
Towards run-time actor mapping of dynamic

dataflow programs onto multi-core platforms

Hervé Yviquel, Emmanuel Casseau

University of Rennes 1, IRISA, Inria,

France.

firstname.name@irisa.fr

Mickaël Raulet

INSA of Rennes, IETR,

France.

firstname.name@insa-rennes.fr

Pekka Jääskeläinen, Jarmo Takala

Tampere University of Technology,

Finland.

firstname.name@tut.fi

Abstract—The emergence of massively parallel architectures,
along with the necessity of new parallel programming models, has
revived the interest on dataflow programming due to its ability to
express concurrency. Although dynamic dataflow programming
can be considered as a flexible approach for the development
of scalable applications, there are still some open problems in
concern of their execution. In this paper, we propose a low-cost
mapping methodology to map dynamic dataflow programs over
any multi-core platform. Our approach finds interesting mapping
solutions in few milliseconds that makes it doable at regular time
by translating it in an equivalent graph partitioning problem.
Consequently, a good load balancing over the targeted platform
can be maintained even with such unpredictable applications.
We conduct experiments across three MPEG video decoders,
including one based on the new High Efficiency Video Coding
standard. Those dataflow-based video decoders are executed on
two different platform: A desktop multi-core processor, and an
embedded platform composed of interconnected and tiny Very
Long Instruction Word -style processors. Our entire design flow
is based on open-source tools. We present the influence of the
number of processors on the performance and show that our
method obtains a maximum decoding rate for 16 processors.

I. INTRODUCTION

Since processor frequency is bounded due to physics con-
straints like power dissipation and transistor scaling, multi-
core architectures have become the solution to allow per-
formance to keep growing as described by Moore’s law.
Ongoing embedded platforms, as well as general purpose
ones, are containing an increasing number of processor cores,
from tens to hundreds. However, these architectures present
an interesting, and still open, challenge: the production of
applications that fully exploit the parallelism provided by
these processors. Contrary to imperative paradigm, dataflow
programming paradigm attempts to solve this problem by
expressing explicit concurrency within an application. Such
a high-level model-based approach enables other nice features
such as the re-usability of the components or the dynamic
reconfiguration of the application.

Dataflow programming paradigm was used for years to
describe streaming applications. Consequently, several kinds
of dataflow Models of Computation (MoC) were studied [14].
They can be split into two main classes: the static MoCs

We would like to thank the organizations which have partially founded this
work such as the Center for International Mobility (CIMO) and the Academy
of Finland (funding decision 253087).

allowing a predictable behavior such that scheduling can be
done at compile time, and the other MoC having a dynamic
behavior, in the sens of data-dependent, such as the Dataflow
Process Network (DPN) model [18]. Most of the studies on
dataflow programming focus on the statically schedulable MoC
because of the efficiency of synthesis techniques on such
models. Unfortunately, they do not take into consideration the
flexibility and the expressiveness offered to the programmers
by the dynamic dataflow MoC. However, such programs need
a runtime-scheduling strategy due to their data-dependent
behavior.

This paper makes the following contributions:

1) The description of specific criteria involved in the
definition of an efficient actor mapping which could
be determined at runtime by profiling,

2) The establishment of a dedicated graph partitioning
problem that models the actor mapping with a uni-
form balancing of the application workload onto a
multi-core platform to limit the impact on the global
performance,

3) We also propose a full mapping methodology to
map dataflow programs with unpredictable behavior
over any multi-core platform. The simplicity of the
method makes it possible in the context of adaptive
execution [9].

The paper is organized as follows. First, the context of
this work is described in Section II. Then, we explore the
related work on actor mapping in Section III. In Section IV
we describe our approach to map dynamic dataflow program
onto multi-core platforms. Section V presents an experimental
evaluation of our actor mapping using well-known video
decoders including one based on the new High Efficiency
Video Coding (HEVC) standard. Finally, we conclude and
consider future works in VI.

II. DATAFLOW PROGRAMMING

A dataflow program is defined as a graph, as presented in
Figure 1, composed of a set of computational units intercon-
nected by communication channels. In the dataflow approach,
the communication corresponds to a stream of data composed
of a list of tokens.

A. Model of Computation

Dataflow Process Network (DPN) is a model of computa-
tion [18] closely related to the well-known KPN [15]: a set of



D

A

C

B

E

Fig. 1. A dataflow graph

processes, called actors, that communicate with unidirectional
and unbounded FIFO channels and connected to ports of
actors. Additionally to the KPN model, it introduces the
notion of firing. An actor firing, or action, is an indivisible
quantum of computation which corresponds to a mapping
function of input tokens to output tokens applied repeatedly
and sequentially on one or more data streams. This mapping is
composed of three ordered and indivisible steps: data reading,
then computational procedure, and finally data writing. These
functions are guarded by a set of firing rules which specifies
when an actor can be fired, i.e. the number and the values of
tokens that have to be available on the input ports to fire the
actor.

B. Reconfigurable Video Coding

To overcome the lack of interoperability between the
several video codecs deployed in the market, MPEG has
introduced an innovating framework, called Reconfigurable
Video Coding (RVC) [1], dedicated to the development of
video coding tools in a modular and reusable fashion. To reach
this goal, an RVC codec is described using a domain-specific
language, called CAL Actor Language (CAL) [6], which is
based upon the DPN model.

In fact, the expressive power of CAL, i.e. its ability to
describe concisely and readily any algorithm, makes it very
practical to develop complex applications. However, the poor
analyzability of the language at the dataflow-level requires
the development of efficient execution techniques to reach the
performance needed by real-time execution.

C. Execution model

Since a dataflow program is described as a set of inter-
connected actors, a multi-core platform could ideally run it by
executing each actors in parallel. However, a greater number of
actors than processors requires the execution of several actors
on the same processor. Fortunately, the strong encapsulation
of dataflow components, on top of modeling explicitly the
concurrency, lets the choice in a variety of execution models.

A natural approach for handling concurrent execution on a
sequential environment is the use of threads, which can lead to
a large overhead [4]. Hopefully, DPNs are more suitable than
KPNs to be scheduled on sequential environment because no
context has to be saved between each actor execution. Indeed,
the execution of an actor is described by a sequence of actor
firings and actor switchings can only happen between two
firings, so only state variables need to be saved. Consequently,
it is possible to reduce the overhead of scheduling a dynamic
dataflow program by using a user-level scheduler.

In previous work [27], we have presented two efficient
dynamic scheduling strategies and have shown that the sim-
plest one, known as round-robin, becomes efficient when the

number of processors is increasing. Round-robin is a simple
scheduling strategy that continuously goes over the list of
actors: The scheduler evaluates the firing rules of each actor,
executes the actor if a rule is met and continues to execute the
same actor until no firing rules are met. This scheduling policy
guarantees to each actor an equal chance of being executed,
and avoids deadlocks and starvations. Contrary to classical
round-robin scheduling, there is no notion of time slice: an
actor is executed until it cannot fire anymore because of the
states of its FIFO channels in order to minimize the number
of actor switchings and consequently the scheduling overhead.
Figure 2 shows an application of this round-robin scheduling.

Blocking

Blocking
Bl
oc
ki
ng

B
lo
c
k
in
g

B
lo
c
k
in
g

A1 A2

A5

A4

A3

Fig. 2. Example of round-robin scheduling with five actors

Actor composition [12] is another scheduling approach of
dynamic dataflow programs which is made possible after the
transformation of their firing rules into an original model called
actor machine. However, the composition leads to an explosion
of the state space of the resulting actors and it is unclear how
an embedded platform, hardly constrained in term of memory,
can deal with such a consequence.

Wipliez and Raulet [25] present a method to automatically
classify dynamic actors into a more restricted dataflow MoC
such as synchronous dataflow (SDF) using satisfiability and
abstract interpretation. After the classification of the whole
program, efficient scheduling techniques can be applied to
static or quasi-static regions of the application [11] [2]. Un-
fortunately, this approach is restricted to local region of the
application and no publication have demonstrated yet that a
large speedup could be achieved from this method.

Being able to execute several actors on the same processor
is not sufficient, we need to insure that the application is
equally balanced on the targeted platform to limit the con-
sequence on the performance.

III. RELATED WORK

Dataflow-based modeling has always been popular to
describe signal processing applications. Consequently, actor
mapping and scheduling problematics have been studied by
a large number of work. However, most of them [8] [22]
stay focus on static dataflow MoC due to the ease to analyze
them. Stuijk et al. [23] express the dynamic behavior of
an application by describing several static scenarios. Conse-
quently, the programmer has to predict all possible scenarios
and describe them in a static way. Shen et al. propose a tool
that assists the mapping of a dynamic dataflow program onto
an heterogeneous platform [21]. However, they do not address



the issue of automated actor mapping. Schor and al. present
a whole scenario-based design flow for mapping streaming
application modeled by Kahn Process Networks (KPN) onto
on-chip many-core systems [20], but the modeling of the
scenarios is not very practical.

Table IV shows a comparison of the approaches reported
in literature about the mapping of dataflow applications over
multi-core platforms. As can be seen, all of them are based
either on static or quasi-static MoC either on KPN and no one
is really handling unpredictable behavior. Most of them are
automated and executed at runtime but mostly to overcome
the overhead of external application or communication mech-
anism.

TABLE I. COMPARISON OF VARIOUS APPROACHES FOR PERFORMING

ACTORS MAPPING OF DATAFLOW PROGRAM OVER MULTI-CORE

PLATFORMS

Properties [22] [20] [8] [23] [21] Ours

MoC SDF KPN SDF SDF PSDF DPN

Dynamism no scenario no scenario partial yes

Automatic yes yes yes yes directed yes

Run-time yes yes yes yes no yes

Platform any fixed fixed fixed any any

Since the static analysis of programs based on dynamic
dataflow MoC is limited due to their data-dependent behavior,
profiling these applications is essential to get some feedback
about its efficiency. The widest metric to evaluate this ef-
ficiency is the critical path, i.e. the longest, time-weighted
sequence of events from the start of the program to its
termination. Some works [13] [3] investigate the evaluation
of the critical path using post-mortem causation trace at high
abstraction-level. One of them [3] has even proposed an
algorithm for evaluating the critical path in a linear time. But,
contrary to our approach, the need of the causation trace which
can be very complex prevents its use at runtime scheduling.

IV. METRICS-BASED ACTOR MAPPING

Since a dataflow program is described as a set of compo-
nents, called actors, interconnected using FIFO channels, an
intuitive way for sharing resources is the execution of several
actors on the same processor. However, the actor distribution
on the platform should be realized carefully to limit the
consequences on the performance.

This section is organized as follow. First, we describe the
strategy used to execute several actors on the same processor.
Then, we present the metrics which can serve to map efficiently
a dynamic dataflow program on a given platform. Finally, we
describe the actor mapping into an equivalent graph partition-
ing problem.

A. Definition of the metrics

We define some metrics about the given application and
the targeted platform that help to determine an efficient actor
mapping:

• Resources are constrained by the targeted platform
which contains a limited number of processor cores.
If there are less available processors on the platform

than actors composing the application, then several
actors have to be executed on the same processor.

• Knowing that the communications are the common
bottleneck of dataflow applications, connectivity be-
tween actors is a key factor for mapping them onto
the same processor. Reducing the communications
between the processors can have two consequences.
In case the processors communicate using shared
memories, then it limits the pressure on this memory.
Or, in case the processors use point-to-point communi-
cations, then it simplifies the interconnection network.

• The performance limitation of a dataflow program
is usually characterized by its critical path. Thereby,
we need to reduce the impact of the actor mapping
on the critical path and consequently on the global
performance. To this end, we define the workload of
an actor as the ratio of the computation time in a
given time interval as opposed to the time spending to
wait for incoming data. The workload of a processor
is the sum of the workloads of all its actors plus a
small overhead introduced by their scheduling and the
limitation of the parallelism. When the workload of
a processor overcomes its computation capacity, the
critical path is increased because of the global data
dependence of a dataflow program.

B. Graph partitioning problem

The mapping of an actor-based application onto a multi-
core platform is equivalent to the partitioning of the dataflow
graph describing the application.

Given a platform composed of k processors and an appli-
cation graph G = (V,E) with V a set of vertices modeling the
actors and E a set of edges representing the communication
channel between the actors. We define |V | the number of
vertices and w a function assigning weights to each vertex
v ∈ V such that the weight of a vertex corresponds to the
workload of the actor represented by the vertex.

The k-way graph partitioning problem is to partition V
into k subsets V1, V2, ..., Vk, with Vi ∩ Vj = ∅ for i 6= j and⋃

i Vi = V , such that the sum of the vertex-weights in each
subset is balanced and the number of edges whose incident ver-
tices belong to different subsets is minimized. Consequently,
the actors will be balanced onto the processors according to
their workload in order to minimize the critical path of the
whole system. Furthermore, since the algorithm minimizes the
edge-cut, the communications between the processors are also
minimized.

C. Graph partition method

The graph partitioning problem is NP-complete but some
algorithms find high quality partitions in small time using
multilevel scheme. A k-way partition is solved by recursive
bisection, i.e. the graph is successively split into two balanced
partitions. Basically, the bisection is performed using a multi-
level algorithm based on the three following phases:

1) Coarsening phase: First, the graph G is successively
transformed into a series of smaller graphs G0, ..,
Gm such that |V | > |V0| > ... > |Vm|. Each of them



is the result of the contraction of some edges from
the previous graph. For instance, contracting an edge
(a, b) ∈ E is performed by creating a new vertex
c ∈ N with a weight w(c) equal to the sum of the
weight of the edge w(a, b) plus the one of each vertex
w(a) and w(b). And, in case the vertice a and b are
both connected to the same vertex d, a new edge
(c, d) is created such as w(c, d) = w(a, d) +w(b, d).

2) Partitioning phase: Then, a bisection of the latest
graph Gm is performed, i.e. the coarser graph is par-
titioned in two balanced partition. Since the reason-
able size of the coarser graph, well-known bisection
methods such as the Kerninghan-Lin heuristic [17]
can find satisfying solutions in a reasonable time.

3) Uncoarsening phase: Finally, the resulting partitions
are projected back to the original graph by follow-
ing each transformation made during the coarsen-
ing phase, i.e. building successively the equivalent
partitions in each intermediate graphs G0, .., Gm.
Between each step, a refinement of the partitioning is
performed using the Kerninghan-Lin algorithm [17].

Such an algorithm has been implemented in a tool called
Metis [16]. This tools is able to partition a graph with millions
vertices in hundreds parts in a few seconds.

D. Mapping flow

Our metrics-based mapping flow maps an application based
on a dynamic dataflow model onto a multi-core platform. Since
the dynamic behavior of our application makes it unpredictable
in most cases, our approach is based on low-cost profiling anal-
ysis of the execution. Consequently, we assume that profiling
mechanisms are available on the targeted platform.

12

4

1

7

8

14
24

19

9

Application

Core

Interconnection network

Core Core

Platform

(a) Initial
 mapping

(c) Profiling

(e) Efficient
 mapping (d) Partitioning

(b, f) Execution

Fig. 3. Metrics-based actor mapping flow

Fig. 3 shows the main steps of our mapping flow. The flow
starts from the compilation of the application for the targeted
platform using an initial mapping (a), e.g. executing all actors
on the same processor core. Then, the application is run on the
platform (b) during a predefined time-slice that has to be long
enough to represent well the full behavior of the application.
After that, the execution profile is analyzed (c) to find out the
workload of each actor to get a weighted application graph.
Next, the graph partitioning is performed (d) to determine
an efficient mapping of the actor onto the available cores
of the platform. Finally, the application is recompiled, or

reconfigured, according to the computed mapping (e) to enable
its efficient execution (f) on the targeted platform.

Finding an optimal mapping of an unpredictable applica-
tion over a multi-core platform is an NP complete problem.
This is why we solve an equivalent graph partitioning problem
using reputed heuristics that are able to find an interesting
solution in few milliseconds. Moreover, this mapping flow
is doable at regular time to keep a good balancing of the
application over the processor cores for an efficient processing
during the execution of the application.

V. EXPERIMENTAL RESULTS

In this section, we present some results about the actors
mapping of dynamic dataflow programs over various multi-
core platforms. Fig. 4 presents a global view of the compilation
flow integrating our automated actor mapping used during
these experiments. Our methodology is mainly implemented
in Orcc toolset [19] interacting with the external tools such as
Metis [16].

Orcc

High-level
Compilation

RVC-based description

Metis

Partitioning

Platform

Compiler

Low-level
Compilation

Profiler

Profiling

Actors
Mapping

Fig. 4. Compilation flow

The experiments was performed on the dataflow-based
implementation of three video decoders developed by the RVC
working group: MPEG-4 Part 2 Simple Profile, MPEG-4 Part
10 Progressive High Profile (also known as AVC or H264)
and the new MPEG-H Part 2 (better known as HEVC). Table
II describes the properties of each description including the
profile of the decoder, the parallelization of the luma/chroma
decoding, as well as the number of actors and FIFO channels.
In fact, the RVC-based video decoders are described with a fine
granularity (at block level), contrary to the traditional coarse-
grain dataflow (at frame level). This fine-grain streaming
approach induces a high potential in pipeline parallelism and
the use of small communication channels, between 512 and
8192 for these experiments.

TABLE II. PROPERTIES OF THE DESCRIPTION OF TESTED MPEG
VIDEO DECODERS

Decoder Profile YUV #Actors #FIFOs

MPEG-4 Part 2 SP yes 41 82

AVC / H.264 PHP yes 114 240

HEVC / H.265 Main no 38 64

Since the establishment of the first video coding standard,
all existing ITU/MPEG video codecs are globally kept the
same structure, with an improvement of the algorithmic part to
offer an increasing compression rate, that makes the applica-
tion graph of all RVC-based video codecs quite similar. Figure
5 presents the application graph of the HEVC decoder as a



reference. The graph is decomposed in 4 distinct parts: A first
subnetwork, called parser, that performs the entropy decoding,
which extracts values needed by the next processing from the
compressed data stream; Another one, known as residual, that
decodes the error resulting of the image predication; Following
by another one, called prediction, that performs the motion
compensation. And, a last one dedicated to the post-processing
such as the deblocking filer. Each part, expect the parsing, can
duplicated for each component (Y, U and V) to increase the
data parallelism.

Intra
Prediction

Generate
InterInfo

Select CU

Inter
Prediction

Picture
Buffer

Transp_4x4 IT4x4_1d Transp_4x4 IT4x4_1d

Transp_8x8 IT8x8_1d Transp_8x8 IT8x8_1d

Transp_16x16 IT16x16_1d Transp_16x16 IT16x16_1d

Transp_32x32 IT32x32_1d Transp_32x32 IT32x32_1d

Inv_DST4x4_1st Inv_DST4x4_2nd

Splitter Merger
DBF

SAO

RESIDUAL

PREDICTION

FILTER

P
A
R
S
E
R

Fig. 5. RVC-based description of the HEVC decoder

A. From desktop multi-core processor

The processor used during this experiments is a Core i7
900 clocked at 3.2GHz. This processor is composed of 6
homogeneous cores sharing 12MB of L3 cache. The processor
is executing the compiled source code generating by the
software backend (ANSI C) of Orcc. The experiments have
been made from the following 720P sequences containing
I/P/B frames: Old town cross (25fps and 6Mbps) for MPEG-4
Part 2; A Place at the Table (25fps and 6Mbps) for AVC; Four
People (60fps and 1Mbps) for HEVC.

The workload of the actor is evaluated using profiling tools,
e.g. Valgrind, during an execution where all actors are mapped
to the same core. Since our scheduling strategy is based on
the state of the FIFO channels, we assume that the actors are
waiting when they are not executed.

TABLE III. SCALABLE FRAME-RATES ON DESKTOP MULTI-CORE

PROCESSOR OF MPEG-4 PART 2 (A), AVC (B) AND HEVC (C)

#cores 1 2 3 4 5 6

(a) 30 54 1.8 76 2.5 93 3.1 90 3 95 3.2

(b) 4 7 1.8 10 2.5 12 3 13 3.3 14 3.5

(c) 7 12 1.7 13 1.9 15 2.1 15 2.1 14 2

The performance obtained with various multi-core config-
urations using our mapping strategy is presented in Table III.
The results show that the maximum decoding rate is obtained
using 4 processor cores for all decoders. This limit can be
explained by the actor workloads included between 0.1%
and 15% of the total execution, i.e. the maximum theoretical
speedup would be 6.6x without taking into consideration the
cost of communication between the cores, as well as the loop
reaction of the data stream between the image buffer and the
inter prediction which is a known bottleneck of dataflow-
based video decoders. Moreover, The HEVC standard has
been designed to take advantage of the increasing parallelism
potential of the decoding platforms. However, the dataflow
description we use is still experimental and this automated
actor mapping will help to its development.

TABLE IV. LIMITS OF HANDMADE PARTITIONING: AN EXAMPLE WITH

MPEG-4 PART 2 EXECUTED ON 2 PROCESSOR CORES

Actors mapping Frame rate Speed-up

Handmade Luma/Chroma 38 fps 1.26x

Handmade Pipelining 43 fps 1.43x

Automated metrics-based 54 fps 1.8x

Table IV compares the speed-up resulting of the execution
of the MPEG-4 Part 2 video decoders over 2 processors using
hand-made strategy with our automated method. The results
show the difficulty of mapping efficiently by hand a whole
dataflow program onto a multiprocessor and prove the interest
of an automated method.

B. Towards embedded multi-core platform

The targeted platform is composed of homogeneous
Very Long Instruction Word -style processors, based on the
Transport-Trigger Architecture [5], and interconnected by
point-to-point shared memories. The entire co-design flow
used in these experiments [26] has been implemented using
two open-source compilers: Orcc [19] and the TTA-based Co-
design Environment (TCE) [7] [24].

The workload of each actor is evaluated using a cycle-
accurate many-core simulator. In this case, the dataflow appli-
cation is mapped to an equivalent network of processors, where
each actor is executed by its own processor. The time spent in
the evaluation of the firing rules can be determined thanks to
the call graph generated by the simulator. As expected, most
of them spend most of the time waiting input data and do
not need an entire processor at full time. The workload of the
actors involved in the decoding of the luma is more important
due to the chroma sub-sampling.

After profiling, we get some balanced actor mappings of
the application on different sized embedded platform. Finally,
we evaluate the performance of the resulting partition using
our full co-design flow [26]. Figure 6 presents the influence of
the number of processors on the performance, in frames per
second (FPS), to decode QCIF resolution video based on TTA
implementation on a Xilinx Virtex 6 platform (XC6VLX240T)
with a 100MHz clock frequency. The form of the curve shows
clearly the limit of the task level parallelism of the given
application. For MPEG-4 Part 2 SP, the maximum decoding
rate is reached with 16 processors. Increasing further the
number of processors does not provide higher decoding rate.
Our mapping method achieves a speedup ratio of 8.2x with 16
processors in comparison with the single processor execution.

VI. CONCLUSION

In this paper we propose an automated and low-cost metric-
based actor mapping of dynamic dataflow programs onto
any multi-core platform doable on run-time to overcome the
unpredictability of such applications. The mapping is described
as an equivalent graph partitioning problem considering the
architectural constraints and an earlier profiling which eval-
uate the weights of each nodes. Then, the graph partitioning
problem can be solved using dedicated tools in order to balance
the workload of the whole application. The efficiency of our



0 5 10 15 20 25 30 35 40 45

0

20

40

60

80

100

120

140

160

180

200

Number of processors

F
P

S

Fig. 6. Scalable frame-rates of an MPEG-4 Part 2 decoder on an embedded
multi-core platform

approach is demonstrated by presenting the scalable speed-
up of the performance on several well-known video decoders,
including one based on the new HEVC standard.

Future works will look at virtual machine technology to
enable adaptive execution, such as the Just-in-time Adaptive
Decoder Engine [9] [10], that could benefit from this low-
cost metric-based actor mapping by offering online actors
mapping/scheduling to prove the interest of dynamic dataflow
programming languages.

ACKNOWLEDGMENT

We would give special thanks to the Orcc and TCE commu-
nities as a whole for actively participating in the development
of the tools which offers solid basements to this work.

REFERENCES

[1] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet, “Overview of the MPEG Reconfigurable Video Coding
Framework,” Journal of Signal Processing Systems, vol. 63, no. 2, pp.
251–263, Jul. 2009.

[2] J. Boutellier, C. Lucarz, S. Lafond, V. M. Gomez, and M. Mattavelli,
“Quasi-static scheduling of CAL actor networks for reconfigurable
video coding,” Journal of Signal Processing Systems, vol. 63, no. 2,
pp. 191–202, 2009.

[3] S. C. Brunet, M. Mattavelli, and J. W. Janneck, “Profiling of Dataflow
Programs using Post Mortem Causation Traces,” in IEEE Workshop

on Signal Processing Systems (SiPS). Washington, DC, USA: IEEE
Computer Society, 2012, pp. 220–225.

[4] A. Carlsson, J. Eker, T. Olsson, and C. Von Platen, “Scalable parallelism
using dataflow programming,” Ericsson Review, vol. 2, no. 1, pp. 16–21,
2010.

[5] H. Corporaal, Microprocessor Architectures: from VLIW to TTA. Chich-
ester, UK: John Wiley & Sons, 1997.

[6] J. Eker and J. W. Janneck, “CAL language report: Specification of
the CAL actor language,” University of California, Berkeley, Berkeley,
Tech. Rep., 2003.

[7] O. Esko, P. Jääskeläinen, P. Huerta, C. S. de La Lama, J. Takala, and
J. I. Martinez, “Customized Exposed Datapath Soft-Core Design Flow
with Compiler Support,” in Proceedings of the 2010 International Con-

ference on Field Programmable Logic and Applications. Washington,
DC, USA: IEEE Computer Society, Aug. 2010, pp. 217–222.

[8] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz, “Profile-guided
deployment of stream programs on multicores,” Proceedings of the

13th ACM SIGPLAN/SIGBED International Conference on Languages,

Compilers, Tools and Theory for Embedded Systems - LCTES ’12, pp.
79–88, 2012.

[9] J. Gorin, M. Wipliez, F. Prêteux, and M. Raulet, “LLVM-based and
scalable MPEG-RVC decoder,” Journal of Real Time Image Processing,
vol. 6, no. 1, pp. 59—-70, 2011.

[10] J. Gorin, H. Yviquel, F. Prêteux, and M. Raulet, “Just-in-time adaptive
decoder engine,” Proceedings of the 19th ACM international conference

on Multimedia - MM ’11, p. 711, 2011.

[11] R. Gu, J. W. Janneck, M. Raulet, and S. S. Bhattacharyya, “Exploiting
Statically Schedulable Regions in Dataflow Programs,” Journal of

Signal Processing Systems, vol. 63, no. 1, pp. 129–142, Jan. 2010.

[12] J. W. Janneck, “A machine model for dataflow actors and its applica-
tions,” in Signals, Systems and Computers (ASILOMAR), 2011 Confer-

ence Record of the Forty Fifth Asilomar Conference on. Washington,
DC, USA: IEEE Computer Society, Nov. 2011, pp. 756–760.

[13] J. W. Janneck, I. D. Miller, and D. B. Parlour, “Profiling dataflow
programs,” in IEEE International Conference on Multimedia and Expo.
Washington, DC, USA: IEEE Computer Society, Jun. 2008, pp. 1065–
1068.

[14] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM Computing Surveys, vol. 36, no. 1, pp.
1–34, Mar. 2004.

[15] G. Kahn, “The semantics of a simple language for parallel program-
ming,” Information processing, vol. 74, pp. 471–475, 1974.

[16] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs,” SIAM Journal on Scientific

Computing, vol. 20, no. 1, pp. 359–392, Jan. 1998.

[17] B. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,” Bell system technical journal, 1970.

[18] E. A. Lee and T. Parks, “Dataflow process networks,” Proceedings of

the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[19] Orcc, “The Open RVC-CAL Compiler : A development framework for
dataflow programs.” [Online]. Available: http://orcc.sourceforge.net

[20] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele,
“Scenario-based design flow for mapping streaming applications onto
on-chip many-core systems,” in Proceedings of the 2012 international

conference on Compilers, architectures and synthesis for embedded

systems. New York, New York, USA: ACM, 2012, pp. 71–80.

[21] C.-C. Shen, H.-H. Wu, N. Sane, W. Plishker, and S. S. Bhattacharyya,
“A design tool for efficient mapping of multimedia applications onto
heterogeneous platforms,” in IEEE International Conference on Mul-

timedia and Expo (ICME). Washington, DC, USA: IEEE Computer
Society, 2011, pp. 1–6.

[22] A. K. Singh, A. Kumar, and T. Srikanthan, “A hybrid strategy for
mapping multiple throughput-constrained applications on MPSoCs,”
in Proceedings of the 14th international conference on Compilers,

architectures and synthesis for embedded systems. New York, New
York, USA: ACM, 2011, pp. 175–184.

[23] S. Stuijk, M. Geilen, and T. Basten, “A Predictable Multiprocessor
Design Flow for Streaming Applications with Dynamic Behaviour,”
in Proceedings of the 13th Euromicro Conference on Digital System

Design: Architectures, Methods and Tools. Washington, DC, USA:
IEEE Computer Society, Sep. 2010, pp. 548–555.

[24] TCE, “The TTA-based Co-design Environment.” [Online]. Available:
http://tce.cs.tut.fi/

[25] M. Wipliez and M. Raulet, “Classification of Dataflow Actors with
Satisfiability and Abstract Interpretation,” International Journal of Em-

bedded and Real-Time Communication Systems, vol. 3, no. March, pp.
49–69, 2012.

[26] H. Yviquel, J. Boutellier, M. Raulet, and E. Casseau, “Automated design
of networks of Transport-Triggered Architecture processors using Dy-
namic Dataflow Programs,” Signal Processing Image Communication,

Special issue on Reconfigurable Video Coding, 2013.

[27] H. Yviquel, E. Casseau, M. Wipliez, and M. Raulet, “Efficient multicore
scheduling of dataflow process networks,” in IEEE Workshop on Signal

Processing Systems (SiPS). Washington, DC, USA: IEEE Computer
Society, 2011, pp. 198–203.


