
HAL Id: hal-00909250
https://hal.science/hal-00909250

Submitted on 26 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Apnea-Bradycardia Detection Using Recursive
Order Estimation for Auto-Regressive Models.

Di Ge, Alain Beuchée, Guy Carrault, Patrick Pladys, Alfredo I. Hernández

To cite this version:
Di Ge, Alain Beuchée, Guy Carrault, Patrick Pladys, Alfredo I. Hernández. Online Apnea-Bradycardia
Detection Using Recursive Order Estimation for Auto-Regressive Models.. Computing in Cardiology,
Sep 2013, Saragossa, Spain. �hal-00909250�

https://hal.science/hal-00909250
https://hal.archives-ouvertes.fr


Online Apnea-Bradycardia Detection using Recursive Order Estimation for

Auto-regressive Models

D. Ge 1,2, A. Beuchée1,2, G. Carrault1,2, P. Pladys1,2, A. I. Hernández1,2

1 INSERM U1099 Rennes F35000, France
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Abstract

This study aims to detect apnea-bradycardia (AB)

episodes from preterm newborns, based on the analysis of

electrocardiographic signals (ECG). We propose the use

of an auto-regressive (AR) model with undetermined or-

ders to capture all possible linear dependency of the RR

interval time series extracted from ECG. An on-line algo-

rithm inspired from the Kalman filtering technique is de-

signed to follow the evolution of the AR model’s order dis-

tribution. The detection sensitivity (TP/(TP + FN)) reaches

91.5% over a total of 50 episodes with perfect specificity

(TN/(FP+TN)=100%). From the clinical point of view, it

is essential to achieve reliable early stage detection of AB

episodes to enable the initiation of quick nursing actions.

Our proposed method achieves a delay of 5.08s ± 2.90
compared with the experts’ off-line annotations, knowing

that the mean intervention time (duration from the genera-

tion of the alarm to the initiation of manual stimulation) is

reported to be 33 seconds from a recent study [5].

1. Introduction

AB episodes are defined as a respiratory pause, accom-

panied with a fall in heart rate. These episodes are common

in preterm infants and may seriously compromise oxy-

genation and tissue perfusion and lead to neurological mor-

bidity or even infant death [2,4]. In the domain of biomed-

ical signal analysis and in particular for the ECG signal,

the AR model is traditionally used to compute the power

spectrum density for RR interval time-series. Broadman et

al. studied the impact of using different criteria (Akaike,

Parzen, Rissanen) in determining the model order and pro-

posed a fixed optimal order for the spectral analysis of RR

series [6]. Unlike the previous studies based on the power

spectrum analysis of RR series (first proposed by [1]),

we adopt here a probabilistic approach by considering the

model order as a random variable and the goal is to detect

AB episodes by abrupt changes in its distribution.

Indeed, the short-time stationary nature in the RR signal

(as an indicator of the heart rate variability) is ideally mod-

eled by the slowly-changing AR coefficients and model or-

ders [1] while the non-stationary event that corresponds

to apnea-bradycardia episodes results in abrupt changes in

both the AR coefficients and the model orders. It is then

possible to detect AB events by investigating the evolution

of these parameters. The idea is to fully exploit the recur-

rence relations of the RR series with undetermined orders

by allowing the trainings of several competing AR models

(with different model orders) and updating the probability

of each of them in a filtering manner.

We propose the on-line Kalman filtering to track the

changing coefficients of each fixed-order AR process and a

Markovian model for model order transition. The marginal

posterior distribution of the AR orders can be updated re-

cursively for each newly-observed RR interval, by inte-

grating out the normally distributed AR coefficients. The

computational complexity can also be minimized to ac-

celerate the on-line parallel implementation of the algo-

rithm. Compared with other detection approaches such as

the Hidden Markov models (HMM) [9], two obvious ad-

vantages are its fast learning ability (filters need only a few

samples to follow the signal dynamics) and its reduced cal-

culation complexity.

The paper is organized as follows. Section 2 details the

signal model and the on-line detection algorithm. Sec-

tion 3 illustrates both results on the simulated signals and

the annotated database of ECG signal acquired from the

target population of preterm infants suffering from AB

episodes. Finally, in section 4 we discuss possible exten-

sions of our work.

2. Method

The following signal model and associated online detec-

tion algorithm are based on the RR series extracted from

raw ECG signals (cf [3] for details) in the database used

for the SKIN&SAS project.



2.1. Signal Model

The RR interval series {Yn}1,...,N are modeled by an

AR process with both time-varying coefficients A
qn−1

n−1 =

{αn−1

i }1,...,qn−1
∈ ❘qn−1 and orders qn−1 ∈ ◆ such that:

Yn =

qn−1∑

i=1

αn−1

i Yn−i + ǫn. (1)

In the following we note Yn = {Y1, . . . ,Yn} as the first

n RR interval series set. For quasi-stationary processes

representing the non-bradycardia periods, it is reasonable

to further assume that A
qn−1

n−1 and qn show slow dynamics

and are continuous. Two hypotheses can be formulated.

Firstly, the AR coefficients are slowly varying :

A
qn−1

n = A
qn−1

n−1 + υqn−1

n (2)

where {υ
qn−1

n } is an i.i.d zero-mean multi-variate Gaus-

sian process of dimension qn−1. Thus the classical Kalman

filtering algorithm can be readily applied to update the

multivariate Gaussian distribution P (A
qn−1

n−1 |qn−1,Yn−1).
Secondly a Markovian structure is imposed on the evolu-

tion of AR orders:

P (qn−1|qn−2, . . .) = P (qn−1|qn−2), (3)

and in the present study we choose the homogeneous tran-

sition law Pij = P (qn−1 = j|qn−2 = i) with a limited

state space {1, . . . , Qmax}, where Qmax denotes the highest

possible model order.

It is direct to prove the following recursive relation of

the marginalized posteriori probability of the model order

qn−1 :

P (qn−1|Yn) ∝




Qmax∑

qn−2=1

P (qn−2|Yn−1)P (qn−1|qn−2)




· P (Yn|Yn−1, qn−1). (4)

By fixing an arbitrary initial distribution P (q0|Y1), we are

capable of updating the smoothed distribution of qn−1 for

each incoming data Yn, using Eq. (4) and the normaliza-

tion constraint of a distribution
∑

j P (qn−1 = j|Yn) = 1.

The main difficulty in Eq. (4) is to evaluate the marginal

likelihood P (Yn|Yn−1, qn−1) by integrating out the AR

coefficients A
qn−1

n−1 ∈ ❘qn−1 .

Given qn−1 = δ, the marginal likelihood writes

P (Yn|Yn−1, qn−1 = δ)

=

∫
P (Yn,A

δ
n−1|Yn−1, qn−1 = δ)dAδ

n−1 (5)

=

∫
P (Yn|A

δ
n−1,Yn−1, qn−1)P (Aδ

n−1|Yn−1, qn−1)dA
δ
n−1

We can analytically integrate out the AR coefficients Aδ
n−1

since both probabilities in Eq. (5) are Gaussian :

Yn|A
δ
n−1,Yn−1, qn−1 = δ ∼ N (mt

δA
δ
n−1, σ

2
ǫ )

A
δ
n−1|Yn−1, qn−1 = δ ∼ N (Âδ

n−1,V
δ
n−1)

where mδ = [Yn−1, . . . ,Yn−δ]
t; Âδ

n−1 and V
δ
n−1 are

respectively the mean and covariance matrix of the nor-

mal distribution updated by the Kalman filtering. Conse-

quently their product can be identified as another normal

distribution N (M δ,Σδ), for which

Σ
−1

δ =
1

σ2
ǫ

mδm
t
δ +

(
V

δ
n−1

)
−1

M δ = Σ

(
Yn

σ2
ǫ

mδ +
(
V

δ
n−1

)
−1

Âδ
n−1

)
.

By sorting out the terms other than the normal distribution

N (M δ,Σδ), Eq (5) is reduced to :

P (Yn|Yn−1, qn−1 = δ) =

(
|Σδ|

2πσ2
ǫ |V

δ
n−1|

) 1

2

exp

{
−
1

2
D

}

D =
Y 2
n

σ2
ǫ

+ Âδ
n−1

t (
V

δ
n−1

)
−1

Âδ
n−1 −M

t

δΣ
−1

δ M δ (6)

It it important to note that the calculation of the term

|Σ
−1

δ V
δ
n−1| and D in Eq. (6) should not require O(δ3), as

is detailed in the Appendix.

2.2. On-line algorithm

Kalman Filter is a Bayesian filtering technique to re-

cursively estimate the hidden dynamic state variable Xn

based on available observations Yn and signal statistical

properties. The underlying dynamic system writes :

Xn+1 = FnXn +GnUn evolution of states

Yn = HnXn +Bn, observations

n = 0, 1, . . . denotes the sampling instants. Un and Bn are

the uncorrelated Gaussian white noises of state and obser-

vation respectively. The Kalman filter was first described

and developed in technical papers by Swerling (1958) and

Kalman (1960) [7].

For the AR model coefficient tracking problem given a

fixed-order δ, we directly apply the Kalman filter by identi-

fying variables in table 1. As illustrated in Figure 1, a total

of Qmax independent Kalman filters are running in parallel.

The mean and covariance estimates are achieved online to

update the marginal posterior distribution P (qn−1|Yn).
Finally two options are studied to quantify the dis-

tances of model orders in terms of their distribution func-



Figure 1. General scheme of AR order distribution estimation. The z−1 symbol represents a unit-time delay.

Table 1. Application of Kalman Filtering for fixed order (δ) AR coef-
ficient tracking.

Var Kalman Var AR Dimension

State Variable Xn Aδ
n−1 δ × 1

Observations Yn Yn scalar

State transition matrix Fn Iδ δ × δ
Measurement matrix Hn mt

δ 1× δ
Process Noise Un υδ

n δ × 1
Observation Noise Bn ǫn scalar

tions. Namely the Kullback-Leibler and the Kolmogorov-

Smirnov distance, both in their discrete versions:

dKL(P |Q) =
∑

i

P (i) logP (i)/Q(i),

dKS(P |Q) = max
n

∣∣∣∣∣
n∑

i

(P (i)−Q(i))

∣∣∣∣∣ .

The Kullback-Leibler distance calculates the expectation

of the logarithmic difference between two distributions and

is numerically sensitive to near zero terms (in P and Q).

The Kolmogorov-Smirnov distance can be directly oper-

ated in any cases, and is both symmetric and normalized

by definition (ranging from 0 to 1), thus easier to threshold

and to compare the algorithm performances. Other dis-

tance measures exist and have similar if not identical re-

sults in detecting the distribution shifts.

3. Results

The maximum AR model order Qmax is set to 20 to

cover a large scale of physiological heart rate variability

origins [8] for both synthetic and real ECG experiments.

While the Markovian transition law P (qn = j|qn−1 = i)
is arbitrarily set to Pij ∝ 1/(|i−j|+1), so that Pij > 0 for

all 0 ≤ i, j ≤ Qmax allowing model orders to shift freely.

Variances of the process noise Συ and that of the obser-

vation noise σ2
ǫ can either be set using prior knowledge or

trained from a heating period of the algorithm.

3.1. Simulation

A total of 100 time series are generated using AR model

with orders ranging from 3 to 5 for the first 1000 sam-

ples and from 9 to 11 for the next 1000 samples. The AR

model coefficients are sampled using random poles within

the unit circle to ensure the process stability. Two scenar-

ios might occur due to the choice of AR coefficients (cf

Fig. 2). Globally a satisfactory TP rate is achieved (96%)

with reasonable FP rate.

3.2. Annotated ECG

For the detection of AB events in real ECG signals, we

used a database with manual annotations on the RR series

from 32 preterm infants. It is a real challenge due to the off-

line diagnosis procedure of experts. Kolmogorov-Smirnov

distances are calculated for the AR order distributions and

a thresholding on the divergence measure is used to trace

the ROC curve performance of the detection.True positives

(TP) occur when the detection falls within the 10 s win-

dow centered on the annotations while all other detections

are considered FP. FN and TN occur when no detection

is made during the annotated episode and rest of the sig-

nal respectively. The sensitivity (TP/(TP + FN)) reaches

91.5% with perfect specificity (TN/(FP+TN)=100%).

Since early detection is another critical quality in clini-

cal applications, we also aim at detecting episodes as early

as possible. Compared with the beginning of the man-

ual annotations for each AB event, the proposed method

achieves a delay of 5.08s±2.90. Average detection delays

occur at 5 s while most of them occur within the first 10 s.

4. Conclusion and perspectives

A novel online detection algorithm of autoregressive

model order is presented in the present study with ap-

plications in the automatic surveillance of the Apnea-

Bradycardia events in preterm infants. Model simplicity

associated with optimized computing efficiency are the key

issues in real time implementation of the proposed algo-
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Figure 2. Examples of synthetic AR signals and on-line detection of
model order shifts. It is relatively more difficult to detect the AR model
order shift in (b) than in (a) using frequency analysis methods.

rithm. Simulation and real ECG data experiments’ results

confirm the feasibility of the proposed method. In the fu-

ture, we aim at extending the current algorithm framework

to include several interesting aspects : 1) model orders

transition law that allows large order shifts to speed up the

detection, 2) relaxing the Qmax constraint and track the AR

order distribution with a particle filter.

Appendix

Indeed, we can use the Sylvestre’s determinant theorem

(|Im +AB| = |In +BA|) to achieve :

|Σ
−1

δ V
δ
n−1| =

∣∣∣∣Iδ +
1

σ2
ǫ

mδm
t
δV

δ
n−1

∣∣∣∣
= |1 +m

t
δV

δ
n−1mδ/σ

2
ǫ |

thus reducing the matrix determinant to the one-

dimensional absolute value.

As for Σ, we apply the Woodbury formula:

Σ = Vn−1 −Vn−1mδm
t
δVn−1/

(
σ2
ǫ +m

t
δVn−1mδ

)

to avoid the matrix inversion and reduce Eq. (6) to :

D =
(Yn −mt

δÂ
δ
n−1)

2

σ2
ǫ +mt

δV
δ
n−1mδ

Notice that the calculation of the marginal likelihood term

P (Yn|Yn−1, qn−1 = δ) does not involve Σ or Σ
−1

, thus

avoiding the direct matrix inversions.
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