, 0, pn, ln, vm,n, 0)

Algorithm 3: eval section(ve, va, vb, p, l, vm, vn)

Data: ve: entry speed, va: target speed in the first part, vb: target speed in the second part, p: entry position, l: section
length, vm: maximum speed of the section, vn: maximum speed of the next section

Result: vector (t, e) including the total running time and total energy consumption in the section

begin1

(ta, la, ea, Ra) = first part(ve, va, l, p) ;2

(tco, tcr, tbr, eco, ecr, ebr, lco, lcr, lbr, Rco, Rcr, Rbr) = second part(va, vb, p, la, vm, vn) ;3

t = ta + tco + tbr + tcr ;4

e = ea + eco + ebr + ecr ;5

end6
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Algorithm 4: first part(ve, va, l, p)

Data: ve: entry speed, va: target speed in the first part, p: start position, l: section length, vm: maximum speed of the
section

Result: vector (ta, la, ea, Ra) including the total running time, length, energy consumption and regime used in the
section.

begin1

if ve < va then2

(ta, la, ea, Ra)=apply regime(ve,va,l,p,ac) ;3

else4

(ta, la, ea, Ra)=apply regime(ve,va,l,p,br) ;5

end6

changing between two regimes by searching for the intersection of the speed curves repre-

senting the driving regimes under consideration. The latter is apply reverse regime

which is the counterpart of apply regime but computing the phase from the end-point to

the beginning. This function is used when no begin-point is known for the driving regime

to use, while the end-point of the phase is known. Given that these two functions can be

retrieved easily, they are not defined in this paper.

If va,i = vb,i, the speed profile consists of a cruising phase at speed va,i all along the

section if vm,i+1 ≥ va,i (Fig. 2(a)), i.e., if the maximum speed of the following section is

higher than the current target-speed. Otherwise it consists of a cruising phase at speed va,i
followed by a braking to reach speed vm,i+1 (Fig. 2(b)).

Let vl be the last speed measured at the end of the coasting and returned by function

exit coast (not defined in the paper). If va,i > vb,i, we try to insert a coasting phase.

Let q be the gradient of the track and σ the threshold above which the coasting results in

an slowdown. If q ≥ σ the train decelerates by coasting, and thus vl < va,i because of the

slowdown due to the resistive efforts while coasting. Otherwise, there is a steep descent:

q < σ. If the coasting permits to reach vb,i, then vl = vb,i. A number of cases must be

distinguished to be treated differently. When vl < va,i, we distinguish four cases depending

on the possibility to coast along a distance smaller than or equal to the distance ls,i:

• if vb,i ≤ vm,i+1

i. if the train may reach speed vb,i, starting at speed va,i, by coasting along the

length ls,i, the speed profile includes the coasting followed by a cruising regime

at speed vb,i in the remaining distance (Fig. 2(c)). The exit speed vx,i equals

vb,i,

ii. if the train covers the section by coasting and it never reaches speed vb,i, then

we set: vb,i = vl (Fig. 2(d)). In addition, vx,i = vb,i.

• if vb,i > vm,i+1

iii. if the train may reach speed vb,i, starting at speed va,i, by coasting along the

length ls,i, the same speed profile described in (i) is imposed, but a final braking

is necessary to enter the following section at speed vm,i+1 (Fig. 2(e)). In this

case, vx,i = vm,i+1,

iv. if the train covers the second part of the section by coasting and it never reaches

speed vb,i, then a final braking is imposed for attaining this speed (Fig. 2(f)). Let

vc be the speed measured when starting braking, i.e. vc is obtained after calling
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function search for intersection. Since speed vb,i cannot be attained,

it is then corrected by replacing it with: vb,i = vc. Last, vx,i = vm,i+1.

Algorithm 5: second part(va, vb, p, l, vm, vn)

Data: va: target speed in the first part, vb: target speed in the second part, p: start position, l: section length, vm:
maximum speed of the section, vn: maximum speed of the next section

Result: vector (tco, tcr, tbr, eco, ecr, ebr, lco, lcr, lbr, Rco, Rcr, Rbr) including the total running time, the total
energy consumption and the total run length of each regime used in the second part of the section.

begin1

if va == vb then2

if va < vn then3

(tcr, lcr, ecr, Rcr)=apply regime(va,vb,l − la,p + la, cr) ;4

else5

(tbr, lbr, ebr, Rbr)=apply reverse regime(vb,vn,l − la,p + l,br) ;6

(tcr, lcr, ecr, Rcr)=apply regime(va,vb,l − la − lbr ,p + la, cr);7

else8

// va > vb9

vl = exit coast(va, vb, l − la,p + la);10

(tco, lco, eco, Rco)=apply regime(va,vb,l − la,p + la, co);11

if vl > va then12

if vn ≤ vb then13

(tbr, lbr, ebr, Rbr)=apply reverse regime(vm,vn, l − la,p + l, br) ;14

(tco, tbr, lbr, lco, eco, ebr, Rbr, Rco)= search for intersection(Rco,Rbr) ;15

vb = vn ;16

else17

(tbr, lbr, ebr, Rbr)=apply reverse regime(vm,vb, l − la,p + l, br) ;18

(tco, tbr, lco, lbr, eco, ebr, Rco, Rbr)= search for intersection(Rco,Rbr) ;19

else20

if vl > vb then21

if vn ≤ vl then22

(tbr, lbr, ebr, Rbr)=apply reverse regime(vm,vn, l − la,p + l, br) ;23

(Rco, Rbr, vc)= search for intersection(Rco,Rbr) ;24

vb = vc25

else26

vb = vl ;27

else28

vt = min(vb, vn) ;29

(tbr, lbr, ebr, Rbr)=apply reverse regime(vb,vt, l − la,p + l, br) ;30

(tcr, lcr, ecr, Rcr)=apply regime(vb,vb,l − la − lco − lbr ,p + l, cr);31

t = ta + tco + tbr + tcr ;32

e = ea + eco + ebr + ecr ;33

end34

As discussed above, it may happen that a coasting results in an acceleration if q < σ, in

this case:

• if vb,i ≤ vm,i+1, the coasting is interrupted by a braking to leave the section at speed

vb,i (Fig. 3(a)).

• if vb,i > vm,i+1, the train stops coasting and brakes to leave the section at speed

vm,i+1. Speed vb,i is therefore corrected to vm,i+1: vb,i = vm,i+1 (Fig. 3(b)).

4.3 Post processing: smoothing the speed profiles

Although the construction of speed profiles aims to avoid sequences composed of braking

followed by acceleration, a post-processing is necessary for guaranteeing that it is always
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Figure 2: Description of the possible situations in the second part of a section

the case. In fact, if the slope in the second part of the section is sufficiently steep to make

the train accelerate while coasting, then a braking is introduced to reach speed vb,i. If

vb,i < vm,i+1, this braking may be followed by an acceleration (if va,i+1 > vb,i).

For avoiding this, we use a smoothing post-processing to eliminate sequences: (Braking,

Acceleration at full power); (Braking, Acceleration while coasting). Whatever the sequence

under consideration, we can distinguish two cases for which we determine a cruising phase

replacing one part of the sequence according to speeds vc (defined as the speed measured

when starting braking) and va,i+1 (Fig. 4(a, b)). The cruising speed corresponds to the min-

imum between them: min(vc, va,i+1). Finally, Figures 4(c, d) are respectively the smoothed

profiles of Figures 4(a, b).

All along this inserted cruising phase, it is necessary to compute the effort necessary to
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Figure 3: Description of particular situations in the second part of a section, when gradient

q is negative and the descent is such that a train can accelerate without effort.

maintain the speed constant. This effort will replace the one previously computed for the

acceleration phase in the evaluation of the second objective of the optimization. The same

holds for the running time associated to the speed profile. The advantage of inserting a

cruising phase instead of an inappropriate sequence is to reduce the journey duration while

also reducing the quantity of energy consumed, because acceleration is replaced by a regime

far less energy-consuming.
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Figure 4: Description of smoothing of speed profiles: profiles (a) and (b) have a braking

followed by an acceleration (at full power or by coasting in descent); profiles (c) and (d) are

the respective smoothed speed profiles.
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5 Evolutionary Multi-objective Optimization

The problem under study involves two concurrent objectives. Contrary to methods dealing

with an objective function which is a sum of weighted values, we prefer instead to consider

a multi-objective framework, which concurrently optimizes each objective. Such an opti-

mization implies a set of distinct possible solutions. Given that the evolutionary algorithms

are well suited to this kind of problem, we choose a state-of-the-art evolutionary algorithm:

the Indicator Based Evolutionary Algorithm (IBEA) [3], which uses indicators to assess so-

lutions and their contribution in terms of quality, contrary to other evolutionary algorithms

which directly deal with dominance notion to rank the solutions.

Whatever the evolutionary algorithm chosen, it is a scheme of optimization using com-

ponents to be implemented: solution pattern, initialization, evaluation and variation opera-

tors described below.

5.1 Solution representation and initialization

A solution is defined by a vector of speeds: 〈va,1 vb,1 ... va,n vb,n〉. Given that two speeds

are necessary to represent a section, the number of components of solution u equals twice

the number n of sections: #u = 2n.

To avoid too many unfeasible solutions at the beginning of the optimization, a specific

initialization strategy is developed based on the fastest journey, as described below.

In order to have a reference solution for further comparisons, we search for the solution

which minimizes journey duration, denoted u∗. Concretely, it consists in driving as fast as

possible with respect to the maximum speeds allowed on the track.

A complete description of this calculation is given in [7]. In few words, the speed profile

is built in three steps. First, the method consists in determining all necessary braking at the

end of the sections for respecting the maximal speed of consecutive sections. Second, it

consists in determining the maximal acceleration at the beginning of each section. Third,

cruising phases are added between accelerations and brakings to complete the speed profile.

The obtained solution represents the upper-bound of energy consumption and the lower-

bound T of journey duration. The decision-maker will be able to limit the possible range

of journey duration by upper-bounding it to a duration equal to x× T , by setting parameter

x > 1.

The solutions are based on solution u∗ and are successively initialized. The initial

population as well as the following ones are composed of a fixed number N of solutions.

Within each initialization of solution µ ∈ [1, N ], the values of v
µ
a,i, v

µ
b,i are determined from

vu
∗

a,i, v
u∗

b,i in such a way that the solution initialized is automatically longer and less energy-

consuming than the reference solution u∗. At every solution initialization, the solution is

longer than the previous one.

5.2 Solution evaluation

Each solution u is evaluated during its construction. In particular, for each section i, the

running time ti and the energy consumption ei are computed as explained in Section 3.

If a speed profile cannot be built because no rule of construction complies to the speeds

under consideration, then the solution is not feasible and it is discarded. As the objectives

have to be minimized, their fitnesses are assigned huge values so that the solution will not
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appear in the next population.

5.3 Solution variation

Variation step includes two operations: crossover and mutation. Crossover is the mecha-

nism allowing solutions to recombine with each other in order to produce new solutions.

As the solution space is continuous, we use an operator adapted to the continuous search:

the Simulated Binary Crossover [13], which generates two new solutions from two belong-

ing to the current population. A crossover rate indicates the percentage of individuals to

recombine.

For selecting solutions to cross, a binary tournament is operated. It consists in randomly

selecting two solutions in the population and to keep the one with the best fitness. A second

binary tournament is operated to select the second solution to cross. Mutation consists

in providing diversity for the population by modifying a solution randomly chosen in the

population. For the same reason mentioned for the crossover, we use an operator adapted

to the continuous search: a polynomial mutation [2, 13]. A mutation rate indicates the

percentage of individuals to mutate.

6 Experimental analysis

6.1 Implementation

We implemented the algorithm by using the ParadisEO framework [14] and its implemen-

tation of IBEA. The ParadisEO framework is a ’white box’ in which several algorithmic

components are already implemented, and must be combined and integrated by the user.

In addition to the problem-related modules that we have developed, we use the ParadisEO

implementations of SBX operator and polynomial mutation. We performed the experiments

on a PC (3.0 GHz with 6 GiB) running Linux release of the ParadisEO framework.

Parameter settings The population is composed of 50 solutions and evolves over 60 sec-

onds of computation, which is the stopping criterion. Crossover and mutation rates are

respectively set to 0.9 and 0.5. Specific parameter κ for IBEA is set to 0.0001. We selected

these values based on some preliminary experiments.

6.2 Instances and rolling stock used in the analysis

The instances that we use for the experiments represent two real lines described in Figure

5(a), which reports the length and the maximal speed of each section. The track slopes

are depicted in Figure 5(b, c) and given as gradient [‰]. Instance 1 corresponds to a line

described and used in [12, 15]. It is 2.2 km long and includes five sections. The second

instance is the Saint-Étienne–Rive de Giers line in France and the roundtrip is studied as

two separate instances denoted I2a for the outward journey and I2b for the inward. It is

20.2 km long and includes five sections. It is interesting to note that the gradient is mostly

negative for the outward journey and thus it is in descent for the most part of the line. In the

inward journey, the situation is inverted and the train climbs on the most part of the line.
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Instance 1

section 1 2 3 4 5

length (m) 1, 350 160 250 240 200
maximum speed (km/h) 95 70 40 25 40

Instance 2

section 1 2 3 4 5

length (m) 3, 500 3, 900 3, 900 6, 600 2, 300
maximum speed (km/h) 90 110 105 120 105

(a) Length and maximum speed allowed on each section
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Figure 5: Description of the studied instances

14



In both instances, the train is an AGC1. For computing energy consumption, the relevant

parameters about AGC, as well as the tractive effort curve, are reported in Fig. 6.
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Figure 6: Technical parameters of train AGC

6.3 Results

Case study 1

Figure 7(a) depicts the objective space of Instance I1 and the sets of produced solutions at

different times. Three populations are represented: the initial one (time t=0), the sets of

non-dominated solutions produced at time t=30 and the corresponding set at the end of the

process (time t=60). The reference solution I1* corresponds to the fastest journey and is

represented to have a basis of comparison. Note that the limit of journey duration is fixed to

1.5× TI1 = 1.5× TI1∗ .

Compared to the initial solutions, it clearly appears that the sets of solutions improve

during the process. Moreover, according to the stretched shape of the sets, we can say the

solutions have been well diversified during the search. Now, if we compare the set at time

t=30 with that at time t=60, we can see that the solutions have not been strongly improved

during the last 30 seconds. Hence, with the adopted parameter settings, the most part of

optimization has been done during the first half of the available time.

In Figure 8(a), three speed profiles are drawn: reference solution I1*, and two others:

I1 1 and I1 2. Solutions I1 1 and I1 2 are two alternative solutions obtained in the same

run. Duration and energy consumption of each solution, as well as deviations from solution

I1*, are reported below. As could be assumed, percentage decrease of energy consumption

is much higher than the percentage increase of duration, as depicted in Table 2.

By analyzing the speed profile of solution I1 1 (Figure 2), we can observe that, in the

first section, after an acceleration at full power for attaining va,1 = 21 m/s, the train coasts

for reaching target-speed vb,1. Then, in the second part, we can see that the train accelerates

between positions 1,100 m and 1,300 m due to the steep descent of the track (gradient

q < σ), even if vb,1 = 18.48 m/s. In this context, the train cannot reach the target-speed

and the situation identified here corresponds to that described in Algorithm 5 line 18 (Fig.

3(a)). In the second section (from 1,350 m to 1,510 m), a braking covers the whole available

1Autorail Grande Capacité constructed by Bombardier Inc. http://www.bombardier.com
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Table 2: Numerical results of three solutions obtained on instance I1: reference solution I1*

and two alternative solutions I1 1, I1 2.

Solution Duration [s] Dev. [%] Energy [kJ] Dev. [%]

I1* 175 4.9790 × 106

I1 1 189 +8.0 3.6917 × 106 -25.85

I1 2 213 +21.7 2.6327 × 106 -47.12

distance. It corresponds in fact to a braking when the train enters in the section, followed

by the same situation as before (Fig. 2(e)), but with coasting and cruising distances equal

to 0. In the third section, the train enters at speed ve,3 = va,3 = 11 m/s so that the first

part is nil. In the second part, the train coasts then brakes to leave at the maximum speed of

the next section. Speeds va,3 = 11 m/s and vb,3 = 9.76 m/s imply the situation described

in Algorithm 5 line 27 (Fig. 2(e)). The cruising distance equals 0. Finally, the train leaves

section 3 at speed vx,3 = 6.94 m/s and enters section 4 at speed ve,4 = vx,3. In the fourth

section, the train drives at constant speed (see Fig. 2). Last, in the fifth section, the train

accelerates to reach the first target-speed before coasting until the compulsory braking when

arriving at the end of the path (see Fig. 3(b)). The speed profile of solution I1 2 follows

approximately the same driving regimes but with lower target-speeds. Its consumption is

weaker compared to solution I1 1 but with, of course, a longer journey duration.

Through this example, the relevance of a multi-objective approach of speed-profiling is

highlighted. Indeed, in a short computation time, the approach has been capable of pro-

ducing a set of distinct solutions. Train-practitioners will have the possibility to choose a

solution adapted to their needs instead of working with the shortest running time increased

of a supplement. In such a way, the proposed approach would help them to decide what a

good tradeoff is between time supplement and energy consumption in the planning under

consideration.

Case study 2

The main difference compared to the case study 1 is the presence of steep descents (resp.

climbs) in the track profile for the outward (resp. inward) journey.

Figures 7(b,c) represent the sets of Instance I2 solutions at different times (t={0, 30,

60}). As for case study 1, the initial population (t=0) is compared to populations at t=30 and

t=60. The reference solutions I2a* and I2b* are also represented to have basis of comparison

in both cases. The journey duration is limited to 1.5× TI2a∗ (resp. 1.5× TI2b∗). Similarly

to what observed in case study 1, the comparison of the three sets clearly indicates that the

most part of optimization is done during the first half of the computation.

The gap in energy consumption between the reference solutions and the others can be

explained by the particular topology of the track. For the outward journey, given that the

train can move with low effort by using coasting, the engine can be utilized only little, so

that the consumption falls dramatically. For the inward journey, the gap can be explained

by the use of slower speeds which need weaker tractive effort to be maintained constant. In

order to highlight this explanation, we can focus on the speed profile of solution I2a 1 in

Figure 8(b). A coasting is introduced in all sections except the first. Moreover, still with

the exception of the first section, the train does not use very much the acceleration regime
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to increase speed: indeed it can accelerate by coasting in descent (gradient q < σ). As

soon as the train reaches the maximum speed by coasting in sections 2, 3, 4, 5, it must

partially brake to maintain the speed, whereas in solution I2a* the train has to accelerate at

full power to reach the maximum speed. It is the reason for which solution I2a* requires far

more energy than the others proposed.

The acceleration occurring while entering in section 3 is due to the model: ve,3 =
vx,2 < va,3, and the sequence (Braking, Acceleration) is smoothed according to the method

explained in Section 4.3. Indeed, given that the coasting from speed va,2 to vb,2 is accelerat-

ing, it is necessary to brake for exiting section 2 at speed vb,2. Then, in section 3, speed va,3
is reached after accelerating as the model rules. In such a case, due to the negative gradient,

the model produces a sequence of driving regimes which will need to be smoothed: (Accel-

eration while coasting, Braking, Acceleration). In the same way, the accelerating effect in

coasting occurring in sections 4 and 5 can also be smoothed according to the same method.

The smoothed speed profile, denoted I2a 1s, is depicted in Figure 8(b).

The results reported in Table 3(a) show the duration increase and energy savings oc-

curring while using energy-free driving regimes such as coasting or cruising with partial

braking. As for case study 1, the approach presents a good capacity of producing a set of

distinct solutions in a short computation time. Its relevance in decision-support is shown in

so far as it could help train-practitioners to build timetables.

Figure 8(c) represents the speed profiles of the reference and one compromise solutions

for the inward journey. Since the gradient is mostly positive (q > 0), maintaining the speed

constant is very energy-consuming as we can see in Table 3(b). The energy consumption

reported confirm that the inward journey needs far bigger effort to cover the line. The ref-

erence solution I2b* needs slightly fewer seconds than the reference solution I2a* whereas

the times should be either equal or the solution I2b* should be longer than solution I2a*.

We can assume that it is due to the approximations during the estimation. The energy saved

in solution I2b 1 compared to solution I2b* reaches more than 20% with an increase of less

than 5% of time. The saving is essentially realized by the introduction of a coasting in the

fourth section followed by a cruising regime.

Table 3: Numerical results of two solutions obtained on instances I2a and I2b.

(a) Instance I2a

Solution Duration [s] Dev. [%] Energy [kJ] Dev. [%]

I2a* 734 10.5194 × 106

I2a 1 773 +5.31 7.10466 × 106 -32.47

I2a 1s 761 +3.67 6.80466 × 106 -33.31

(b) Instance I2b

Solution Duration [s] Dev. [%] Energy [kJ] Dev. [%]

I2b* 731 24.5206 × 106

I2b 1 765 +4.65 19.2933× 106 -21.31
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Figure 7: Fronts of solutions at times t={0, 30, 60} on instances 1 (a), 2a (b) and 2b (c)

7 Conclusion

The estimation of the train running times is directly related to the construction of the speed

profiles, indicating the speed to hold at each position. In this paper, we have proposed an

approach to build speed profiles based on a set of rules and by using the driving regimes

defined according to the Maximum Principle. Since timetabling process uses running times

increased of a short time as supplement to prevent disturbances, the approach proposed here

consists in defining a running time directly adapted to the needs of planning and optimizing

also the energy consumption. Hence, one major contribution of this work is to provide

for the practitioners the capability of choosing the solution the most suitable to their needs

directly among a set of compromise solutions.

In order to build a set of speed profiles adapted to a track, a specific model has been

developed. From two target-speeds defined for each maximal constant speed section of

the track, the model builds the speed profile within each section. Then, the optimization

is performed by an evolutionary multi-objective algorithm. For illustrating the relevance of

the approach, three case studies have been tackled with the multi-objective algorithm, which

has produced a set of solutions in a short period of time (from 30 to 60 seconds).

In the future, an improvement of the dynamics model will be proposed to have a more

accurate estimation of the durations. The next step will concern the production of alternative

timetables optimizing notably the energy consumption.
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Figure 8: Examples of speed profiles on instances I1 (a), I2a (b) and I2b (c)
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