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Abstract: The paper deals with the modeling and identification of the gravity compensators used in 

heavy industrial robots. The main attention is paid to the geometrical parameters identification and 

calibration accuracy. To reduce impact of the measurement errors, the design of calibration experiments 

is used. The advantages of the developed technique are illustrated by experimental results . 
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
1. INTRODUCTION 

Currently, aeronautic industry requires high-precision 

machining of huge aircraft component made from the high 

performance materials. For these applications, robots are 

quite attractive due to their large workspace that can be also 

easily extended. Another considerable advantage is their 

capability to process the parts with complex shape and 

geometry. However, processing of these materials causes 

essential cutting forces that are generated by tool-workpiece 

interaction during the material removal. Since these forces 

decrease the machining accuracy, the robot manufactures try 

to improve the robot stiffness by increasing the link cross-

sections. This approach obviously leads to augmentation of 

robot link weights. So, the gravity forces applied to the 

manipulator components become non-negligible and also 

contribute to the position errors. To overcome this difficulty, 

the link weights are tended to be balanced by gravity 

compensators, which considerably complicate the stiffness 

modeling of these heavy manipulators. 

The problem of stiffness modeling for the heavy 

manipulators with gravity compensators has been in the focus 

of rather limited number of works. In contrast, for 

conventional serial manipulators without gravity 

compensators, the problem has been studied by a number of 

authors that considered both industrial and medical robots 

with essential compliance in the links and joints (Meggiolaro 

2005, Kövecses 2007). Relevant works are mainly based on 

the virtual joint method (VJM), which lumps the elastostatic 

properties of the robot components in virtual springs. To our 

knowledge, the stiffness modeling for the manipulators with 

gravity compensators has not been studied in detail yet. 

Currently, the main activity in this area focuses on the gravity 

compensator design (Takesue 2011, De Luca 2011). On the 

other hand, since the considered robots include closed loops 

induced by the compensators, some technique previously 

developed for the parallel manipulators can be adopted 

(Bouzgarrou 2004, Company 2005, Pashkevich 2011). 

This paper focuses on the geometrical and stiffness modeling 

of the spring-based gravity compensators that can be 

integrated in a VJM-based stiffness model of a serial 

manipulator (Klimchik 2012). The main attention is paid to 

the identification of the model parameters and calibration 

experiment planning. The developed approach is confirmed 

by the experimental results that deal with the industrial robot 

employed in manufacturing of large-dimensional aircraft 

components. 

To address these problems, the remainder of the paper is 

organized as follows. Section 2 presents the gravity 

compensator model. In Section 3, calibration methodology is 

presented. Section 4 proposes identification algorithms. 

Sections 5 is devoted to the experiment design. Experimental 

validation is presented in Section 6. Finally, Section 7 

summarizes the main contributions.  

2. GRAVITY COMPENSATOR MODEL 

The mechanical structure of the gravity compensator under 

study is presented in Fig. 1.  The compensator incorporates a 

passive spring attached to the first and second links, which 

creates a closed loop that generates the torque applied to the 

second joint of the manipulator. Corresponding model is 

presented in Fig. 2, where the most essential geometrical 

parameters are denoted as xa , y ,  and the compensator is 

described by the spring compliance ck  and the preloadi g 

0

a L

 n

s . This design allows us to limit the stiffness model 

modification by incorporating in it the compensator torque 

and adjusting the virtual joint stiffness matrix that here 

depends on the second joint variable  only. 2q

The compensator geometrical model includes three node 

points P0, P1, P2, where two distances 
1 2,P P , 

0 2,P P  are 

constants and the third one 
0 1,P P  varies and depends on . 

Let us denote them 
2q

1 2,L P P , 
1 2,a P P , 

1 2P,s P . 

Besides, let us introduce the angles  ,   and the distances 

xa  and , whose geometrical meaning is clear from Fig. 2. ya

     



 

 

 

Using these notations, the variable s  describing the 

compensator spring deflection can be computed from the 

expression  

2 2 2

2
· · ·co2 s(a L )s a L q     (1) 

which defines the function  2s q . 
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Fig. 1. Gravity compensator of robot KUKA KR-270 TM  

xa

ya

2q


L

0P

P

1P

2

a

ck

2qk

sF

cF

lF

O

s

 

Fig. 2. Model of the gravity compensator  

This mechanical design allows to balance the manipulator 

weight for any given configuration by adjusting the 

compensator spring preloading. It can be taken into account 

by introducing the zero-value of the compensator length 0s  

corresponding to the unloaded spring. Under this assumption, 

the compensator force applied to the node P1 can be 

expressed as follows 

0·( )s c sF K s  (2) 

where  is the compensator spring compliance. ck

Further, the angle   between the compensator links P0P1 and 

P1P2 (see Fig. 2) can be found from the expression 

2sin s· (ni qa s )    (3) 

which allows us to compute the compensator torque cM  

applied to the second joint 

0·(1 )· · · (/ sinc c s s LM aK    2 )q

2q

 (4) 

Upon differentiation of the latter expression with respect to 

2 , the equivalent stiffness of the second joint (comprising 

both the manipulator and compensator stiffnesses) can be 

expressed as: 

q

2 2

0 · ·
c

K K K La     (5) 

where the coefficient  

2

20

2 22
sin cos co· ( s) ( ) (q

s a L
q q

s s
           2 )q  (6) 

highly depends on the value of joint variable 2  and the 

initial preloading in the compensator spring described by 

q

0s .  

Hence, using expression (5), it is possible to extend the 

classical stiffness model of the serial manipulator  

  1
(F) 1 (F)T

C θ θ θθ θ( )
 K J K H J  (7) 

by modifying the virtual spring parameters in accordance 

with the compensator properties. Here, C θ  are stiffness 

matrices in the Cartesian and joint spaces respectively, 

θ  are corresponding Jacobian and Hessian matrices 

(for more details see Klimchik 2012). While in the paper this 

approach has been used for the particular compensator type 

(spring-based, acting on the second joint), the similar idea 

can be evidently applied to other compensator types. 

,K K

(F)

θ θ,J H

Summarizing this Section, it is worth mentioning that the 

geometrical and elastostatic models of a heavy manipulator 

with a gravity compensator should include some additional 

parameters ( xa , y ,  and ca L K , 0s  for the presented case) 

that are usually not included in datasheets. For this reason, 

the following Sections focus on the identification of the 

extended set of manipulator parameters.  

3. MODEL CALIBRATION METHODOLOGY 

In contrast to the serial manipulator that can be treated as a 

principal mechanism of the considered robots, geometrical 

data concerning gravity compensators are usually not 

included in the technical documentation provided by the 

robot manufacturers. For this reason, this Section focuses on 

the calibration methodology of the geometrical parameters 

for the described above compensator mechanism (see Fig. 1). 

The geometrical structure of the considered gravity 

compensator is presented in Fig. 2. Its principal geometrical 

parameters are denoted as , L
xa , y , where a ·cosxa a  , 

·sinya a   (see notation in Section III). As follows from 

the figure, the identification problem can be reduced to the 

determination of relative locations of points P0 and P1 with 

respect to P2. 

It is assumed that the measurement data are provided by the 

laser tracker whose "world" coordinate system is located at 

the intersection of the first and second actuated manipulator 

joints. The axes Y, Z of this system are aligned with the axes 

of joints #1 and #2 respectively, while the axis X is directed 

to ensure right-handed orthogonal basis. To obtain required 

data, there are several markers attached to the compensator 

mechanism (see Fig. 3). The first one is located at point P1, 

which is easily accessible and perfectly visible (the center of 

the compensator axis P1 is exactly ticked on the fixing 

element). In contrast, for the point P0, it is not possible to 

     



 

 

 

locate the marker precisely. For this reason, several markers 

P0i are used that are shifted with respect to P0, but located on 

the rigid component of the compensator mechanism (these 

markers are rotating around P0 while the joint coordinate 2  

is actuated). It should be noted that for the adopted 

compensator geometrical model (which is in fact a planar 

one), the marker location relative to the plane XY is not 

significant, since the identification algorithm presented in the 

following sub-section will ignore Z-coordinate.  

q

Using this setting, the identification problem is solved in two 

steps. The first step is devoted to the identification of the 

relative location of points P1 and P2. Here, for different 

values of the manipulator joint coordinates 2{ i , q 1, }i m , 

the laser tracker provides the set of the vectors  1

i
p  

describing the points that are located in an arc of the circle. 

After matching these points with a circle, one can obtain the 

desired value of  (circle radius) and the Cartesian 

coordinates 2  of the point P2 (circle center) with respect to 

the laser tracker coordinate system. 
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Fig. 3. Geometrical parameters of the gravity compensator 

and location of the measurement points labelled with markers  

The second step deals with the identification of the relative 

location of points P0 and P2. Relevant information is 

extracted from two data sets  01

i
p  and  that are 

provided by the laser tracker while targeting at the markers 

P01 and P02. Here, the points are matched to two circle arcs 

with the same center (explicitly assuming that the 

compensator model is planar), which yields the Cartesian 

coordinates 0  of the point P0, also with respect to the laser 

tracker coordinate system. Finally, the desired values 

 02

i
p

p

xa , y  

are computed as a projection of the difference vector 

2  on the corresponding axis of the coordinate 

system. 

a

0 a p p

As follows from the presented methodology, a key numerical 

problem in the presented approach is the matching of the 

experimental points with a circle arc. It looks like a classical 

problem, however, there is a particularity here caused by 

availability of additional data  2iq  describing relative 

locations of the points  . This feature allows us to 

reformulate the identification problem and to achieve higher 

accuracy compared with the traditional approach.  

1

i
p

4. IDENTIFICATION ALGORITHMS  

The above presented methodology requires solution of two 

identification problems. The first one aims at approximating 

of a given set of points (with additional arc angle argument) 

with an arc circle, which provides the circle center and the 

circle radius. The second problem deals with an 

approximation of several sets of points by corresponding 

number of circle arcs with the centers on the same rotation 

axis. Let us consider them sequentially. 

4.1  Algorithm #1 

To match the given set of points   with additional set of 

angles 
ip iq  with a circle arc, let us define the affine mapping 

i i p R u t  (8) 

where  denotes the set of reference 

points located on the unit circle whose distribution on the arc 

is similar to i , 

[cos , sin , 0]T

i i iq qu

p   is the scaling factor that defines the 

desired circle radius,  is the orthogonal rotation matrix,  

is the vector of the translation that defines the circle center. It 

worth mentioning that such a formulation has an advantage 

(in the sense of accuracy) comparing to a traditional circle 

approximation and it is a generalization of Procrustes 

problem known from the matrix analysis. 

R t

Using equation (8), the identification can be reduced to the 

following optimization problem 

   
1 , ,

min
T

i ii i i

m
F       

R t
p R u t p R u t  (9) 

which should be solved subject to the orthogonality 

constraint T R R I . After differentiation with respect to t , 

the latter variable can be expressed as  

1

1 1

1i

m

i
m m

  t p R
i

m

i u  (10) 

That leads to the simplification of (9)  to 

   
1 ,

min
m

i r

T

i i i iF     
R

p R u p R u
  

 (11) 

where 

1 1

1 1
;

i i i i

m

i ii i

m
m 

     p p p u u um
 

 (12) 

Further, differentiation with respect to   yields to 

1 1

m T

i i i i

m

i
   p R u u uT

i

   
 (13) 

So, finally, after relevant substitutions the objective function 

can be presented as  

1 1 1

1 2

min
m m m

i i i

T T T

i i i i i i
F

  

             
R

p p u u p R u
    

 (14) 

where the unknown matrix  must satisfy the orthogonality 

constraint 

R
T R R I . Since the matrix  is included in the 

second term only, the problem can be further simplified to 

R

 1 1
max

m mT

ii ii i iF trace     
R

p Ru R u p
T  

 (15) 

     



 

 

 

and can be solved using SVD-decomposition of the matrix  

1

m

ii

T

i  u p UΣV


 (16) 

where the matrices  are orthogonal and  is the 

diagonal matrix of the singular values. Further, using the 

same approach as for the Procrustes problem, it can be 

proved that the desired rotation matrix can be computed as 

,U V Σ

TR V U  (17) 

which sequentially allows to find the scaling factor   

defining the arc radius and the vector  defining the arc 

center. 

t

4.2  Algorithm #2 

The second problem aims at approximating of several point 

sets 
i

 by corresponding number of concentric 

circle arcs with the centers 0  on the rotation axis n . It 

should be noted that the data set 

   1 ,..., k

ip p
j

p  iq  is not useful here, since 

the required angles  i  are not measured directly and 

cannot be computed without having exact compensator 

geometry. In this case, the objective function can be written 

in the straightforward way 

    
0

2
2

0 01 1 ,

min
j

j

k m j j j j

j i ij i R

T

F R     
p

p p p p   (18) 

where jR  denotes the j-th ark radius and 0

j
p  is the 

corresponding center point. However, for this formulation it 

can be easily proved that the optimization problem (18) does 

not lead to a unique solution. In fact, it gives the rotation axis 

passing through the center points 0

j
p , which can be expressed 

as  

0 c

j

j p p n  (19) 

where  is the axis direction vector, cp  is a point belonging 

to the axis, and 

n

j  are corresponding scalar factors.  

To solve the problem (18), first the objective function F  can 

be differentiate with respect to 2

jR  that yields the following 

expressions for the arc radii 

  2 1

01

m j j j
T 0

j

j i ii
R m

  p p p p

mins 

 (20) 

Further, after relevant substitution, the objective can be 

rewritten as  

  1 1

2

2
k m j j

i i

T

c jj i
F      p n p

 
 (21) 

where 

1 1

1
;

m m

1

j j j j j j

i i l i i i i il

T Tm s m 
   p p p p p p pj j

l 
 (22) 

To solve the above mentioned ambiguity, additional 

objectives should be considered  

2
min

j
j

R
R   (23) 

which leads to the following solution for the scalar parameter 

 1

1

T
m

ic ij

jm 
   p p n  (24) 

Further, after differentiation (21) with respect to   cp

 1 1 1 1

1

2

k m k mj j

i i i ij i c j i

T j js      p p p p
  

 (25) 

one can compute the point on the desired rotational axis as  

 1 1

1

1

1

2

k m k m

1

j j

c i ij i j i

T j j

i i
s


       p p p p

  
 (26) 

The remaining unknown vector n  can be obtained from the 

orthogonality constraints   0
T

i
 n

0

j j
p p , 1, , 1,i m j  k  

that leads to the following optimization problem 

  1

2

01
min

k m j j
T

ij i
f    

n
p p n   (27) 

that after substitution in it (19), (24) and (26) gives 

 2

1 1
min

k m j

ij

T

i
f   

n
p n 

 (28) 

Further, differentiation (28) with respect to , the 

optimization problem reduces to the solving following 

homogeneous linear equation system   

n

1 1

k m j j

i ij i

T

    p p n 0
 

 (29) 

Non-trivial solution of this system can be found using the 

singular value decomposition of the matrix 
1 1

k m j j

i ij i

T

   p p
 

  

1 1

k m j j

i ij i

T

    p p UΣV
T 

 (30) 

where the vector  is the last column of the matrix . n V

It should be mentioned that practical application of the latter 

expressions is essentially simplified by the adopted 

assumption concerning orientation of the reference 

coordinate system, where the direction of the rotation axis  

is close to Z-direction.  

n

Hence, the developed algorithms allows us to identify the 

compensator geometrical parameters , L xa , y  that are 

directly related to the above mentioned rotation center points 

P0, P2 and corresponding radii. Below they will be applied to 

the processing of the experimental data.  

a

5  DESIGN OF CALIBRATION EXPERIMENTS 

The main idea of the calibration experiment design is a set of 

robot configurations (as well as marker locations) that ensure 

the best identification accuracy. The key issue here is the 

ranging of different plans in accordance with the prescribed 

performance measure.  

For the considered identification problem, the design 

variables are the set of angles   and the marker 

locations. The objective functions to be minimized are 

computed via the covariance matrix that describes the 

identification errors for the geometrical parameters  and  

to be estimated. Since two identification algorithms are 

independent, selection of the optimal configurations 

2iq

L a

 2iq  

and marker locations can be considered sequentially. 

     



 

 

 

Assuming that each experiment includes the additive 

measurement errors in the Cartesian coordinates iε ,  

expression (13) allows us to present the variance of the 

parameter   in the following way 

     2

1 1 1
var T T T T

i i

m m m

i i iii i iE      u R ε ε R u u u
   

 (31) 

where  denotes the expectation and the orthogonal 

matrix  defines the orientation of the base coordinate 

system. Following usual assumption concerning the 

measurement errors (independent identically distributed, with 

zero expectation and standard deviation 

(.)E

R

2  for each 

coordinate) that allows to present the covariance error matrix 

as  T

i i

2E  Iε ε , the above expression (31) reduces to  

   2

1
var T

i i

m

i
    u u

 
 (32) 

Further, it can be proved that 
1i

m T

i i
m u u

 

q

L

. So, the 

variance (32) does not depend on the angles 2i . Thus, the 

identification accuracy for the parameter  depends on the 

number of experiments only. 

For the remaining geometrical parameter a , the 

identification error depends on the estimation precision of 

relative location of the points P2 and P0. Since relevant 

identification algorithms employ independent measurement 

data, the variance  can be computed as the sum of the 

traces of 2cov  and 0cov , where 1t  and 2  are the 

vectors of Cartesian coordinates for the points P2 and P0. 

 var a

( )t ( )t t

For the point P2, expression (10) leads to the following 

covariance matrix  

   1 1 1 1

2 2

2cov
m T

i

m m m

i i iii ii
m E    

    t ε ε R u u R T T

u

is simplification is based on the

(33) 

which can be further simplified down to  

  1 2 2

12 1
cov T

i

m m

ii i
m m

 
   t I u  (34) 

Th  above derived expressions  1

2

1

T

i i

m m

i i
E m   ε ε I  and  and on the 

assumption that z-axis of the coordinate system is directed 

along the second joint axis. Hence, for the point P2, the 

optimization problem that is related to the design of 

calibration experiment, can be formulated as 

 2 2 /E   m

q    
2

2 2

21 21
cos sin min

i
i

m

i i

m

i q
qF      (35) 

This problem should be solved taking into account joint 

limits of the industrial robot. In the case when the range of 

angles  is over 2q  , it is possible to achieve zero value of 

this objective since equations 
1 2
cos 0

m

i i
q   and 

1  are solvable. It should be noted similar 

equations arise in calibration experiment design for some 

robots without gravity compensators and have been studied in 

details in our previous work (Klimchik 2011).  

2
sin q 0

m

i i


For the point P0, similar expression includes a set of the 

angles i  that can be recomputed to the joint angles  

requires for the manipulator control (see Fig. 3). Here, it is 

reasonable to find optimal marker locations on the rigid part 

of the gravity compensator. It can be proven that using these 

assumptions, the design of experiment reduces to the 

following optimization problem  

2iq

   1

2 2

1
cos sin min

j
j j

k k

j j
F        (36) 

where j  are the angles around the point P0 between the 

compensator spring and j-th marker location. It is clear that in 

this case the best solution is produced by similar equations 

1j cos 0j

k   and 
1j , but contrary to (35), 

this problem can be easily solved by locating the markers on 

the opposite sides of the compensator rotation axis.  

sin 0j

k  
Thus, the calibration experiment design that produces the sets 

of the optimal manipulator configurations and the marker 

locations described by the variables   and 2iq  j  

respectively, is reduced to the solution of the above presented 

trigonometric equations that allows us essentially increase the 

calibration accuracy. 

6  EXPERIMENTAL RESULTS 

To demonstrate efficiency of the developed technique, the 

experimental study has been carried out. The experimental 

setup employed the robot KR-270 and the Leica laser tracker, 

which allowed us to measure the Cartesian coordinates of the 

markers attached to the compensator elements with the 

accuracy of 10 μm (see Figs 1, 3). Six different manipulator 

configurations where considered that differed in the value of 

the joint angle 2  and three markers has been used. The 

experimental data are presented in Table 1. 

q

These data has been processed using the developed 

identification algorithm presenting in the Section 4. The 

obtained values for the parameters of interest , L xa , y  are 

given in Table 2, which also includes the identification errors 

computed using the Gibbs sampling technique.  

a

In addition, there were evaluated the elastostatic properties of 

the gravity compensator. Corresponding curves describing 

influence of the compensator on the equivalent stiffness of 

the manipulator joint (see eq. (6)), are presented in Fig. 4. 

They demonstrate essential non-linearity of the compensator 

impact throughout of the robot workspace, which, in 

addition, highly depend on the spring preloading 0s . 

Table 1.  EXPERIMENTAL DATA  

P1 P01 P02 q2 

[deg] x, [mm] y, [mm] x, [mm] y, [mm] x, [mm] y, [mm] 

-0.01 -31.84 183.86 -872.10 -125.38 -813.50 -255.59 

-30 -118.44 143.42 -872.30 -126.07 -813.33 -256.18 

-60 -173.30 65.12 -872.50 -109.90 -825.09 -244.64 

-90 -181.76 -30.14 -868.43 -78.20 -844.66 -219.04 

-120 -141.45 -116.82 -858.90 -47.60 -859.43 -190.44 

-145 -78.10 -165.47 -852.53 -33.68 -864.66 -176.01 

Table 2.  GEOMETRICAL PARAMETERS  

 L, [mm] ax, [mm] ay, [mm] 

value 184.72 685.93 120.30 

accuracy ±0.06 ±0.70 ±0.69 
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The paper presents a new approach for modeling and 

calibration of heavy industrial robots with gravity 

compensators. It proposes a methodology and data processing 

algorithms for the identification of the gravity compensator 

geometrical parameters. To increase the identification 

accuracy, the design of experiments has been used aimed at 

proper selection of the measurement configurations and 

marker point locations. The advantages of the developed 

techniques are illustrated by experimental study of the 

industrial robot Kuka KR-270, for which the model 

parameters of the gravity compensator have been identified. 

Fig. 4. Variation of the gravity compensator impact on the 

equivalent stiffness of the second joint  
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Another set of experiments have been carried out to identify 

the elastostatic properties of the considered manipulator.  

There were considered 15 different configurations, which 

have been found taking into account physical constraints that 

are related to the joint limits, work-cell obstacles and safety 

reasons. To ensure identification accuracy for each 

configuration, the experiments were repeated three times. In 

total, 405 equations were considered for the identification, 

from which 7 physical parameters have been obtained. 

Corresponding values of the elastostatic parameters for the 

gravity compensator and for the manipulator are presented in 

Table 3, where ki denotes the i-th joint compliance. There 

were also computed the identification errors (using the Gibbs 

sampling technique). As follows from Fig. 5, the gravity 

compensator essentially reduces the equivalent compliance of 

the second joint (compared to the serial manipulator without 

the gravity compensator).  
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