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Abstract

The aim of this work is to develop a numerical
method for the full-wave simulation of electromag-
netic wave propagation in a plasma. The propaga-
tion and the absorption of lower hybrid (LH) elec-
tromagnetic waves is a powerful method to generate
current in tokamaks by Landau wave particle reso-
nance. Full-wave calculations of the LH wave prop-
agation is a challenging issue because of the short
wave length with respect to the machine size. We
propose a Fourier finite element method for solving
the Maxwell equations based on a mixed augmented
variational formulation. In order to develop a par-
allel version of the simulation and consider non ho-
mogenous plasma response, a nonoverlapping domain
decomposition approach is presented.

Introduction

Let the domain Ω be a torus (tokamak plasma vol-
ume) with strong external time-invariant magnetic
field Bext. We study a second order partial differen-
tial equation for the time-harmonic electric field E

arising from Maxwell equations:

curl curlE − ω2

c2
KE = f in Ω, (1)

div(KE) = g in Ω (2)

where ω > 0 is the excited wave frequency and c de-
notes the speed of light in free space. The plasma
response is described by the matrix K, in Stix frame
(third coordinate parallel to Bext). It includes a cold
plasma approximation of the relative dielectric per-
mittivity tensor and Landau damping:

K(x) =





S(x) −iD(x) 0
iD(x) S(x) 0

0 0 PL(x)





Expressions of the entries S,D and PL involve plasma
frequencies, cyclotron frequencies of each species (ion
and electron) and also the collision frequency. In
general, the matrix K is complex-valued and non-
hermitian. Let Γ be the boundary of the domain Ω

and ΓA ⊂ Γ be an antenna on the tokamak, then
several boundary conditions are possible:

Neumann: curlE × n = iωµ0js on ΓA

Dirichlet: E × n = EA × n on ΓA.

On the other part of the boundary ΓC = Γ \ ΓA, we
assume a perfectly conducting condition:

E × n = 0 on ΓC .

1 Finite element method

1.1 Variational formulation and well-posedness

Taking the divergence condition (2) as constraint,
we use a mixed augmented variational formulation
(MAVF) [3], which gives rise to a H1 conform-
ing variational space, XN (K,Ω) := H0(curl,Ω) ∩
H(divK,Ω). We obtain the following variational
formulation of the Dirichlet problem :
Find (E, p) ∈ XN (K,Ω)× L2(Ω) such that

as(E,F ) + b(F , p) = Ls(F ) ∀F ∈ XN (K,Ω)

b(E, q) = l(q) ∀q ∈ L2(Ω).

where

as(E,F ) := (curlE | curlF )− ω2

c2
(KE | F )

+s(divKE | divKF )

Ls(F ) := (f | F ) + s(g | divKF )

b(E, q) := (divKE | q)
l(q) := (g | q),

with parameter s ∈ C. Here, (· | ·) denotes the stan-
dard L2 inner product in Ω.

The well-posedness of the considered formulation
follows from the Babuska-Brezzi theorem. Thanks
to spectral properties of the dielectric tensor, the
sesquilinear form as is coercive if ℜ(s) > 0 and
ℑ(s) ≤ 0.

1.2 Dimension reduction and discretization

The 3D problem can be reduced to a series of 2D
one by using cylindrical coordinates (R,Z, φ) and by



expanding all functions f(R,Z, φ) as Fourier series in
the angular coordinate φ

f(R,Z, φ) =
1√
2π

∑

ν∈Z

fν(R,Z)eiνφ

where the coefficients fν(R,Z) are defined on a cross
section of Ω [4]. Then the sesquilinear forms of
the variational formulation can be written as sum
of modal forms

as(u,v) =
∑

ν∈Z

as,ν(uν ,vν), b(v, p) =
∑

ν∈Z

bν(vν , pν)

The modal variational formulation is then dis-
cretized using a Taylor-Hood P2-iso-P1 finite element.

1.3 Numerical results
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Figure 1: Real part of a component of the electric
field for ω = ωLH = 1.3× 1010 rad/s

2 Domain decomposition

Consider a nonoverlapping decomposition Ω =
⋃

k Ωk. In the domain decomposition method con-
sidered here, we solve the original problem in each
subdomain Ωi; the equivalence with the one-domain
formulation is obtained by continuity conditions

[E × n]Σij
= 0 and [KE · n]Σij

= 0 (3)

which ensure the X(K,Ω) regularity of the electric
field and

[curlE × n]Σij
= 0, (4)

which implies that the one-domain formulation holds
in the sense of distributions. We have denoted, as
usual, [f ]Σij

the jump of a quantity f across the in-

terface Σij = Ωi∩Ωj . The conditions (3) are dualized

by introducing the associated Lagrange multipliers
λij ∈ H1/2(Σij), while (4) is treated as a natural
condition. The existence and uniqueness of the solu-
tion (Ei, pi,λij) to the multidomain formulation was
proved and :

Ei = E|Ωi
and pi = p|Ωi

where (E, p) is the solution to the one-domain for-
mulation.
The full linear system involving all subdomains

(the outer system) is a generalized saddle-point prob-
lem:

(

Q GH

G 0

)

=

(

E

λ

)

=

(

F

0

)

(5)

where Q is a block sparse non-hermitian matrix.
Each block corresponds to a problem in one sub-
domain. The sparse matrix G expresses the inter-
actions between subdomains. The outer system (5)
is solved using a preconditioned GMRES algorithm.
The inner problem on each subdomain is also a gen-
eralized saddle-point problem, and is solved using a
direct method.
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