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Abstract

We study the Bogoliubov-Dirac-Fock model that allows to consider relativistic elec-
trons interacting with the vacuum in the presence of an external electrostatic field. It
can be seen as a Hartree-Fock approximation of QED, where photons are neglected. A
state is described by its one-body density matrix: an infinite rank, self-adjoint operator
which is a compact perturbation of the negative spectral projector of the free Dirac
operator.

We are interested in the properties of minimizers of the BDF-energy in the presence
of an external field with charge density v > 0 in the regime a, alog(A) and av (in
some norms) small where « is the coupling constant and A the ultraviolet cut-off. We
prove that the density of such minimizer is integrable and compute the effective charge
of the system. We also ensure the existence of minimizers under charge constraint
M € N* provided that there holds M —1 < f v close to the nonrelativistic limit a — 0
with «alog(A) fized to a small value. This contrasts with the assumptions of [Arch.
Ration. Mech. Anal, 192(3):453-499(2009)] where A is fixed. As a consequence, the
nonrelativistic model we obtain in the limit keeps track of the charge renormalisation:
it is different from the Hartree-Fock model obtained.

1 Introduction

The relativistic quantum theory of electrons is based on the Dirac operator [22]:
me’f — Zle thcay - 05. Here c is the speed of light, m the mass of electron, h the
Planck’s constant,

L idcz 0 L 0 gj 4
B:= ( 0 —idcz)’ o = <O'j 0) € End(C"),

where the o;’s are the Pauli matrices:

() (T () o

The Dirac operator acts on £ := L*(R?, C"), it is self-adjoint with domain H'(R?, C?).
In the one-particle theory of Dirac, the energy of a free particle (with wave function
¢ € L*(R?,CY) is (Dot , 9). The spectrum of Dy is (—oo, —mc*]U[mc?, +-00) and one
cannot exclude negative energy state a priori. To explain why electrons with negative
energies are not observed, Dirac postulated all the negative energy states are already



occupied by "virtual" electrons, the so-called Dirac sea. By the Pauli principle a real
electron can only have positive energy.

In this paper we study the Bogoliubov-Dirac-Fock (BDF) model which can be seen
as a mean-field approximation of Quantum Electrodynamics (QED) and which was
introduced by Chaix and Iracane. It enables us to consider a system of relativistic
electrons interacting with the vacuum in the presence of an electrostatic field (e.g.
that one created by some nucleus). This paper is a continuation of previous works by
Hainzl, Gravejat, Lewin, Séré, Solovej [9, 10, 12, 11, 7] and Sok (unpublished work
arxiv.1211.3830). In this paper we will extend some results of [7].

This model is derived from full QED by making several approximations: the starting
point is the full Hamiltonian H defined on the Fock space Fe; @ Fpho (the tensor product
of that one of the electrons and that one of the photons) and the first approximation
is to neglect the photons and work only with F.; (see [2] for more details).

We use relativistic units 7 = ¢ = 1 and set the bare particle mass equal to 1. The
fine structure constant is written a. We write D = —iax- V + 3 the free Dirac operator
acting on the Hilbert space $§ = L?*(R® C*) and PY (resp. P{) the negative (resp.
positive) spectral projector of Dg. on

In the BDF model a system is described by a "Hartree-Fock" state in the Fock space,
fully characterized by its one-body density matrix (1pdm) P, an orthogonal projector
of L*(R? C*). The projector P is the one-body density matrix of the free vacuum
Qo of the Fock space F.;. In fact we rather consider the reduced 1pdm Q := P — P°.
These BDF states are defined in the appendix of [9], it can be shown that a projector
P is the 1pdm of a BDF state Qp iff @Q is Hilbert-Schmidt. By algebraic computation,
it can be shown that the formal difference of the energy (Qp|H|Qp) of the state Qp
and that of ) is a function of @, the so-called BDF energy.

We assume there is an external density of charge v (real-valued) of finite Coulomb

norm:
4
D(v,v) = ||v|é = @ |k|2 dk = // dmdy

The last equality holds for suitable v (for instance v € CN L6/ ° (RS)).
Formally the BDF energy for a BDF state with reduced 1pdm @ is:

Trpo (DoQ) — aD(pq,v) + & (D(p@ po) — Ex(Q)),
Trpo (Do@) Tr{PO DOQ)PO + PY(DoQ)PL}, 2)

Ex[Q] : // Q@ y)I” dxdy

Here, a > 0 is the coupling constant, Q(xyy) the integral kernel of the operator @
and pgq is its density: pg(z) = Trca(Q(z,x)). We recognize the kinetic energy, the
interaction energy with v, the direct term and the exchange term as in Hartree-Fock
theory. This expression does not always make sense even if @ is Hilbert-Schmidt (that
is if [[|Q(z,y)|*dzdy < +00), in particular it is not always possible to define pq.

An ultraviolet cut-off A > 0 is needed: in [9, 10, 12, 11], the authors have considered
a sharp cut-off, that is they replaced L?*(R?®,C*) by its subspace i consisting of
functions whose Fourier transforms vanish outside a ball B(0, A). Moreover an operator
D° different from Dy is introduced in [12] with projectors

P = X(—o0,0) (DY) and P = x(0,100) (D).

In fact Hainzl et al. studied the periodized hamiltonian Hy, in a finite box [ %, &) (with
periodic boundary conditions). For L large enough they prove there exists a unique
ground state which tends to 4° := P2 — % as L tends to +o00. Defining the BDF energy

with respect to this minimizer ("substracting (Qpo |[H|2po)") gives a more relevant

model. There holds D° := a - wi(—iV) + fwo(—iV) and D° satisfies the following
equation:
a sgn(D%)(z,y)

D’ =Dy+ =
2 |z -yl

®3)



This operator D° was first studied by Lieb and Siedentop in [18] in another context.
We know wi(—iV) = %wl(—iV) and wo, w; are radial functions satisfying
Vp € B(0,A), |p| < wi(p) < wo(p)|p| and 1 < wo(p) <1+ Cst x alog(A). (4)

Useful estimates on wp, w1 are proved in arxiv.1211.3830.
Remark 1. Our convention for the Fourier transform .# is the following:

~

Vre RN fo) = G [ e

Given that, it is possible to define properly a functional Egpp out of (2), defined on
a subspace K of

I={Q€&:(H1),Q"=Q, —P2 <Q <P}
The set Z is the convex hull in G2($Ha) of the reduced 1pdm’s and K is defined in

the next section. In the BDF energy we replace the kinetic energy Trpo (Do@Q) by
Tro(DP°Q) defined by:

Tro(D°Q) == Tr{P°(D°Q)P° + PL(D°Q)PY }, (5)

A global minimizer of Egpp is interpreted as the polarized vacuum in the presence of
an external density v. To describe a physical system with M electrons, we consider the
sector charge of K defined by the condition Tro(Q) = M. We define then the energy
functional for ¢ € R

Egpr(q) inf {€6pr(Q), @ € Qa)},
Qg) ={QeK Tro(Q) =q}.
An important question is that of the existence of a minimizer for Efpp(q). In [11],

it was shown that a sufficient condition for it is the validity of binding inequalities at
level q:

V¢ € R\{0,q}, Expr(q) < Erpr(q —¢') + Enpr(q)- (6)
A much more difficult task is to check that these inequalities hold. In [11], the authors
showed that, given a density v € Ll(RS7 R4)NC, an integer 0 < M < f v+ 1and a
cut-off level Ag > 0, then there exists a minimizer of Efpp(M) provided a < eo(v, Ao)
for some number €o(v, Ag). It was proved in arxiv.1211.3830 that Epp(1) admits
a minimizer provided o, A™!, L := alog(A) are small enough which shows that an
electron can bind alone in the Dirac sea without any external density. In both cases
the results hold in the nonrelativistic regime a < 1.

We know a minimizer for Fgpr (M) should satsify a self-consistent equation of the
form [11, 7]

Q+P? = X( ooy (D +allpg = v) = L)) =i x(ao(Da). (7)

Here, 1 is a Lagrange multiplier due to the charge constraint M, interpreted as a
chemical potential. For M > 0, Ag > 0 we have . > 0 and as a — 0, a scaling by o~ !
of x(0,) (Dq) tends - up to translation and extraction of a subsequence - to a minimizer
of the Hartree-Fock energy £%p for M electrons with Z := Jv. In arxiv.1211.3830, it
is shown that in the case of E3pp(1) the nonrelativistic limit with L fixed gives the
Choquard-Pekar model [15].

In this paper we show that, provided L = alog(A) < Lo, there exists a minimizer
for Fipr(M) as soon as M < [v+ 1 and a < e1(v, L) for some constant &1 (v, L).

The nonrelativistic limit is a pertubed Hartree-Fock model: writing Z = [v and
a=(£L)/(14+ £L) <1 the energy is

VI € &1 (L*(R?,C"),0<T <1, Tr(l) = M :
E4(I) = $Tr(~AT) - Z(1 = a)Tr (4T) + £ {llor 2 - Ex[]} - allpr]2.



The last term must be thought of as —aTr(pr * ﬁF) The vacuum polarizes due to the
presence of v and the electrons, the positive charge v attracts a cloud of virtual charges
which makes it appear smaller (hence the term Z(1 — a)) while the electrons repelled
them resulting to an attractive well created by the distortion (hence the term —al|pr||2
like in a polaron model). Our result gives a wider range of existence of ground state in
the space of parameters («, A) compared to that of [11], where the quantity alog(Ao)

is neglected and considered as o O(1).
oa—r

To prove this existence result it is necessary to have a good understanding of a
minimizer Qo and of its density pg,. In [7] the authors proved that, in the simplified
model without the exchange term, the density of a minimizer is integrable. This is
a natural result: in the presence of a finite number of charged particles with finite
Coulomb energy the vacuum should polarize accordingly and its density should be
finite.

Mathematically speaking however this is a non-trivial result because a minimizer
of Efpr(M) is not trace-class. As in [7] we prove in this paper that if @ is such a
minimizer, provided L is small enough and M, ||v||2 < log(A), then pg € L' NC and
Trpo (Q) = M # [ po. Moreover, the following charge renormalisation formula holds:

M-—-Z
Jtoa—v) =201 =2~ ST ®)
where Z3 is interpreted as the renormalization constant [8]. This means that the total
observed charge [(pq — v) is different from the real charge M — Z of the system.

The quantity L = alog(A) is related to Zs. In the reduced BDF model where the
exchange term is neglected, Gravejat et al. showed in [7] that the density po of a
minimizer of the reduced energy Elgzpp(M) is radial as soon as v is radial and that, in
this case, away from the origin, the electrostatic potential of the system is

aZs(M — Z)

xr—+00 |:E|

alpq ~ ) * [17(@) .
In the full model we were unable to prove such behaviour at infinity but we think this
is true. Taking L small corresponds then to considering Z3 close to 1.

The main contribution of this paper is the integrability result stating that the
density of a minimizer is in L!. It cannot be easily obtained from [7], the presence of
the exchange term complicates the study. In our results, we were unable to remove the
technical conditions M, ||v||3 < log(A). We emphasize here that we can prove the same
results with another choice of cut-off considered in [7], the one consisting in replacing
D by Do(1 — £) in L*(R?,C*).

The paper is organized as follows: in the next section we properly define the vari-
ational problem Egpp and states the main results. In Section 3, we derive from the
Cauchy expansion of a minimizer the two fixed point schemes we use. Moreover a priori
estimates are proved in Subsection 3.2. In Section 4 we prove important estimates on
a term of the Cauchy expansion ("Q1,0”) and prove Theorem 1. Section 5 is devoted
to prove estimates for the fixed point method and apply it to prove that the density
of a minimizer is in L' (under some assumptions). We prove the formula of charge
renormalization (Theorem 2) and the existence of minimizers close to the nonrelativis-
tic limit (Theorem 3) in Section 6. The nonrelativistic energy is studied in Appendix
B. The very technical Appendix C is devoted to prove Proposition 1. We prove Lemma
8 which is used for Sections 4 and 5 in Appendix A.

2 Description of the model and main results

BDF Energy. We assume there is an external density of charge v (real-valued) of
finite Coulomb norm (||v|lc < +0o0).

First let us introduce the ultraviolet cut-off A > 0 used: following the choice of [7],
we replace Dy by D°. Let us recall &, ($A) is the Schatten class of compact operators



A in $Ha such that Tr(]A|P) < oo [21]. As in [7] and [11] we will deal with

67" = {Q € &:(71). QT Q™ € &1(5n)} (9)

where Q12 := Pgl QP&. We recall the kinetic energy functional is
Tro (|D°|(QFT — Q™ 7)). We will work in a subset of this space, namely

9 0
K={Q ~PL<Q<Pne C{Q Q" =Qne; (10)
the closed convex hull (under that norm) of the difference of two orthogonal projections

0
of type P — P € 671)’.
We would like to define the density pg such that it coincides with the usual density
when @ is (locally) trace-class: pg(z) = Trca(Q(z,x)) and such that it is of finite

Coulomb energy.
0

Let @ be in GT’, then pg is well defined by duality:
PO
VVecl, QVed,  and Tro(QV) = ¢ (V, po)ec. (11)

0
and the map: Q € 671)7 — pq € C is continuous [7]. Furthermore pg(x) is well defined
for @ is locally trace-class.
Finally the exchange term is well defined: thanks to Kato’s inequality [1, 12, 9]

2 |Q(x’y)|2dd < Tr 2y < Tr(1DelO?) = Trd | Do |Y/202| Dy |1/2
] R dndy < 1(91@Y) < T(DIQY) = TIDO QDO
and for Q € £: < Te{|Do["/*(QFT = Q™ 7)[Do["/*} < Trpo (D°Q),
Notation 2. For a density p € C we write: v, = v[p] := p * ‘—1‘

0
For an operator Q € fo with integral kernel Q(z,y) we define the operator Rg =

R[Q)] by the formula:

_ Qz,y)
Rgo(z,y) : oy
We remark that Ex[Q] = Tr(R5Q) =: ||Q||fx-

Moreover we write
Bq = v[pq] — Rq.
The BDF energy is defined as follows:

2
Eor(Q) 1= Trpo (0°Q) ~ aD(vpa) + 5 (Dlpaspa) ~ [ 0  dnay), @ e k.

2
(13)
As said in the introduction we define the energy functional Efp(g) by the infimum

over Q(q) = {Q € K, Trpo (@) = a}.

Notation 3. We write s, for —— D@ the action of sign(D") in the Fourier space.
Vwo (p)?+wi (p)? ~
The function /1 + |p|? is also written E(p) and E (p) := \/wo(p)? + w1(p)?.

Remark 4. We will work in the regime
a<a<<1land L:=alog(A) < Lo < 1. (14)

We consider systems with M electrons and an external charge density v > 0 with
[lVlle, Z = ||v]|pr < +oo. We will often consider M = O(Z) and
[IVII% + M = O(log(A)).

Throughout this paper we will use the letter K to denote a constant independent
of the parameters o, A, M,v. K(M,v) is a constant depending on M, v and so on. The
inequality a < b means that a < Kb for a,b > 0. When m > 1 is some integer, then as
in [9] we write
1 [t dp

Koy = — .
2r J oo E(m)™




For M € N*, let us say that the problem Fgpp(M) has a minimizer: as pointed
out in [11, 7| such a minimizer 4" = v + N must be of the following form:

v+ P2 = X(—oo,0{D° + a((ph’] - V) 7 = RN} = X(—00,0) (D),
N = X (D + (o — ) s = — (R )} = S, )] (15)
s0 D9 = pij9; and we write:n := py =3, [4;]2.

We choose 0 < p1 < po < -+ < gy = o < 1. A priori Mo # M but in our regime they
are equal (Lemma 3). Indeed in the spirit of [9] the equation of the dressed vacuum ~
enables us to say that (', p,» — ) is the only fixed point of some function F® defined
in (a ball of) the Banach space X1 = Q1 x C where

Q11 = QI3 = // (@)|0(p, 9)\2dpd.

Cauchy’s expansion: Let ' = v+ N be a minimizer for Efppr(M), the decomposition
is explained in (15).

Notation 5. Throughout this paper n := px, moreover we write p’, for p., and the
double prime means —v is added:

", "
Py =pytn—v, n =n-—v.

We also write B., = B,/ := pl) * ‘ — R[]

Notation 6. From now on, for any g : R® — [1, 4-00) satisfying the condition
IK(g) >0 |Vp,q,p1 € R, gp—q) < Ky (9(p —p1) + 9(p1 — 9)),
we define two Hilbert spaces:
Q, ={Qe6,, //(E (p) + E (0))g(p — 0)|Q(p, q)|*dpdq < +o0},

¢ = {peS®), [ SRRk < +oo).

(16)

The letter g always refers to a function of this kind. The case g = 1 gives the space
Qi of operators Q with Tr(|D°||Q|? + Q*|DP°|Q) < +o0 and €; = C. As an example of
such functions g one can take g(p — q) := E(p — ¢q)* for a > 1.

Writing the Cauchy expansion [9] in (15) we get:

1 [T 1
N =N-—— d( ) i
v+ o / n D +in D0+Z77 ]z::a Qi p'y

Q( ’ H) L _i/+ood 1 (B 1 )j
i\ Py =T . 77,D0+Z,77 7/D0+i7] .

Notation 7. We define Qr,; as the part of Qr1:(Q,p) which is polynomial of degree
k in Rg and polynomial of degree [ in p and pr,:(Q, p) as its density. For £ > 1 and
(Q,p) € G2(H?) € C, Q/[Q, p] is the operator:

(17)

—+oo
@Z[Q7 p] = Z ajier [Q7 p]

Jj=t

Moreover for (g1, ,e541) € {+,—}’T" we define Q7' " °/*' with the same formula
as in (17) save we replace (D° + in)~! by PO /(D® +in) in the same order. The same

holds for Qsl FIH At last we write Qslals2 7SI with a; € {v, R} for the operator

=) 0
_L/+ PO Ay Psoz Ay Peri
2m "o +in DO+in 7po +in’

where Aj = v = pl) *—1fa3—v0rA =—R(¥")ifa; = R.



As shown in [9, 7] we have
poalp] = =F 1 (Ba) ¥ p (18)

where .7 ~!(B,) is a radial L' function. Going further, we see Q1,0[-] is a very specific
operator.

Lemma 1. Fio: Q — Q1,0(Q) is a bounded linear map of S, for p = 1 and p = 2
with respective norms O(log(A)) and O(y/log(A)). By interpolation it is in L(&,) for

1 < p=1+¢ < 2 with norm O((log(A))lf%). Moreover F o is also a bounded operator
in L(Qg) with norm O(1), and the function

PFL0:Q € Qg — p(F1,0[Q]) €€y
is bounded with norm O(1/log(A)). Provided arlog(A) is sufficiently small, the operator
(Id — aF1,0) is invertible with inverse T in all those Banach spaces with norm O(1).
The function t: Q € Q, — p(T[Q] — Q) € €, is bounded and
ltalle, < VLa||@Qllq,-
This Lemma is proved in Section 4. We write

T.=T-— Id, TQ ‘= PT(Q)/Tj,k = pT(Q]‘,k) and tQ = pg(Q). (19)

0
IfQeQyn Gf’ we obtain that 7q € C. If pg € €, then 7 € €.
The self-consistent equation (15) is rewritten:

+oo
(Id — aF10)(y) = N+ aQoa(py) + > Qs(7s ph)-

j=2
Taking the inverse T, we get:
+00
7 = T{N +aQoi(p)) + > Qi) }- (20)
j=2
The important proposition holds:
Proposition 1. For p € C we have aro,1(p) = —fA * p where fA is a radial L' function

whose L'-norm is O(alog(A)).

Its technical proof is in Appendix C.
We also need a theorem in the same spirit of Furry’s one [6, 9]:

Theorem 1. There exists K > 0 such that for any po, p1 (say inC) and a\/log(A) < K
there holds:

P{T(Qo2(p0))} = p{T(Qu1(T Qo (p1), po)) } = 0. (21)
Remark 8. T(Qo,2(po)) and T(Q1,1(T(Qo,1(p1)), po)) may not vanish but their density

do due to the fact that the trace Trca is taken. The smallness of ay/log(A) is to ensure
the T operator is well defined on Q.

Computation of [ p,(x)dz:

Theorem 2. Let M be in N and v = v+ N be a minimizer of Eppp(M) and assume
M, ||v||2 < log(A) and (14), the decomposition of ¥ is that of (15). Then p, € L' and

___afa(0) _
[ ri@te = B s - 2) (22)

Existence of minimizers.



Theorem 3. There exists Lo > 0 satisfying the following result:
for any non-negative function v € C N L* with Z = Jv oand 0 < L < Lo, there

exists ar = an(v, L) > 0 such that if « < a1 and 1f}1(\0()0) = a then for any integer
0< M < Z+1 the problem Ejpp(M) admits a minimizer.
Let ' = x(0,u(D+) be a minimizer, decomposed as in (15) and let Uy be defined

as follows:

L*(R* CY — [L*R?CY
d(x) = a (L)

Then as o tends to 0, Uy x(0,,)(Dy)Ua tends to a minimizer of

U, :

EL(T) 1= 3Te(=AT) = Z(1 - a)Tr(4T)

+3(D(pr, pr) — Bx[T)) — aD(pr, pr), 0< T <1, Te(T) = M.
Remark 9. Thanks to Section C and [7] we know that

M0 _ _galog(d)

1+ f2(0) 1+ Zalog(A) +O(a+ (alog(A))7).

Banach spaces. We use several Banach spaces. For p € [1,400], s > 0, |||z
(resp.||-||m+) is the norm of the usual L? (resp. Sobolev) space. We write ||-||s, for the
norm of Schatten class operators &, [21]. The norm of bounded linear operator in £
is written ||-||s. We recall ||-||ex and ||-||c have already been defined in Sections 1 and
2 and [|-||q,, [|-||e, are defined in Remark 6.

With the fixed point method we would like to estimate together

° ||FQ(Q7p)||T and ||FP(Q7P)||C7
e In general || Fo(Q, p)|lq, and [|F,(@Q, p)|le,. We define Xy := Q4 x &,
Remark 10. Throughout the paper we write:

Vp e BOA), 5, = sign(D)(p) = =2

3 Description of minimizers

3.1 Minimizers and fixed point schemes

Let 4/ =~ + N be a minimizer for Egpp(M). From Eq. (17) and (18), it is possible to
define a fixed-point scheme in the spirit of [9]: we define

FO =FP < FY 2 — &,

Fézl)(Ql7p//) _ N+ZOCZQZ(QI7P”)7 (243)
=1
Mo . _ 1 P~ 1 ~ . - PN
FEDQ00) = Tap® O+ e (Po(@ iR+ a5@.0ih)

(24Db)
To prove F' is well-defined we use the following Lemma proved in Section 5.

Lemma 2. Let g be some function satisfying (6), with constant K, > 0. There exists
Co > 0 such that for any J > 2, the linear operator:

(Q7p) € Qg X €Q = (QJ(Q:p)pr(Q7p)) € Qg X Q:Q

is bounded with norm lesser than 2K(Jg)CgJ1/2.

This gives:



Lemma 3. Let v/ = v+ N be a minimizer for Ejpp(M). In the regime of Remark 4
the following holds:

1. FY . B, (0, Ro) — Ba, (0, Ro) is well-defined for some Ry > 0 and this restric-
tion is a Lipschitz function with constant lesser than 1.

2. (v, pfy’) is in the previous ball and so is the unique fixed point of F")| moreover:
IED () = (N, 0|2y = o(1).

3. As a consequence N = x(o,,)(Dq) has rank My = M.

Proof of part 3. If we assume the first two points, the last one is clear. Indeed as ~
is a difference of an orthogonal projector and P2, we get [Tro(v)| < [|7]|&, = o(1). As
shown in [9], this must be an integer: Tro(y) = 0 and

Tr(N) = Tro(N) = Tro(y') — Tro(y) = M.

]
It is more subtle to prove p, is in L': we need another fixed point scheme.
We see p7 as the fixed point of a function F' ®) defined in (a ball of) C and also
defined in (a ball of) C N L}, namely:

hy = ale,l{T[N] +a?{aTQs(v', pY) +TQ2,0(’Y’7P§)}7P'4} + a?72,0(7)
EP(p") = o(na{a®[TQui(v,p") +TQoz2(p")],p"})
hs = a'7(Qa(,p4)) + ®{ms0(p) + 21 (¥, )}
FP (") = oros(p”) +a’ria(y, ")
(25)

1 A,,+ 1 {
T+ 0" "1+ 0

FLFD (")} = ho + F{FP} + hs + Jf{Fém}}(p”) (26)

Remark 11. The definition of F® may appear complicated. It is built on the self-
consistent equation:

o =T{ N+ 0Qoa(r)) +0* (@7, ) = Quatr', ) | + 0*7[Qua(FS (v, 7). o))

Notation 12. We introduce the function Fi := L{—‘}A, studied in Appendix C: among
other results we prove there that Fa e L.

Lemma 4. Let v/ = v+ N be a minimizer for Epp(M) and F® the function built

on it. In the regime of Remark 4, this is a well-defined function in C and C N L*.
There exists Ro > 0 such that B(0, Ro) is F®@_invariant and on which F® is a

contraction; pr’ is the only fixed point in both Banach spaces. In particular p, € L*.

Remark 13. The study of Q1,0 enables us to give the linear response of the vacuum to
the presence of electrons N and the external potential v:

v =aT[Qo,1((6o — Fa)x(n —v+tn))] +Tn + -+
py = —FEnx(n—v)4 (8o — Fa)*tn +---

Remark 14. Results of Lemma 2 and 3 are already in arxiv.1211.3830 but we have
chosen to rewrite a simplified proof here because we use the same estimates to prove
Lemma 4 in a more difficult way.



3.2 A priori estimates

Lemma 5. Let M € N and Q a test function Q for Egpr(M) and assume
Ebpr(Q) < Efpr(M)+e where 0 < € = o(c|v|[2). Then we have ||Q||&, < M +al|v|[2
and

Tr(|V|Q?) < allv|2 + a'/2M + VaM||v||c,

allpe — vl < alvl2 + a®2M + VaMalvlc.
As a corollary we get the following result.

Lemma 6. Assume we are in the regime of Remark 4 and let @ be as in Lemma 5.
Let Dg be Dg :=D° +aB = D° + a((pg — v) * ‘—1‘ — Rg). In the sense of self-adjoint
operator we have

(1—0o(1))[D°| < D" + aBg| < (1 +0(1))[D"), (27)

where the o(1) is O(al|v||c + a®/*M/? + (oeM)l/4o¢||l/||é/2).
Proof of Lemma 5: It is known [11] that Fgpp(M) < M. There holds:
M+e+5lvile > &pr(@) + $lvile > (1 - aF) Tro(P'Q) + $llpe —vile
> (1= a})lQIE, + $llpe — vli2.
We can say more. Indeed:

Tro(D°Q) — M = Tr(|D°|"*(QT — Q™) |P°|'/?) — Tro(Q)

> ﬂ(|D°|”2Q2|DO|“2) - Tr(Q7) (28)
> — *dpd
> 27T // 1)|Q(p, 9)*dpda,
and E (p) — 1 > % B(py- Lhen thanks to Kato’s inequality (56):
Tr(QRq) < 2Tr(|V|Q?) which leads to:
1 —A 2 « 2 |V||% m 2
ey Y Llpo — < z )
3T (15 @) + g liee = viE <+ a(F5E + 3TH(1VIQ?)
Splitting at level ro = ﬁ (to get aL <3 lp (‘2) for |p| > ro) we obtain:
A 2
Tr( —— < M 29
(75o@7) = alivlie +n), (20)
thus by the Cauchy-Schwartz inequality:
Tr(|VIQ%) < allv|g + VaM + VaM|vle. (30)

Proof of Lemma 6:
For all f € $Ha we have:

(ID°FF, £)(=all[D°| ' Blls)* < (P°+aB*f, f) < (ID"Pf, f/)(1+all|D°| 7 Bl|s)”.

(31)
However thanks to (53) and second point of Lemma 8: ||[Rq|V|™?||s < V/Tr(QRq)
and

—1/2
1(p@ =) * HIVIT2115 < [l(p@ = v) * Fllze < llpq — Vlle-
As the square root is monotone, there holds

(1= all|D”|7* Bolls)ID°| < [D° + aBe| < (1 +al||D°| "' Bells)ID°|,  (32)

and in the regime precised in Remark 4, this gives (1 — o(1))|D°| < |D° + aBg| <
(14 0(1))|D°|. This o(1) is of order O(a(||pg — v|lc + || IV]/?Q||s,)), that is of order
O(allvlle + ®/*M? + (aM) alv]|¢?). o
A priori estimates of a minimizer
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Lemma 7. Let us take ¥/ = v + N a minimizer of Efpp (M), decomposed as in (15).
Then we have in the regime (14)

Tr([D°IN) < log(4), [dlks
In"lle < Vlog(A), | llpylle

< =L
< Ly/log(A).

Proof: For Efppr(M) with M, ||v||3 < log(A), we have thanks to Lemma 5:

alllpylle + VTE(IV ) < Vala!2|lvlle +o®/*MY2 + (aM) a2 || ?) =: o/

We have £ = O(v/L). Using Eq. (20) and assuming Lemma 2 and Proposition 1 above
we get that:

lIpslle < [1Fa*n”[le +11(do — Fa) * (tw + > _a’m5)lle S Llln"le +VLal|[N||r + O(La).

j=2
As [In"lle < llp5lle + Il lle we get
17"l < Ivlle + (@M) " *(M* + \/[[v]le) + VLaM + O(at?) < /log(A).
Thanks to the equations D%; = ujvp; — B, there holds:
Tr(|D°|N) S M(1+O(vab)) < log(A).
Finally we have

Iblle < VEalln'lle + ay/Tr(VIQ) + O(Le) S L+OLa) SL oo
lloslle < Liln”lle +vVIall +O(La) < Ly/log(d).

O

4 The operator Q ()

Remark 15. e If () is a nonnegative operator then so is Rg when it is well defined.
Moreover if @ is self-adjoint then so is Rq.

e The R. operator commutes with Fourier multiplier of the form g(p — ¢), indeed

we have
Qp-1q-1)
R .
) = oy [ Lol

In particular there holds:
[0, Rol = R(19;, Q). (34)
Lemma 8. Let Q be in S(R? x R?).
1. We have:
I1IVI7Ralle, < 1/Tr(RHQ).

In particular for any g > 1 there holds:

// 9D | Ro(p, q)Pdpdy < J[ o+ dlsto - 1@, o) dpda
2. There exists K > 0 such that for all 0 <e <1
Dol %" RalDo|~ % [ls, < £[1Qlles
11Do] =9 Ralle, < 2£(1Qlls.-

Taking |D°|~'/2 instead of |Do|~1+%)/2 we get the same estimates above provided
Q € G2($Ha) and e is replaced by log(A).

We extend all those inequalities by density in the corresponding Banach spaces.

We prove this Lemma in Appendix A.
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4.1 Proof of Lemma 1

In the Schatten norms Let us consider the operator Q1,0 defined as:

I 1
Qi,0: Q= Q1,0(Q) := ~5r [m anO +inRQ D+ iy (35)
We recall s. is defined in (23). There holds [9]:
A 1 1 ~ ~
Quo(p9) = 5=———=— (B(P,9) —spR(p,9)s (36)
2E(p>+E(q>( ’ 2

which is a difference of two operators who are in G2 (resp. &1) if @ is in G2 (resp.
S1). By interpolation it is in &, (1 < p < 2) if Q is so. Let us show the &i-norm is
O(log(A)) while the Gz-norm is O(4/log(A)). Indeed

1 e
_ / ORI OFN
fo)+ @) Jszo

therefore if @) is nonnegative, so is

—+oo ~
/_O %y*l(efsE(-))Rnyl( —sE(- ))

it is a sum of nonnegative operators. We can rewrite Q1,0 (and Qo,1) as

Ji(x —y) = F " (exp(—tE (p)))(x — y) (37a)
—+oo
Q10(Q) = % (JtRQJt — Tt \DO\RQ \Do‘jt)
=0, (37b)
Qoyl(p) = _% (\%(p*‘_l‘)tj ‘%"DO‘(p* )‘Do‘\jt)dt

t

=0
Then we remark that (E (p) + E (q)) " < E (p)~/? E (¢)~/* and that

11D 2 R(Z Q. ) 2lle, < K /g2 (1Q@.a)lle,
= K+/log(8)[|Qlls, = K+/1og(R)[|Ql|s-

By interpolation (1 < p=1— ¢+ 2e < 2), there exists K(G{,O) >0

1Q1o(@)lls, < KT 0)(log(4)' "2 |Qlls, (38)
p[Q1,0(-)] We show here inequalities needed to estimate T(Q¢(Q, p)) and 7¢(Q, p) in
norms ||-||Q,,||-/le,- There exists a constant Cr (defined in [9]) such that for any

function g > 0

// (E (p) + E (9))9(p — 0)|Q1.0(Q,p, q)[*dpdq < C?, // 9(p— Q) E(p+9)|Q(p, q)|*dpdg.

(39)
By Cauchy-Schwartz inequality: (¢f [9] and inequality (95))
N R(u —|— By — B2 d 1
po@p < e [ g [ T
1—|—E(u,k/2) 1+ E (u, k/2) 1+ [u]® + k]2 /4
B(0,A) B(0,A)
(40)

where E (u,k/2) = max(E (u+ k/2),E (u—k/2)). So the following upper bound
holds:

11.0(Q, B) < Cpr o / BEQu)|G(u+ & u— 5)2du, (a1)

where 0 < C(q,9) = C(1,0)(A) satisfies C(1,9) < log(A).
Well-definedness of T and 7

12



Thanks to (38) we can prove Lemma 1: for avlog(A) sufficiently small the function
T is a linear bounded operator in L(S,) for 1 < p =1+ ¢ < 2 with norm lesser than

—+oo

_E£ 1
CLs = (aK§ o) (log(A))'"2)" = _
=0 1 —a(log(A)' "2K§ )

which is finite as soon as alog(A) is sufficiently small. We write Ct,g := Cg,)e'

AsT = (Id — aQuo) ' = 375 af i(é)() it suffices to show that aQi,0(:) is a
bounded operator with norm lesser than 1. Thanks to inequality (39) we see that it is
bounded with norm lesser than aCr. And T is a bounded linear operator with norm

lesser than 1

1—aCgr’
Then inequalities (39) and (41) enable us to say that for £ > 1:

CT,QQ = (42)

PGS (Q): ) < 0 Chy gy Ik / BQWIQ+ Eu—5)Pdu
Therefore:
k) o o ~
/ %Wl&?; P < a®Cly) // 90— DE@+ 0|00 dpdg  (43)

and t is a bounded linear operator with norm lesser than

—+oo

Cie = (ay/Ca0)" = O(ay/log(A)) (44)

(=1

for aiy/log(A) sufficiently small.
Notation 16. Let us definefor 1 <p=1+¢ < 2:

Yo (p) =Y (p) < CPs, (45)

which is an upper bound of the L(&,)-norm of Q ~ |Do|~"/*2R(T[Q])|Do|~"/*%: ¢f
Lemma 8 in Appendix A.1.
We have thus proved:

el
{HT(Q)HQQ < Cra,lQlla, = 12502, (46)
lITelle, < Crell@llQ,-

4.2 Proof of Theorem 1

N
Before the proof let us define recursively the function Aff” Ji=1 by:
{ AT Q(p,q) = Qp— 1,0~ 01) = 5,Q(p — l1,q — fr)sy,
AT Q) = AT (A51Q) (p,q) with J € N*,£; € R,
It appears in the Fourier transform of Q5[Q] (see Appendix C), s. is defined in (23).

(47)

Proof: The proof is based upon the following fact:

Lemma 9. The trace Trga of the product of an odd number of Dirac matrices (that
is a1, a2, a3, ) vanishes.

Taking (-) in the sense of algebra we define:

AD = <(11,(12,a3,6>,
AS =14, (1 - ) ajou, fag) (48)
Ap = an A + an AL + as AL + BAS

13



It is clear that Ap = Af + Ap and Lemma 9 just says that
VM € Ay : Traa (M) = 0.
Remark 23 and Appendix C implies that for almost all (p, ¢) € R® x R*:
o GIH(Qualp):ip.q) € A,

o if @(p7 q) € A% then so is é\‘{:{)(Q;p q).
Now let us study Qo,2(p):

Q ___/+°° g 1 1
02~ Ton oo DO +in "D +in "DO +in’

We recall Q5,2 and Qi}z’R’sz’”’53 are defined in Section 2. By the residuum formula
we have Q5%° = 0 for any € € {+,—}. We then look at Qoﬁ;* and Qa;r+ together,
* and Qof;r*, Q&;Jr and Qar;*. Those pairs are chosen such that:

1y, Ly P o P
A -/ / = +m =) 5 E i — 0
= pl = 1 Sp/'l? — P1 1—Sp1/'l7 1— 1—Sq7
s 8+O§(p)+E(p1)Pf%(p)+E(Q)( " ;O((p)p)( )(;(;Z)( )
B = d d 1= — p1 #i}\ 1— ~+7q
K P E(p) (p p)—E(pl)-i-iﬂ E(q) +1in

—/m 5o HE@I)E(p)+E(q)(1—sp>a<p—p1><1+sm>a(p1—q><1+sq>7

However

3(L+5)0(p — p1)(1 —8p,)0(p1 — @) (1 = 5¢) — (1 = 8)0(p — p1)(L + 8p,)0(p1 — @) (1 + 5¢)
= 5p0(p — P1)Sp, U(P1 — q)8q + 8p0(p — p1)V(p1 — q) — V(p — p1)V(P1 — q)Sq — V(P — P1)Sp, V(p1 — q).
(49)
Remark 17. Thinking of Q1,2(Q, p) we have done as if v(p — p1) and v(p1 — q) were
matrices.

In (49) there only remains matrices in Ap. Symmetrically:

o 5(1+s,)0(p—p1)(1 —sp,)0(p1 — @)(1 4 8¢) — (1 —5p)0(p — p1) (1 + 8, )0(p1 — q) (1 — 8)
= —8p0(p — p1)Sp, V(P1 — q)Sq + 8p0(p — p1)V(p1 — ) + V(p — p1)V(p1 — ¢)Sq — V(p — p1)Sp, V(p1 — ),
o (1 —s,)0(p —p1)(1 —sp,)0(p1 — @)(1 4 8¢) — (1 +55)0(p — p1) (1 + 8, )0(p1 — q) (1 — 8¢)

= 5p0(p — P1)Sp, U(P1 — q)8q — SpU(p — p1)V(p1 — q) + V(p — p1)V(P1 — q)Sq — V(P — P1)Sp, V(p1 — q).
(50)
Therefore for almost all (p, q): Qo,2(p;p,q) € Ap : its trace Trgs vanishes and for
all J > 1:

( =1 k k
B dude 1 Qoa(p)(u+ Eu— %)
P(G10(Qo2(p)): k) CSt// / o, et 1 (E (u+k/2— L)+ E (u—k/2 - Ly))
u,lq ZJI<]<J 0<5<J
(51)

where for almost all (p,q,¢;): Trc4{A( ii= lQo 2(p; p, )} = 0 for those matrices are
in Aj.

Thus p(GSH(Qo,2(p)); k) = 0 for almost all k € R® and so To,2(p; k) = 0 for almost
all k € R?, that is To2(p) = 0.

It remains to prove that 71,1 (aT(Qo 1(po)), p ) = 0. It suffices to show that for all
J,J > 0: p{G [Q1 1 (aG [Qo 1(po)], pl)}} vanishes. Once again we look at

o QU (G (Qoa(po)), p1) and Q1 (G (Qui (po)), 1),

14



o then Qf 7 (GT7 (Qoa(po)), pr) and Q13 (GY4 (Qo,1(po)), p1), and s0 on.

As G5 (Qo.1(po); p,a) € A for almost all p,q, then Q7 1"~ (GF:5 (Qo.1(po)ip, @), 1)+

i?+”+(G‘fj{;(Qo,1(po))7pl;p7 q) € Ap for almost all p, ¢ thanks to (49) and (50). So
its trace Tre4 vanishes. The same result holds for the other cases: ij{*Rf + Q;¥+R+,
Qlffr + ijﬂ Q;;* + Q;rjf and as in (51):

ﬁ(Gi’:{)(QM(Gi’:{;(poLpl)); k) = 0 for almost all k.

5 The fixed point method

We give here proofs of Lemmas 2, 3 and 4.

5.1 Tools

e Let us now recall some Sobolev inequalities in R®. For suitable f -say H'- we have

A llze < IV Sfllz2s 1/1lee S IV fl 2,

52
Wl S NIV f]] 2 (52)

In particular, we use them to the following inequalities: for p € C, v, := p * ﬁ and
pe H /2,

llop@llz2 < vpllzsllg]lzs < llollelIVI2 |- (53)
p(k)[? , _ - 1/2
losyllon < IV osdylloa < o) [ ISk < (ing {ome 21427 20l 1)
(54)
With v, := p ﬁ equation (54) will be used in:
1/4
||'D++mvp||647 I ‘Do+1-n‘1/2 Up ‘D0+1n‘1/2 lley < E(7]2)1/4 [|p* ﬁHL‘l (55)

We recall Kato’s and Hardy’s inequalities for ¢ € L*(R?):

/RS lo()] dr < Z(|V]e, ¢), (56)
R3

|=[?

and the Kato-Seiler-Simon’s inequality (KSS) for compact operators in B(L?(R?)):
V2<p < oo |[f(=iV)g(@)lls, < (2m) " PIf||ze gl e (57)
e We recall that for any p,q € B(0,A) we have (see arxiv.1211.3830.)

—~ —~ —~ —~ |p—q|
Pg —Pg :PO —PO S?. 58
P2) = PR = [PL) - PL@] S e T (58)

By (58) we get the following result.

Lemma 10. Let p € C, then there exists K > 0 such that for any a > 1/2 and
e € {+,—} we have:

_ K
P20, P2 Dol ~|ls, < ﬁ”ﬁ”a

15



Proof: It is obvious once we have seen the integral kernel of its Fourier transform is

lesser than:
|p(p — q) 1
Ip—ql E(g)*max(E(q), E(p))

e For m > 1 we define the constant K, as follows:

_ 1 dx
Km =52 /R E(x)m’ (59)

By Laplace’s method [3], we have

O (m ). (60)

m——+oo

5.2 (Qoa

We estimate ||Qo,1||q, as in [9], we remark that:
/ du E(u+k/2) + E (u—k/2) <47r/A du
E(u+¢ek/2)? (E(u+k/2) + E (u—k/2))2 o V1i+r?

B(0,A)
<4r(1+log(A)) < log(A),
(61)

leading to:
// o0 — O (E () + F (0))|o.1 (90, 0) Pdpdq < (1 +log(A)l[plZ,,  (62)

where we have used (58).

5.3 Proof of Lemma 2
We recall that for J > 1:

1 (1 dp 1
= B
@ 21 J_ o D0+in1<311J ( DO—I—in)

where B = v, — Rq.
We write R
a(Q) == 7 '(1Q]) and a(p) := F " (|7]).

It is clear that |@k75(p7 q)| is lesser than the integral kernel of the Fourier transform of
1 [t dn

A(Qrye) == 5= ——

(Qr.e) 21 | o /IDOIZ + 12

We write a(v,) = va(,) and a(Rq) := Ra(g) and d,, := /|D°|2 + n2. We have:

lla(vo)llLo S IVavpl[r2 < lao)lle = llelle,

lla(vo)llLa < VP 2a(vo)ll e

Itza(Ralle, < lla(Ra)llex

(ato) = 2 + Bla@)]) "

—

lla(p)l[ze + [la(p)lle = [pl]z= + (I,
la(@)[Ir = [|Ql]r.

7\

By the KSS inequality, there exist Cg, Ca > 0:

lldy 2vdy 2 lles < CaE(m)2|lplle,

3 N (63)
dy® P vpdy P lle, < CaB(n) ™ *|vp]| 1.

As g satisfies (6), we have:

9(p — )a(Qs(Q, p);p, q) < JK(]gﬁ(QJ [ 9 — QW ,d)). 7 ()], q)-
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It suffices to check that for po = p,psi1 = g and p1,--- ,ps € R® we have:

J+1 J+1
9p—q) <> Kl gpi-1 —p;) < JKG) [ [ 9pi-1 — ps)-
j=1 Jj=1

In the definition of ||-||q,, there remains to multiply by E(p)"? + E(¢)"*. We use
the first or the last d;l to get:

= oN1/2

f‘(r) < — 21 with r € {p, q}.

E@)? 42 E@) )8

For all the terms Qs (@, p) with J > 3 we get that:

JK?. J [tee d
10Q(@; )l < F2 (It RIa@)llsz + Callollc ) / - T

For J = 2, there is a problem for Qo,2(p) because the product of two operators in Gg
is not necessarily Hilbert-Schmidt. By the Cauchy expansion we have [9)

_ 0 =0

So it suffices to treat Qp's">** with (e1,€2,e3) # (+ + +), (= — —). In particular we
have a change of sign +— or —+. By Hélder inequality and Lemma 10 we have for
ee{+ -}

B o dq 1/2
[y 205 d, ||y < HPHC{/W} < lplle-

Hence using the above inequality and (63) we get:

—+ o0
1Qo2(o)lla, < Il [ =21
’ g ~ e E(n)1+471

By (60), there exists K > 0 such that

1Q(Q.PllQ, < T2 (K x Ky (1Qllr + llplle, ).

To deal with ps, we use the same method as in [9] and estimate ||ps||c by duality.
We consider ¢ € S(R®) a Schwartz function and prove that for any k,¢ > 0 with
k + ¢ > 2 we have:

ITH(Que0)] < Cst(@, p £, €) /|p| |(<<) e,

p = Cst(Q, p, k, 0)|[C] ey, -

We emphasize that by Furry’s Theorem [6, 9] we have po,2; = 0 for any J € N™.
First we must prove that Qp ¢( is trace-class. We use Holder’s inequalities for G2
and do as in [9]:

1Qr.eClley < 11QuelD° Pl Il ptpz¢lles S E(A)*]|@k.elles IS 22

It is clear that o o
|Qk.eC(p,p)| < |a(Qk,e)C]-

Writing d,,(p) := \/ E (p)*> + 12, po = p and m = (m1,--- ,my) € {v,, Ro}’ we have:
2la(QF) / /

R (B(O,A))"

;3 (pj, pi—1)|dn (p5) S (ps — P)]
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We replace |Z(PJ —p)| by:

J J
IC(pJ—p)nggji_p;<JK" |§ (pr—p 1:[ —pj-1) =t TK{p|C (ps— p)ljl:[lg(pj—pj—l)'
R (64)
We write R := R[F (g(p — 9)|Q(p,q)])] and V' := v[Z ' (g(p)[p(p)])]. For (k,¢)

different from (0, 3), (1, 1), (0,2J) we get that:
(k+ O KFHe

(Te(@.C)| S (1) [l 26 gl 2 R 2, Va2,
R
(k—’—e)K(k;iZ k+2e k
+e
<O (K /m||c2||qg||pu¢9

To deal with p1,1,po,3 we use the same method as for ||Q0’2||Q94 We treat the case
of p[Q*R “7] as an example and the other terms are dealt with in the thesis of the
author (to appear in 2014). We have:

A+R—v— N dndpidpa|Ro (po, p)|[8(p1 — p2)| | ==
Trea (QFE , — </ / +(p2— .
| C (Ql,l (po p2) (p2 po))| = dn(po)d ( ) ( ) |C (p2 p0)|
R (B(0,A))3
Using Lemma 10 and (64) we get that:
ITe(QF "0 S 11QllQ, llplle, Ks/allcley -
o

5.4 Estimates for F'?

Let us look at (26): that is let us take ' = v+ N a minimizer of Egpp(M) and define
the function F®. Two Banach spaces will be considered: first C and then C N L*. We

recall that for n € R we write d,, = \/|D°|? + 2.

5.4.1 Estimates in the C-norm

Thanks to previous estimates (Lemmas 5, 6, a priori estimates (33) and estimates in
the ||-||e,-norm), in the regime M, ||v||c < log(A) there hold the following non-sharp
estimates:

llhzlle <« {llp lle [INTIT + (1Y 1T + 1125 1le)?] +||7’||gr}
< a? x log(A) = Lo (65)

lIhslle < (1Yl + l1p5lle)* < (La)®.

Then F.* (p") and F3(2)(p”) are at most cubic in p’:

IED ()lle < o* (1 ]le + llp”le)llp" |12

IED (D)lle < o (1e”lle + [V 10)llp" |12 (66)
IAE (9)ley < a* (1 [Ille” e + 1lp"]12)
IAE® (D)ley < (1 1lelle”lle + [1e”]12).

5.4.2 Estimates in the L'-norm

Our aim in this part is to prove Lemma, 11 below which states that F® is a well-defined
%* function of C N L*.

e First let us prove that he,hs € L' (we recall they are defined in (25)). In fact
they are densities of trace-class operators, to see this we use the methods in the proof
of Lemma 2 above.
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- N =37, 95) (Y5 € 61 s0o T[N] € &1 and

llrnllzr < IT[N]lle, < Cr.sl|N|le, - (67)
. Q2,0(7) € &1 : We have:

1Q2.0(7 )&y < 17 || K2 (68)

- Qoe(py) with £ > 4. As Qf ;" = Qg ;" ~ = 0 there is at least one change of sign
+— or —+. Then with the help of Lemma 10 and (63) we have

‘
||Q0,€(P,w,)||61 s ||PI«;||CK(£+1)/2+1/47
the product of £ — 1 operators in G and one in G2 is trace-class.

. Similarly Qk.e(7',p5) € &1 with k>2or k> 1and £>3:

k+1¢
1Qk.e (v, Pl < < i )(KII’V'IIT)k(KIIP/w/lIC)ZKH(ku)/z- (69)

. Thanks to Furry’s Theorem and Theorem 1:
{Qo2(py)} = 111{T[Qo1(p})], p5} = 0. (70)

. With the same methods: Qo,3(p7), Q1,2(7, p5) € Sgys5:

1Qo,3(P)les,5 < 10516 K2r1/a and [|Q12(v, pY)lsg 5 < 1V [12ll05 1 K1ts/2.
We use (45) and the inequalities:
Il 5 0pdy*"® le < Em) " lplle and [|d,*"* R(T(Q])d, > *|leq/s < Y (D)IQlleq)s-
Thus:
IT1,1{TQo3(nY), P5 Hle, < 2Cx,6Ksallpslle (Y (2)I05]1EKas1/a),
T {TQu2(v,p5) P}y < 206 Ksallpylle (3Y (DI [Iwllp5 11 Kivs/2)
T {TN, o) }le, < 2CT.6Ks/allplllcY (5)M.
(71)
. We apply T, hq is the density of Q(h2) and hs of Q(hs) with

Q(h2) = aQ{TQl, 1[TN + a®T[Q20(Y) + Qs(v, p); p1] + TQz,o(’Y')}
QUhs) = a*{TQu0(r) + TQan (v p) + aQu(', ) }

The previous estimates leads to a sequence of numbers (b¢)¢>2 with the following

asymptotic behaviour:
be = Opsypoo(Y?) (72)

and a constant Cp > 0 such that:

H¥%Mﬂ+@@m+%ﬂWm%+¢@WW@

+oo o
+a®||Qus(p) + Qu2(v', P5) <D " be(aCo)“(llP5lle + 11 lIn)* = Ane-
Se/5  4=2
(73)
We have:
IQ(h2)lle, € a*Cr,6(2K5/aY (2)(M + Ane) + [1'lG,) (74)
and write Bp,,s this upper bound. Similarly:
R ¢ ¢
1Q(hs)lle, < Cr,e Y be(@Co) (I ]le + |17'[IT)* =: Bag,e: - (75)
=3
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Remark 18. The introduced numbers Ay e, Bh,,s,,Br,y,e are not constants: they all
depend on a and the minimizer 7'. As we have a priori estimates (Lemma 5) we know
that these upper bounds are small provided we are in the regime of Remark 4. Indeed
we have

(1= ZD) 113 + SRS < SlvliE + M,
so a(|[y It +114e) < allv||lc +VaM = O((La)'/*). In particular those upper bounds
are o(1).
e Let us estimate F\? (p") and F{”(p") in the L'-norm for p" € C N L'. To this
end we use (55) and (54) at level € = 1 for instance: there exists KI(;) > 0 such that:

o llza < KLl + 1lo"lle - (76)
We use the second inequality of (63) and Lemma 10 with a = 7/12. Following the
method used to prove Lemma 2.

Lemma 11. Let p” be in C N L' and 4 a minimizer for Efpp(M) with density p.,.
We have:

[ITQo,3(p")lle, < 6Kig2Cre{ll0" 1 + 110"} (10" lle
ITQ12(v", p")le, < (O E:CrellYlIe{lle" |l + 110"]lc}?
1Qo.2(p")lle. s < AKqsllp"lle{llp" [ + 110" [le}
1Q1A(Y, p")le, s < 2Kzl lIle{llp"[1ea + 110" ]le}
ITQ11{TQoz2(p"),p" }Hle, £ 2Ki312Y(5)Cr.ellQo2(p")lle,a{llp" It + 10" [lc}
ITQ1{TQ11(Y 0", 0" Hler < 2Ki3/12Y ($)Cr.6llQui(v, 0" ey, K210 e + 110" lIc}
(77)
Similarly we can estimate ||dFj(2)||L(CﬂL1)- As ||[Y']|r < /log(A) we have:
152 (0 Mleazr S allp”l1znzs {v/10g @) + 110" llenzr }
1B lenes < @l lenp {VIog@) + 116 llensn ).

2

14E? (0" luenzry S @*llo"3n s {v/108(A) + 110" llenr }
2

145 (0" et (10”1121 {V/108(A) + 11p"llcnrr }-

5.5 Application of the Banach fixed point theorem
5.5.1 FW

N

With ezactly the same method of [9] let us apply the Banach fixed point theorem to
F® with the help of estimates of the previous subsections. We recall the different
steps.

Let us define ( where K, > 0 is defined in (6) and Co > 0 is the constant of
Lemma 2)

Xy = Qg x &, with: [[(Q, p)l|x, := K(5)Co([|QllQ + llplle, )- (79)

Thanks to the previous estimates we can say that the function F(V is well defined in
a ball By, (0, R) with R = O(y/log(A)), say R = Ko+/log(A). Indeed:

“+ o0
IED(@Q "%, < N(N,0")x, + amai (M@, 0")lx, + D ' mel (@, 07|, (80)
=2

where

(81)

nl(A) :OA%ﬁ»OO( IOg(A))
Ky == Ofﬁ+oo(el/2)7
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in particular 1 is the radius of convergence of the power series f(x) = Zz:; kex’ and:
[AFD(Q', 6"y < ama(A) + af (@l (@', 0")lx,)- (82)

For||(N,n")||x, # (0,0) it is clear that F*(0,0) = (N“?*l(—mﬁ”)) #0. So

Sup  [[AF(Q", " )|Lx,) < ari(A) +af (aR) =: v(R). (83)
(Q'.p"")EBx, (0,R)

For (Q',p") € Bx, (0, R) we have
IFN(Q Pz, < IFD(Q0") = FO0,0)llx, + [1FD(0,0)]|x,
< v, p"Mllx, + IFD(0,0)]]x,
Thus a sufficient condition for By, (0, R) being invariant under F W is:
170,01, < (1 —v(R))R. (84)

As F(0,0) # 0 this gives v(R) < 1.
Let us say that ||[(N,n")||x, = coR = c0Koy/log(A), €0 < 1. We have:

1F(0,0)||x, < eoFR, (85)

it suffices to take o > 0 such that vLaKy < 1 and then take R accordingly. The
constant Ko depends on the constants in the conditions M, ||v|lc < v/log(A): we get

R = Ko+/log(A) and for sufficiently small  the Theorem can be applied on that ball.

5.5.2 F®

We work with (C,[|-[|c) and (€N L' max(||||e, ||]|z2)). In Appendix C it is proved
that [|fa]lz1 < KaBa(0) where we can choose K = 2 for alog(A) sufficiently small.
Thus:

+oo
1 . fa . e+ el 1
F N Fy)=F {HfA};( Dl el

and its L'-norm is lesser than % < 4aBx(0) as soon as aB(0) < 47'. More-

over we can write

1 1 fa
1+ fa 1+ fa’
therefore if p € L* then .F ~{ 1+1fA pr~! € L' and its L'-norm is lesser than

(1+4aBa(0)lpllr < 2llpllLr-

In particular:

17 ()l < 2(M + 2).

So we have:

{ IE® (0" Mlenpr < 2(M + Z) + [|h2 + hsllenrr + Ka®(\/1og(A) + 10" llenr) 10”134 .1
1AEP (p"lenrny < Ka®[lp"]lear (2v/10g(A) + 3]0 llenrr)-
(86)
where the constants K can be chosen indepently of oo < g and arlog(A) < Lo for ag, Lo
sufficiently small. The term (/log(A) is due to [|7||T < \/log(A) (Lemma 5). We get
similar estimates for F® defined in C. So it suffices to take R > 2 sufficiently large so
that Beqp1(0, R) is invariant under F® ; then this function will be a contraction and
we will be able to apply the fixed point theorem. Then:

e There is exactly only one fixed point of F® in Be (07§) by the Banach-Picard
Theorem, p~+n—v is such a fixed point. Indeed by Section 3.2, (y+ N, py+n—v)
has norm Q; x C bounded by K+/log(A) in the regime (14) and is a fixed point
of F(V, So it is a fixed point of F (which is derived from F(1)),

21



e There is exactly only one fixed point of F® in Benpr (0, R) by the same theorem.
In particular it is also a fixed point of F?) in Be (0, R) as Benz1(0, R) C Be(0, R).
By unicity p, € L.

6 Proofs of Theorems 2 and 3

6.1 Proof of Theorem 2

Proof: The fact that p, € L' is a result of Section 5.5. We recall that if Q € &1,
then [ pg = Tr(Q) = Trpo (Q). Writing

A = aT[Qo.1(p})]
B = a’T(Qoalp})
it has been shown in Section 5 that S € &;. Theorem 1 says pp = pc = 0.

Let us show that BT B~~ CtT C~ are trace-class. As for any Q (say in &2),
we have

C = a*T{Qui[TQoa(p!)], ] } (87)
S =y—(A+B+0)

P2Q1o(Q)P? = PYQio(Q)PY =0,
there only remains a”Qo,2(p%)** for B and o®Q1,1(TQo,1(p%), pY)"" for C. As
63 =Qoz =QiIi =Qii =0
3

there only remain Q{i;ﬂ@&;ﬂ f;ﬂij*. Using Lemma 10 with ¢ = 5 and
Cauchy-Schwartz inequality we get

0 0
I epkers PPop P pberslles < lille < llplle (89)

We recall that ||‘V‘+/2RQ||G2 < ||@]]ex- These two estimates enables us to prove the
following inequalities (e € {+, —}):

162 (PN, < Kspallpf1IE,
NI (Y, Pller < Kryally[[exlo5]le-

As shown in Sections 5 and C we have QST = Qo1 =0andthat pa = —fA*(pi/) €L

/P'y = /(pw++ T py—=)+ [{pa+— +pa— +ppe— + pp—+ + po+— + pc-—+}
= Trpo (v) — afa(0) {py+n—-v}— /{PB++ +pp—— + po—— + po++}

:O—afA(O){/p—y—i-M—Z} — Trpo (B) — Trpo (C).

So it suffices to show that Tr(BT" 4+ B~~) = Tr(C™* + C~~) = 0. This is straight-
forward when written in Fourier space [9]. i

6.2 Proof of Theorem 3

We follow the method of [11]. Thanks to a result of Borwein and Preiss (Theorem
4.[11]), we consider an approximate minimizer vy = o + No of E¥(M). Indeed, we can
extend EfpptoR=N{Q € G2 : Q" = Q, 0 < Q+P° < 1} by setting E4pr(Q) := +o0
whenever @ ¢ K. This extension is lower semi-continuous and bounded from below in
the G2-topology and the set

M:={Qe R (Q+P°)?=Q+P°, Tro(Q) = M}
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is closed in the same topology. Its convex closure in &3 is
RA(M) ={Q € &, Tro(Q) = M}.

Applying the theorem, for each £ > 0 there exists a projector P and A € (M)
such that v( := P — P° minimizes the functional E§pp + Tr((A — -)?) on M and

Eipr(10) < Etpr(M) + €%, |lng — Alls, < VE.
As in [11], ) satisfies the self-consistent equation

Y+ P° = X(—oou0] (D, + 2e(sgn(Do) — A))

~ (89)
= X(=o00,u0] (D + OéB,Y[/) — QEA)

where po € R and D =D+ Do%. We choose ¢ = A7! small e.g. € = F(%)flz
using the proof of Lemma 5 we show the following a priori estimate holds for ~; :

Te(IVI(70)*) + allph1E < allvllé + VaM + VaM||v|e.

Using the Cauchy expansion we have
Za QJ pwgﬁYO + )\WA(A O‘B(’YO))

where @j has the same formula as Q; with D instead of D°. By the same method as
in Section 5 we have:

1D Walle, + lloWallle < [1Alls, (1+ alllo, lle + 111V *6]ls.]),

indeed it suffices to replace R[y)] by A in the Q;’s and notice A € G2. Replacing D°
by D is harmless; as before, by defining some function F® we can show Tro(vo) =0
(but with an alternative Ba c¢f Section C). Let (¢;)1<;<m be an orthonormal family
of cigenvectors of D + aB, +2/e(1— P® — A) spanning Ran(Np) (with eigenvalues
(45)). In particular we can write

pryo = —F H(Fr) *nf + (80 — F " H(FA)) % Trem € C

where ||Trem||c < [[t{No][lc + &?|1%|le + ||A]ls, /A and Fy is defined in Section C. We
write o :=.Z '(Fa) for short. As in Section 5 we get:

Iholls: < adllpylle + [1voll)
llovo +Fa %16 — (80 — fa) * t{No]lle < a*(IlvollT + [lp5 1) (90)
[|=Fa % ng + (o — fa) * t{No]llzr < L(Z + M).

We then scale v by a~' (we mark this procedure by an underline) as in [11] we get:

[( wo(—iaV)B iwi(—iaV)

a? o?

2 .
~Rpil+ 5GP - )]y = By
(91)
3
Remark 19. We have U,-1¢(z) = a2 (azx) = +(x) and for an operator S we have:

, 1
a'v)+ﬂ[ﬁ]*m

S = UﬁllSUafl

= o

This mean-field operator H,-1 can be decomposed as follows: H,-1 = HSJI + hrem
where

DO " " — " - -
HY, = = + (00— fa) * 0 — RIND), 0 (2) = a~*n"(2/a), Ea(k) = Fa(ak).

23



As in Lemma 13 and 14 in [11] we can show that there exists € > 0 such that
limsup,_,o(a"?(; — 1)) < —e < 0 for all 1 < j < M and that (1/) ); is bounded
in H'(R?,C")* (as a tends to 0). Lemma 13 is based on a min-max description of
eigenvalues in the gap of the mean-field operator H,-1. We refer to this paper for the
proofs, the only difference lies in the presence of —fa * (n0”) * ﬁ and (Jo — fa) * twg:
we need the following lemma (proved below).

Lemma 12. Let x be a Schwartz function and for R > 0: xgr(z) := R™3/?x(z/R).
Then there holds:

|G * (0" * Bxr = ZEa (0)38 , xn)| < 2511V

FRIVle il (2 [ vlody+2 [ lialdy),
lyl>2 \y\>—
and/ Ifa (y)|dy < La’?. Moreover
\y\>—
(B0 — i) * by * szmxzz‘ LWy 12

3 119xze e / 1|tN0| dy+LM/ IfA(y)Idy).

(X

To prove (1;); is H'-bounded we show that:

o 02
M | Te(-ANo) _ Te(D”No) _ M

N
< H KM, I/){TI‘(—AM) 4 [VDolle,

[e%

}. (92)

The lower bound is clear and for the upper bound we use (91), Lemma 5 and Proposition
5 (for estimations of wy(ap)?, x € {0,1}). We get:

at o? - at

[ olao) + plia b — (00 = fa) = oo |, < @2 (Ueff e + bl 191 2y
< K(Mw)[[[V]2 4] 2
Moreover:

IRGolsllz2 S Iholles IV 1z S a4 K (M, )[[V93]1.2

[o]i * 1 — (5o — 1a) * b 5132 < 41993122 Iplia * 1§ — (o — fa) * )
< LA(Z + M|Vl 2

[(v[fa 76 = (0 — fa) * twvo s , ¥5)| < [D(p[fa 18 = (J0 = fa) * to ], [¥5]°)]
S L(Z+ M)V, ¢5)-

(93)
Summing over 1 < j < M the inequalities (93) we get (92):

M
D IV, Tr([V[No) < VM Tr(~ANo).
j=1

We conclude as in [11] (the proof uses [20]) provided that there hold binding in-

equalities for the non-relativistic limit: this is the result of Proposition 2 in Appendix
B.

In particular there holds
lima™* (Efpr(M) - M + %D(FA x1,0)) = Enp(M), (94)
a—

where F,, is the non-relativistic energy cf Appendlx B.
Proof of Lemma 12 With f(z) = |xr|* * Z *(Fa), we first estimate
[ f(x)v(y)(1/|z — ay| — 1/|z|)dzdy]|: it is lesser than

dxdy
J] @l
||z — oyl
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Splitting at level ! for y, we use Hardy’s and Kato’s inequalities:

o [ @l
/ygé s [ 2

da = 19l
- < 2m DY ANLZNATLZ
[ [levpe i@l <% [ v

> lyl> =

HVXH

IN

(4Z||Frll 1)

We estimate Z’ Il Ixr(@)[*fa(y)(1/ ]z — ay| — 1/||)dzdy| in the same way with the help
of Lemma 15 in Appendix C. For the terms with tn, we use the fact that:

g lzs = ltwolos < L7 and [ 1w, = /two —0,

and use the same method. O

A Estimates and inequalities

Notation 20. In Section A and C, e refers to any unitary vector in R? and for p € R?,
wp = £
P pl .
We recall there exists Cs > 0 such that:

—

= 0 w w a-w
s, 1= sign(D°)(p) = Sp (p) = el loey,
Id — spsq = sp(sp — 8¢) = (Sp — Sq)Sq (95)
[Id — spsq| < [sp — sq| = |P2(p) — PO (q)| < Cs lp—a]

= P max(E(p),E(q)’

A.1 Proof of Lemma 8
e We recall [16] ﬁ(m — 1) = Cst/|z — y|*>. By Cauchy-Schwartz inequality we have

Tr(R5|V| ' Ro // Troa tQ (y) Cst Q).

v—yl y— 22—l
<l IQ(x,y)l

xdydz
< [[9eDF —nny0)

ly — 2|2 [z — |2
|z — yl

We write m(|p+g|) the multiplication in Fourier space by [p+¢|; R. and \W+/2 commute

with the multiplication in Fourier space by g(p — ¢q) (written m(g)). We get thanks to
Kato’s inequality that

1m(9:) - ez RIQlles = ll gz RIm(a) - Qllls, < llm(lp + am(9) - Qe
Similarly for a > 0 the operator |Do|™® acts in Direct space as a convolution operator
with a positive function ¢,: indeed we have [16]:

L e~ lz—vl
]

and for any 0 < e < 1 (see [17], footnote p. 87):

1 sin(em) /+°° 1T
| Do |22 0 o t+x

Thus for a =1+ ¢ > 1 we have by Cauchy-Schwarz inequality:
TRy piRe) < [[ 1 ¢ dano — ey,

< /[ 1a :c7y|2||$*¢2a||m
< [ @ty [ gt < s
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Then let us take a finite rank operator Q(z,y). As Q = Q%Q* + Q;Q* one may
suppose it is self-adjoint and writing Q = Q4+ — )~ one may suppose it is nonnegative;
s0is Rg and |Do|~%/?Rg|Do| /2.

There holds:

ch4 pm) 1 // dp
I K g (@~ tp =) B
= 537 | Q) ) | e

< 1Qlls,

~ 2a—2

Going in Fourier space we have:
F(D12) ¢ (1) = Xiptan =o
E(p)'/*

thus writing I14 the projection onto {f € L?, suppfc B(0,A)} we have

11D Ralls, < |||D°|"*H2a Rollaa e,

i __ 1
Then as |D°|~'/?112p < e|Do| 2~ 218 for A > e we get:
e

S Rolsa) < Tr(Rgs—————Raq) < log(A)||Q|[2x

(H3ARQ*
|Do| 2T 2Tog(A)

DO

B The non relativistic limit

We fix the value Fx(0) = a. For any trace-class operator 0 < I" < 1 with density pr
the non-relativistic energy is
EL(T) = §Tr(=AT) = Z(1 — a)Tr(T)

+3(D(pr, pr) — ExIT)) — aD(pr, pr). (99)

If we drop the last term, this is exactly the Hartree-Fock energy £xr with a nucleus of
charge Zy := Z(1 — a) and if we drop Tr(ﬁQ) we get the Pekar-Tomasevitch energy
EY. = Eprla,U = 1] (c¢f [5]): this last functional is what we obtain by putting the
system at infinity.

We write Epr := Epr[l,U = ail]: putting any test function at infinity there holds:
B (M) < azEpT(M) and Epr(M) = MEpt(1) for sufficiently small a, we refer to
Corollary 1 in [5]: there exists Uy such that if U here % > Up then there is no binding
for Epr(M), M > 2.
Remark 21. We can easily show stability of matter of the second kind for a < ap by
splitting the energy in two: a Hartree-Fock one and a Pekar-Tomasevitch one,

4.0 = = TH-ar) + 2 (D(pr, pr) — ExI]) - Z(1 — ) Tr(

b
+1;” Tr(—AT) + (D(pp,pp) Ex[I']) — aD(pr, pr) with 0 < z,y < 1.

Optimizing in z and y we get a lower bound O(Cst(a)M) for M > 2Z, + 1.
We define

Gz)={ e :I"=T, 0<TI'<1,V-AT € &3 and Tr(T") = z} with z € R}

E,»(M) corresponds to the infimum over G(M). We want to prove:

Proposition 2. For any M < Z + 1, the variational problem EfT(M) admits a mini-
mizer.
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By Lieb’s method in [15], it is easy to see that there is a minimizer for EZ.(1).To prove
binding for 2 < M < Z(1 — a) we can follow Lieb’s and Simon’s method [19, 20]. We
will however prove it with the method of concentration-compactness. We prove the
problem EZ.(M) admits a minimizer by induction over M by using:

Proposition 3. For each m > 0 the following assertions are equivalent
e VO<k<m: EZ(m)< EZ(m—k)+ E, (k).
e Each minimizing sequence for EZ.(m) is precompact in H'(R* x R?).
In the case m € N, it suffices to prove binding inequalities for K € (0,m) N N.
This proposition is standard and we will not give the proof here but refer to [14,
13, 20]. As EC, (Mo) = MoE?S, for My € N* we need to show
B (M) < Ef (M —1) + Eq, (1),

To this end, one just needs to find a test function Q whose energy is lesser than
EZ.(M —1) 4 ES,(1). We can show that Lieb’s variational principle holds (¢f propo-
sition 3 in [11]). In fact for any orthonormal family (¢1,¢2) , with Py := |¢)(¢| and
0 <t <1, we have

Exr(D+t(Py, — Poy)) = E4n(D) = 5(IIVenl[72 — V2|72 +2(1 — a) D(pr, [61]* — [$2]*))

—tR[Te(TR[Py, — Py,])] = t*{D(161]*,162]*) — D(¢1¢2, d162) + §lllé* — [a][[2 }.
(97)
This shows that EZ, (m) is also the infimum of £Z. over

{L €G(m): I' =P+ (m—[m])|p)(¢|, P> = P =P* ¢ c Ker(P)}.

Taking ¢o = 0 in (97) shows that EZ.(-) is concave in [My, My + 1] with My € N. Tt
is also clear that EZ, is decreasing since large binding inequalities hold. We consider a

minimizer of EZ (M — 1) of the form I'= > |4;){(®;], each 1, satisfying
1<jsM—1
—A Z 1 .
;= i + (1= a)p[l] * — 95 — R[TJy; + 545 = 0, with £; > 0.

2 |- |-
In particular we can easily show the ;s are in H? (RS) and fast decaying. We consider
a minimizer of the problem at infinity: this is just a minimizer ¢cp of Epr(1) scaled
by a: ¢o(z) = a*?¢cp(azx), we chose it to be radial [15]. Following [13], we take a
Schwartz function 0 < x < 1 that satisfies x(z) =1 for || <1 and x(z) = 0 for |z| > 2
and xgr(z) = x(z/R) with R > 0 to be chosen. We consider for some e € S*:

I := xr['XR + T—5Rre|XRP0) (XRPO|T5 RRe

where 75,9 (z) := ¥ (z — x0). We have 0 < T < 1 and Tr(I") < M, so
Enr (") > Epnr(M). As the wave functions (1;)’s and ¢g are fast decaying, the following
holds:

Zo

g’fr(rl) = g’fr(r) + 527(¢0) + / (p[r] * ﬁ(x) - m)|7’512e¢0($)|2d56
).

—aD(p[L], |sredo|?) + o(R™
As R tends to infinity we get:

(M —1)(1 —a) — Zo

+o(R™") < Epp(M—1)+EJ,(1).
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C Proof of Proposition 1

Remark 22. We write:

B(u, k/2) = max (E(u+ k/2), B(u— k/2)) > \/1+ uf2 + £

B (u,k/2) := max (E (u+k/2) ,E (u—k/2)) > E(u,k/2).
Our aim is to prove Proposition 4 below.

Proposition 4. Let po € C. Then we have:

ap(T[Qo,1(po)]) = — fa * po

where fo € L' is a radial function. Moreover
+oo
J
fa= E a” fa,g
J=0
“+oo
. . J
fa,0 =aBa and ga = E a” fa,s,
J=1

with
[[falley £ L and ||ga||z1r < Lo

In particular Fj := ?71(14{’%) e L.

We also study an alternative function Fj, needed for the proof of Theorem 3, at
the end of this section.
We need the following proposition.

Proposition 5. The function DO B(0,A) — R? is infinitely differentiable. In par-
ticular so is ' () and there exists Lo > 0 such that if L := alog(A) < Lo then for any
J > 1 there exists Cy > 0 such that:

||d”wol|ze < aCyy and ||d”wi||re < xs=1 4+ LCy.

Proof: In the spirit of arxiv.1211.3830, we can prove it by induction over J: in [12]
it is proved DO is infinitely differentiable. Thus the function

DO (p)| = Vwo(p)2 + wilp) - wi(p),

is infinitely differentiable and does not vanish on B(0,A). Thanks to the self-consistent
equation one has:

&’ DO(p) = 4’ Do(p) + 15 173 * dJ(D—O)(p)-

Am? [ - |2 DO
o
Proof of Proposition 4: Throughout this proof we write k := re.
1. Let us see:
Tr0(p) = —fa()p(),
We recall (36) that for any @ € G2($)a) we have:
~ 1 1 dl , ~ ~
Qo(@Q.0,0) = T5=——=— | 7 QP—L4qg—1{)—s,Q(p—{,qg—1)sg),
( ) 47T2E(p)+E(q) Z|g|2( ( ) pQ( )q)
and (cf [9])
~ 4 p(p— 1
Qo1 (p:p.9) Pp ) (5, — 1) (98)

= 925/273/2 |p_ q|2 E(p) +E(q)

Y
Let us recall the definition of AF;ZJ)J:I:
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~

{ AP Q(p, q) =Q(p—Ll1,q— 1) —s,Q(p — 1,9 — l1)s,,
AT PQp,q) = AT (AY_1Q) (0, q)-
For instance:
ASQpog) = AT (Qp — b2g — 02) = 5,Qp — L2, — 2)s.,) (p,q)
= {@(p — 01— la,q— by —l2) =5, 0, Q(p— ts — Lo, g — b1 — 42)Sq—el}
—Sp{@(p — b —Lla,q— b — ) —Sp_ 0, Q(p — b — b2, q — 01 — l2)Sq—s, }Sq

(99)

Writing Ly := Z‘j]:l l; with Lo :=0 € R? we obtain:

J
_ o’ de AP Gp g
G0(@ipa) = 57 J/ A = i -+ (100)
“r2)? Jey Jo, I 1GE T (E(—Ly)+E(q—Ly))
1sisd ogi<ua

In particular the Fourier transform of the density of G‘f:{) (Q) is

lC o) S —— / TeeiGTh(Qu+ b, u— §)du

¢~
// /ﬂ | dudt AP Qut k- B
c . _
~ e 3/2 (47%)7 IT 16P T (B (utb— L)+ E(u—5§-Lj))

u,lq 1<5<J 0<j<J—1

Trea{(1 - s,

kS k)A(Zj)!;;@(u—FE u—%)}
// / dudl 3 uty J ’ 2
- G TP I (Blutb-L)+B(a-5-L)

u, 1 Ly 1<i<J 0<<J—1

(101)
Above the domain of ¢; is:

Ej(?") = {éj, ’u — Lj + %e’ < A}
The domain of u is BO = {u ‘u + e| < A} In particular

supp p(G55(Q)) C B(0,2A).

Remark 23. We would like to apply (101) to the operator Qo,1(p) and by looking at (98)
one may realize that @0 1(p, q) is not a scalar matrix because of the term spsq, — Id. It
is in the algebra spanned by the Dirac matrices o, ag, o, [ as a sum of even products
of Dirac matrices. The form of Q1 0(Q) is similar to Qo 1: it only adds an even number
of Dirac matrices to Q This is an important remark to be done to prove Theorem 1.

For any J > 1 and p € C we get that p(G5(Qo,1[p]); k) is equal to:

— (¢)7=2 —
4ma (k) / dude 11@{(1 Sk +§)AH (5, £8,,5 D}
1 2 2 k I k
53 3/2 (A2 _ [&12 T 4] E 5 +E(u—35—1L;
CLOHIEL LI CLORNE N 0<J<J (u+5—Lj) +E(u—5—Lj))
0<ji<J
= p(k) / dudlSj(u—Lj + = ) j(u—Lj+ 2 )
I1 Bj(r)
0<j<J
(102)
where Sy(u— L; & %) is a scalar which is a function of |u— L; + £| while TJ(u Li+%)
is the trace Treca of a sum of products of s . We have to deal with —‘2' and we
-
must show this integral is well defined. The first problem is easily resolved:
1 (Su—r 4k/25u—L,—k/2 — 1) (1 = Su_p/2Sutr/2)
W(Su—LJ+k/25u—L,;—k/2_1)(1_Su7k/2su+k/2) = Jok/ ] =k/ |k/| /
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which is a smooth function by Taylor’s formula (for |k| or for k in R*\{0}). Moreover
there holds the following estimate thanks to (95):

Su—Ly+k/25u—Ly—k/2 — 11— Sy_k/28utk/2 4C?
|K| |k T E(u— Ly, k/2)
< 102
— |u—L |E(u,k/2)"
Then we remark that for any U:
at 1 _ [
P U —gEW—0,k/2) T JPNU €
o f__db
=) e

Taking one after the other the U;’s defined by U; = v — L; for 1 < j < J —1 and
integrating over ¢;41 there remains but the integral over u:

2C2du 1 oy dl J
E(u,k/2) |u|E(u,k/2) [€]2le — £)2

uw€Bg(k) ;
</ dal 202 du
- [4|2|e — £]2 [ul2B(u,k/2)

u€Bg(r)
, J
= (K1log(A)) x (Cio) -

At last we obtain:

J
~~olJ . ottt J+1 2 at du |7
alp(G1o(Qo,1(p)): k)| < m2 Cq {/W} / m|ﬂ(k)|
/ ; - u€Bg(r)
< Cro(aCio) alog(A)[p(k)].
(103)
As a consequence there holds:

ap(Gh(Qo,1(p)); k) = —ga.s (k)p(k) (104)

and >°5, fa,s is well defined (at least in L> N L?) as soon as « is sufficiently small:

—+oo
ato1(p k) = — (aBA(k) + gA;J(k)> p(k) =: —fa(k)p(k), (105)
J=1
with
|fa(k)| < aBa(k) + o’ log(A)K = O(alog(A)). (106)

2. Let us prove this function is radial. Let e; and ez in S2 and 7 > 0. We must show
that fa(rei) = fa(rez). There exists R € SO3(R) such that ez = Re;. In (102) for
k = res, we change variables in the integrals: v = R~ 'u and mj; = Ril@u Writing
Mj; =mi + -4+ my, we get: S;(R(v— Mj=+5er)) = S;(v— Mj=+ 5er). We must
show the same holds for T';. Let b = (b1, b2, bs) be the canonical base of R?. We define

af == a - Rb;.
These new matrices satisfy the same relation as the a’s:
{afj, a } = 205 and {ca}, B} = 0.
Thus we have T;(R(v — My + 5e1)) = Ty(v — My & 5e1) and fa is radial.

From now on we can change variables:

uo:=wand for 1 <j<J, u; :==u—Lj, lj =u; —uj—1,
{ 0 >J> J gy b J Jj—1 (107)

u; € B(lk]) := {v € B(0,A), |v+ Ele| < A}.
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3. Now our purpose is to show that fa is in .# (L") with a (rather) precise bound on
[|fallz:. It is already known:

Fa(k) = aBa(k) + Op~ (0 log(A)) = O(alog(A)).

As fa is radial we take a fixed vector e € S? and study fa(k) = fa(|k|) with the
help of the integral formulae where k is replaced by |k|e.

The strategy is to differentiate fao and prove that its Sobolev norms ||—Afal|;2 and
[|[—=Afallzr are "small" where p < 2 is some constant to be chosen later. By Cauchy-
Schwartz inequality in Direct space, we get then an upper bound of ||fa||z:1. We will
use the co-area formula [4].

Following the method of [7], we then show that fa € L' with L'-norm lesser than
1 in order to give a meaning to

oo
> (-
=1

Remark 24. 1. As fa is radial we have:
(=A)fa = (=A)fa =—(07 +28:) fa- (108)

2. For any v € R® and 7 > 0 Taylor’s formula gives:

(1 - Su+2*1resu72*1re) = T{SUml(_g) - (%)SU}
1 e 109
with mi(5) = /t:O dSuttze)2 - (i)dt' (109)
We write w(p) := < (é))))> € R" and o(p) := %.
As we have (o(u), do(u)) = 0, Taylor’s Formula at order 2 gives
L toturrg) ol rE) e () 010, )+
+r(a(u), ma(r) — ma(=r)) +r*(ma(r), ma(=1)),
a(u) ;= do(u) - § and ma(5) : d’ou + stze/2 - (£, §)tdsdt.
g
(110)
3 Forany—%gmgéz
E (u+ ze) > E(u+ ve) > E(u) (111)

2

In particular if one takes the modulus of the derivative over r in (109) or (110)
for 0 <r <1, we get the following upper bounds:

(a) K/E (u) for the first derivative,

(b) K/E (u)? for the second.

Lemma 13. The functions 0, fa and 83 fa are well defined in R? with support in
‘B(0,2A). Moreover we have for J € N:

T log(A) KT log(A
0:faa(p)] < JE——B BBt Ry on [ 10 fa(0)] S B Xipl<an,
a1 og(A J+1 1og(A o? log(A
102 faa(p)| < TR sy o 0294 < “FEF xr<on.
(112)

As a consequence:

Lemma 14. For « sufficiently small, ja € L' and

19a]l21 < (arlog(A))*. (113)
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Remark 25. At the very end of the proof of Lemma 13, we refer the reader to the thesis

of the author for a (last) technical assumption: proving that lim 92 fa(z) = 0.
|z|—2A—

Proof of Lemma 14
We assume Lemma 13: as (—A,) = — (97 + 20,) we get that fo € H*(R?) with:

[=Afallz S L (114)

since [ “cpd% < 4o00. Although &gy : R’ — R has no singularity at 0, the function
—Afa has a singularity in % because of the term %&«f/\. The L?-norm remains finite
since the domain is R3®. More generally, we have

—Afa € L¥?(R®) N L*(RY).

Let % < p < 2 to be chosen and ¢ = =22-. We use the generalized Young inequality:

3p—2"
H’+M € LY (R3) and H’%/q x (—Afa) € L? (R3). By Plancherel’s Theorem this gives
in Direct space the following result:
HJ7

= € L*(R%), thatis | -| 27 fa € L*(R®).
5 3
|- 9

‘We choose % — % =47 thatis p = 1—72, thus:

. 7o dx 1
fa@lae< | [lafilh@Ps [ S <l-anl || e < B
B(0,1) B(0,1)
Then it is clear that
/ Fa(@)] < l-Afallpe
[z]>1
O

Proof of Lemma 13
e The idea of the proof is that each time one differentiates with respect with the radius
r > 0, it leads to an additional term ﬁ in the integrand or a change of the domains
and so a better upper bound of the sum.

We will often use the following inequality:

dv - 1 / dv
lu—v2(E (v+2)+ E(v—2))u+ek| = lu+ek| ) PPlv—el’

(115)

B(0,A)

and for convenience we write:
. k
u ::u+6§, ee{l,-1}. (116)

That the function (and its derivatives) has an extension in 0 would be clear from (109)
and (111): differentiating under the integral sign in the Taylor’s formula, one gets:

478 ireya - ((te/2)”, E)‘ <K’ 0<rt<l, (117)

2 E(u) 1

thus the problem of singularity at » = 0 drops thanks to (111).
More generally the variable r appears in two ways:

1. in the domains B(r)’*,

2. in a function of v; £735.
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One may write:

faa(r) = / Grluoxrs, -+ ,us £7r§)du,
B(r)J+1 . (118)
G;=aG" ug£rs, - uyg£rs _—
s 2 2)1§I;I§J|Uj —uj-1f?
It is easy to see that G5 : (R®)?*/72 — R is a differentiable function and that each time
we take 0 e —0 e we gain a term K(r71+E(u:t§)71) forr >1or KE (u)™"
2

uj +7‘§ uj—T )
for r <1 (see Remark 24). This enables us to get upper bounds of the terms of 9} fa,s
corresponding to derivatives of GY. Indeed for the first derivative: for e,&’ € {4, —}
one has for 1 < |k| < 2A:

duj 1 duj

= < )
luj —uj—12E (u; +ek/2)*  —  luj +ek/2|R3|uj|2|uj —ef
du; - i( 1 N i ) / dus;
|ui—ui,1|2|ui—|—6k/2|§ (ui,k/2)E(ui—|—€’k/2) ~ |k| [u;—1+k/2] Ju;—k/2] . |ui —e|2|ui|2.
R
(119)

If one deals with the term with (Ou,1r/2 — Ouy—r/2)Go one has:

[ v

dug 1 - 1 ) - _ duo < log(A)
o —ek/2|E (u+¢ek/2) E (u+ek/2)* E(u—ek/2)*" ~ IkIB(0 2A)E(uo)2 luo| = 1K
(120)
If » <1, Remark 24 enables us to say that

0,G5 (£ re/2)] _ s ( [t
TR O R e|2) log(&)-

B(r)J+11<5<J

For the second derivative: in the case of the terms corresponding to 0v, Ou, Gf)] with
Va = Uj(q) +(a)%, the above upper bounds enable us to say that if i(1) # i(2) then it
suffices to apply twice (119),(120) and we get an upper bound of the form:

2 Xi<|k|<2A\  J+1 du J
KJ (X\k\§1+7|k|2 )a (K/7|U|2|U—e|2) lOg(A)7

If (1) = i(2), then as:

/ T P
lu —v|? |u|E(u7 EYNE(u+k/2)°  E(u—Fk/2) k|2 |ul
we obtain an upper bound of the form
X1<\k\<2A J+1
KJ .
Oz + S (K [ ) e
If i(1) = i(2) = 0, we integrate first over uo, then over ui,us,---,us and use (121)

with u = uo, v = u1: this gives

for 1 < r < 2A,

oD+ o) ulE (u.5)

If » <1 we use Remark 24 as before.
e There remains to deal with the terms corresponding to differentiation over r in the
domain B(r)’T.

We rewrite (118) using the co-area formula. Indeed, let us write for e € {1,—1}
and r € [0, 2A]:

B:(r) :={p, Ip+ Fe| <A, (p, ce) >0} and B(r) := Bi(r) U B_1(r) C B(0,A).
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In particular B(A) = {p € B(0,A), (p, e) # 0}. We define the function:
B(A) —  [0,2A]
p € B.(A) + r such that ’u + % =A.

We apply the co-area formula with the level function z. If p € B, we write £(p) := €o

. +<()2(0)3
_ ptezps .

n(p) : P+ e(0)20)2] A" (p+e(p)z(p)3)-

For 0 < r < 2A we write S(r) := {p € B, z(p) = r} and S-(r) := SN B:; each S:(r) is

a spherical cap of S(—%52,A). The measure of B(0,A)\B(A) is zero and the function

z is differentiable with

Va(p) = ;Lf,ﬁ(gn(p»

Thus for any integrable function F' : B(0,A) — R and 0 < r < 2A one has:

2A
/F(p)dp:/ dt/F(p)de(p), (122)
B(r) S

where dH2(p) is the Hausdorff measure on S(r). If we take spherical coordinates with
axis Re in S:(r) there holds dH2(p) = A?sin(0)dfd¢ in the domain:

M. (r)={(6,¢) € (0,7) x (—m,m), cos(f) > %},

Notation 26. For convenience we write du for both d#H2(u) (integration over a spherical
cap) or dH1(u) (integration over a curve).

e For each u; we may rewrite the integration over u; € B(r). This enables us to get
the full derivative O, fa,s. For each 0 < j < J we need to estimate

dU() e E’U,\] e du(;de(uj)

, , [T luj—wj-af?
B(r)i=1xS(r)yxB(r)J—J 1<5<J

|G (ui £ ).

In Sc(r) we take spherical coordinates and write v = u;—1 + S e, if j = 0 we replace

uj—1 by u2 and integrate over ui,us,---uy. Using one gets (119) we have:
/ A?sin(0)dOdo 1 < [sin(0)dode
[o—An> |An|(E (An) + E(An—k)) ~ J |v—Anf?
S

M ()

27 A+
< ey tor (Rf1).
Then writing v := u;—1 + 6% we have:
/ dui log (A+\ui+s§\) 1 _ / du; log (Aﬂui\)
[ui — wia|2lu; + 5] \a—uites1/ E (ug, k/2) i — o2 wi|E (ug) N
B B+
d 1 ! Ad 1 AL
/ u = log( +|u|)§2ﬂ'/ NT 10g< +T)log‘ 71|v|—|—7"
lu — vA=12|u| E (Au) 1= ul r—o [v|E (Ar) L—r At o[ =7

B(0,1)
L Adr ( o (147 o | A |+ 1
T ———— | log ( )—l—log ‘7D < vl
/0 [v|E (Ar) L—r A=t =7 i

Finally for sufficiently small «, we have

|0r fa,0(r)] < KL(aK)” (xr<1 4 X=z<20),

By dominated convergence we get that as r tends to (2A)” then 9, fa,s tends to 0,
thus ga € H'(R?).
e Let us deal now with the second derivative. There remains to deal with:

34



1. One derivative in B(r) and one derivative in the integrand.
2. Two derivatives in two different B(r).
3. Two derivatives in the same B(r).

In fact, one has to deal with the last two cases together because each term alone is
not well defined and only the sum gives a finite term. If we see the derivative as the
coefficient of the second term in the Taylor series of ga,s(r + dr), then each term gives
s O (—orlog(dr)) but the sum is O(dr) due to some cancellation.

r—0

1.

1.1. One derivative in u; £ 5e and one in the domain of u; with i # j. Up to integrationg
over u; from j =0 to j = J, we can suppose that j < i. We split S(r) between S (r)
and S_(r). In S:(r), having used (115) (and (95) at the beginning) we get:

d'LLZ dul
_ . e
sg(r)h“*l —wiPE (ui + %) Jui + | A2l e

S2
[uf_4|
14 Mizal
< ! log( R .
Alus_ | A — |us_4|

Taking spherical coordinates with respest with —Eg, we have for any v € B = BLUB_:

[v°]

Jui—1]
du 1+ ——

— log( A )
[wi—1 — ve|2|ui—1|E (ui—1) 1— ‘U’A—’l‘

A

B(0,A)

A

L o (1)
el Jo B\T=2)

lwi—1] A z|
du 1+ = dz 1+ 3
/|uZ-1|E(u31)log(1 ) S g E(z)lOg(l— )

B(0,7) B

l

< 14+A7h

We use the same method as for the first derivative: when integrating over u;, we use
(B (Uj + %) + FE (Uj — g))fl <FE (g)fl. In this first subcase, we get an upper bound
of the form:
J?(Ka)?" log(A)
AE(k)
1.2. One derivative in u; + e and one in the domain of ;. Splitting the integration
over Sy (r) and S_(r), and using (115), we have to estimate

dus; du;

1
i/‘ dzlog<1+z)log( A
vl Jo I-= %

+2)
—Z

Se(r)
(123)
Above v is either u;41 or u;—1 depending on the order of integration (from us to uo or
from ug to wy if the derivatives act on ug + g) Moreover ¢,&’ € {17 —1} and the term
with &’ comes from the derivative in the integrand. Using (115) several times (starting
with (95)) we get the term |u; + e%| = |uf| in (123).
In (123), we use spherical coordinates and get the following upper bound:

2
/Afu ! gz/ du . (124)
A2 |Au — v |2E (Au — re) ‘Au— |v5|e’ E(u—re)
S2 2
We write
. e A2 2 . e o . 2z ) 2Ar
1:.=|v |7 = A +$7B: 1+A2+T27a.=mandb.:m.
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The upper bound is equal to

2b
L Vitb+/1-b
4 dy 47 dz

AB ), (T-ay)yT—by ABa 2+ 2:/1 b+ b2 1)
0

Ifa< %, then this integral is

o(7 ), 7%w) - ()

Similarly, if b < %, we have:

1 [t ody 1
O(— =0(-———.
(w/.72%5) ~° (=)
If % < a,b < 1, we look at the second formula. We have 22 > 2zv/1 —b for

2b : 4
For % <b< %7a> % we get the upper bound:

o [0y _
AB | ;1 —ay =~ A2|ve|

For b > %7 a > %7 we have the upper bound

2b
2y/1—b V14+b4++/1-b
4 / dz " / dz
AaB / 22/1T—b+b(:—1) 22+b(2-1)
2/1-b

The first integral gives (without 47/(AB))

41 -b) ) 1 ( 1- b)
log { 1+ < log(1+5—— .
2\/17 g( TEER Y [—a
If 1 —b < 1— a, then this gives O((1 — b)~'/?), else this gives O( O%/(Hl))
The second integral gives (without 47 /(AaB)), with X := (¢! —1)7":
/ \/7+\/7 dz_ _ /2 X2 dz
2—|—1 ~ zml—FXZQZz
o1 _ vl + A% 472
TVI-b o i+ (A2
We have:
NIV »
logl—a) _,  log| ¥ 1+1og< L)

ABVI—b (A2 +22)\/T+ (A —2)2 = (A2 + [v°]2)\/T+ (A — [v°])2
Let us emphasize that the condition ¢ > 27! is equivalent to

1v°]

>2 -3
Bringing all these results together, we get the following upper bound:
|

K |v
A2ve]| (1_X‘v5‘>(2*ﬁ>Alog (-3 ))‘
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In the process of integrating over the u;s, we have to integrate over v with this upper

bound. Taking spherical coordinates with respect to —<-e, we have:

L[ dv
[v/=v2E@)lv] ~ |o/| | |v]2|v — el?

B(0,A)

| e < tos).

B(0,A)

Moreover, writing A := A(0, (2 — v/3)A, A) the annulus, we have:

log(lf%)dv - —log(1 — 2)dz % +z‘
[v/ —v[2 0| E(0)(A2+]v[2) A2|U’| z(1+ 22) R
Ap
<
~ A2|v’|
log(lf%)dv o 1 b —log(l — 2)dz
PIE@?2A2+02)  ~ A2 [, g 23 '
Ap

2.

2.1. One derivative in the domain of u; and one in the domain of u; with ¢ —j > 2.
We integrate over u;s from j' = 0 to j' = j and from j' = J to j = i using the method
for the first derivative. Integration over u with w either u; or u; (and v either u;4q or
uifl) is:

du 1 1 ! dy
< =
Z / [u — v|? ko~ kz) ~ A2 XE:/% A% + |vE|2 = 2A vy

ee{l,-1} Se(r) |U—|—€§|E (U+€—
1 A+ [v°]
< 1 .
= Z AJoe] % <A— |

2
(125)

If j + 2 <i then, integrating over u;4+1 we have:
/ duj+1 1 lOg <A + |U;+1|>
— 2
B(r) [ugsn = sl fus (B (ufy) + B (uji0) 4541

1+ |u
du
<3 [ wet s ()

B(0,1)
1 [uf ol

S/ dr 1g<1+r)log r+ Iy < 1
Tl T LT ) STy

and we conclude as before. Else j + 1 =i and we have:
. A e 2 A 1 z\ 2
d1:3+12 ___ L - log< - |uj+1|> < % 2o <—+ {z\> (I-35)
BT)|“j+1| E(u] )+ E(u;,) = [u5 4l 2=0 B (2) 1-%
S (1= 35)(log(A) +1).

2.2. One derivative in the domain of u; and one in the domain of u;11. We only look
at the corresponding coefficient in the Taylor series of ga,s(r + 6r) with r' = r + dr.
Indeed, let us treat for instance

dujdu;ia (0 (UJ+1 Goluet § )
‘ujfuj+1\2 Ha#]«kl |ua — ua+1|2
(uj,uj 1) EB(r)xS(r) B(r)7~1
o dujdu;iy |<n(uj+1) ) e>| Gy (u U ,+1)
= VAN R Rl .

[uj—ujy1]? 2
(ujujqp1)€B(r')xS(r)
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We substract the integral of the same function but over (u;,uj11,u’) in

B(r) x S(r) x B(r)”~" where u’ = (uo, -+ , 1, Uj41,---) and use the co-area formula.
We get
' dusdu; i1 |[(n(u;), €)] [(n(ug:1), €)|
dt J J+ 7)) j 5 I (s, . 196
[+6r' / / |uj - Uj+1|2 2 2 J’J( J J+1) ( )
S(#)S(r)

We deal with G j(uj,ujy1) as in the case 2.1. Let us say for instance 0 < ir < 1,
then for any (uj4+1,t) € S(r) x (r,r") we have:

dist (uj11, S(t)) > A\\/1 + ol e (8502 1| = O (At =) (nu, e)]).
By the Theorem of projection onto a closed convex R?, we have
i1 — wsl® > Jujir = Msyuga | + [Meeyusir — uy)?.

If " < 7, then we consider instead the projection of u; € S(r) onto B(t). Anyway the
quantity in (126) is

aK)? [rtor 1 aK)’
520 ( A2) [ dt/da|<a7 e/l log (1 * [t —7?|{a, e>|2) -4 A2) or(1 = log(dr))
S2

The corresponding term is not Lipschitz because of the term —d, log(dr).
3. Let us write the expansion of

Uy du - .
w / duo e de R du‘]G(](Ug + %) =: / FJ’j (Uj)dlbj. (127)

B(r') B(r)’ B(r’)

We substract / Fjj(uj)du; in (127) and get

B(r)

/ dt/deFJ’j(Uj). (128)
r+dor
S(t)

We split (128) between integration over S (¢) and S—_(t). For any ¢ € (r,r'], we write
s:=1—r and:

S@) —  S(r)

: uw€S:(t) — v(u):=u+ ze(u)ng € Se(r) where |z(u)| = 6(9 (6r) ~

(129)

From now on we assume v € S(r) and u € S(t) and write 77, instead of n,, to emphasize
this is a function of u € S(t) and not of v € S(r). The function z: : S(t) — R satisfies
the equation

‘u + ze(u) Ty + eze‘2 = A? that is z(1+ 2t sy ’e>) = — —. (130)
2 2A 2A

Changing variables in the integration over S(¢) we have:

/MMWF./M%@WM%@WWW
S(t) Dy (S(t))

We need to determine ®; ' (v) and compute J(®¢; ®; ' (v)).

First we have:
v — 2T, + e s 2t

A - 20 A

My =
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thus
1

Ty = T+ = (nw +e5%5€), (131)
and . s
— gy =2

Ny = (1 + A)nu 2Ae. (132)

Using the formula (131) in (130), we get that z; satisfies:
2
2t es es es es s
L " —):7( . —)——. 133
Zt( T 2A(1+%)(<" °)+5x) sy o\t ag) — gy (139
In particular we have:

2u(u) = Sx(no, @) + O ((61)). (134)

We differentiate z¢ in (130) and get:
T.S:(t) — R

dze(u) : Lo es_(he)(i+%) (135)
A1+ 2t — = (7w, e)

Thus differentiating in (129) and using (131) in (135) we get:

TuS:(t) — T,S(r)

A (u) hom 1+ 3)h+ s <h7:>(1+%) = nvl—i—%e
+ —m(<nv7e>+ﬁ) +X
(136)

Let (a,b) be an orthonormal basis of T, S:(t) with b X T, = a, then we have:

J(Py;u) =

14 2

1+%—ﬁ%(<nme>+%)

= ES ) _ Uneortsp)? 1 ] ,
= 2A [1 (1+3)2 + (nw, e)(A + 1) + JT(ZO(((ST) ).

Asu=0v— 2Ty =0+ Z(ny, e)ny;, + O ((67)7), we get:

ér—0

/ du; Frg(u)r = / vy Fs (05 + 5, ), + O (7)) x

ér—0
Ss(t) ‘ﬁt(ss(t)) €5 .2
_ 88y _ Unwet50)” 1 ] 2 )
(1 2A [1 (+3)2 (s ez +1) 5, 2,((07)7) )dv
(137)

We have ®;(Se(t)) # S(r). In spherical coordinates (r, 6, ¢) with respect to —cge
and positive vertical half-line R3 ce we have

rs

D4(S.(1)) ~ {(A797¢), = cos(8:) < cos(d) < 1}7 (138)

2A _2TA2+48W

and cos(0:) = 55 — 8’/'\—223 + 6r(20((6r)2)'
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At this point, we need to differentiate Fj;: we have

w — GY(ue+ %
FJ’j(uj):M/duo...duj...dw g(ue £ 5)

2 T Juws —uwizaf?
B(r)J 1<i<J
We change variables as follows: v; := u; — u;, this enables us to remove u; from

the term |u; — uj+1]|">. Writing Be(r,u;) == {v : |v+ u; + e£| < A}, B(r;uy) =
By (r;u;) U B_(r;uj) and Se(r,u;) := 0B:(r,u;), we have

[(na, . )| ~ GY(ve +u; £ )
FJ,j(uj): JT dvo...dvj-..dvjm7 (139)
B(rju;)’ 1<i<J

with the convention v; = 0. We differentiate the formula (139): w; appears in the
integrand and in the domains B(r;u;). We deal with the terms corresponding to
differentiation of the integrand as before. Then we have for any integrable function F
and small displacement du € R?:

F(v)dv — / F(v)dv = / F(v)((n(v —uj), du) + s (@] O(|(5u|2))dv7
u—
Be (ryu +8u) Be (r,uy) Se(ryuy)
(140)
where n(v — u;) is the outward normal of S.(r,u;) at v. Substituting in (137), as in

the part 2.2. we get terms which are O (|5u| 1—1log |6u|)) Writing u; = u we have
(9

Fri(v— %(nv se)ny + O ((6r)%) = O (—(d7)*log(7))

es nu e duzdvi ”
(o) — 2inee e 3 / WG%(w:ﬁ:Ee)<n(vi—u3‘)7nu>.
7 v; € S(r;v)  1=sJ
v} € B(r,v)’
(141)
We write C(r) := S4(r) NS—(r) (this is a curve): integrating Fj ;(v;) over
Se(r)A®s,-(S:(r)) gives rise to a term:

22 r PRt
_W HdUO"'dUJGJ('LL[i 2)"’ 7“(2)0(( 7’) )

ui €C(r),(u;)in; €B(r)7
Thus we get a term of order

(OZK)J+1)‘

o2
r LdUO"'dUJGJ(U[:tg):O< A2

8A2? 4A
uj€C(r),(us)ix; €B(r)”

Integrating the term F ;(v) x (J(®s;u;) " — 1), we get a well defined number in the
limit §r — 0. Furthermore this term is

O(% / // duo...duﬂGJ(ueig)D :O(MXT<2A)-

ujGS(r)(uO,... ,g;,... ug)EB(r)Y
To conclude, we consider the term Fj ;(®;*(v)) — Fy;(v).
Up to a term —&%log(6r) = 5,2 0(57‘), we can take S(r) instead of ®;(S-(t)) and 1
r—r

instead of the full jacobian J(®;;u). We have £(n, , €) = |[(n.,, e)|. In (141) we take
back the previous variables u; = v + v;, this gives

or Z / dug - --duy

vESe(r) 79 (ug,u’)ES(r)x B(r)J—1

e o) (_ o @)l n>> Gr(uetk).
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When we sum this term with that of (126), for each i # j we have

= ‘E(Ui)mui ) e> - E(’U)(nu ) e> X E(U)E(ui)<nv ) nui> )
< min(v2|n., —nel,2).

|<nui ’ e>| - |<n117 e>|<nﬂ7 nui)

Thus there is no more logarithmic divergence: for v = u; and v = u;—1 or v = w41,
we use the same method as that for (126) and get

[nw — nol[{(nw , €)|dudv 1

lu—v]? E(A)* A2

S(r)yxS(r)

We split the domain in 4: Sc(r) x S/ (r): the case € = &’ gives finite number. Indeed if

we use spherical coordinates with respect to —<fe, we have |[n, —n,| < ‘“—X”‘, and the
integral is

du 1
o\ [y ‘O<F>'
s2

The integration over Sy (r) x S—_(r) is also finite. To see this we proceed as follows.
For convenience we write x := 75, 67 = arccos(z),0°; = arccos(—z) and s(-) (resp.
c(+)) for sin (resp. cos). We take spherical coordinates with respect to —ege for any

- (r) and obtain:

2_71' 8(01)8(071)d01d071d(]§
A2 (c(01) = c(0-1) — 22)2 + 5(0-1)%s7 + (5(01) — 5(0-1)ce)?
(01,0 1,6)€(0,69) x (— 7,69 )X (—m,7)
< i / 8(01)8(071)d01d971d¢ . i
~ A2 (c(61) — c(0-1) — 22)2 +c(0-1)2¢2 = A2’

(61,6—1,8)€(0,69)x (~m,0° ) x (~m,m)

We write 0. = 92 — £¢e: we have

ec(0:) —x = x(c(pe) — 1) + \/Ws(qbg)7
Ple00) — D)+ VT= (o) 2 o (2vT=a7 - o),
> 2%56( l—xz—gmarccos(x))QZ m%(l—%)
TR

Thus we have

A S // sin(&l)dqﬁldqﬁ,l
$1,0-1€(0,09) L= (Zﬁ + ¢31
d arccos(x
< \/% log (1 + T())
$1€(0,69)
< log(1+ ¢~ ")d¢.
$€(0,1)

Conclusion We obtain at last the following upper bound for the terms of 2. and 3.:

2 (@) " log(A)
J T.

It is possible to show that the function 02 fo(x) tends to zero as |z| tends to 2A, this
is proved in the thesis of the author (to appear in 2014). O
Alternative Fj
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In the proof of Theorem 3, one is lead to consider a pertubative self-consistent

equation with D° replaced by D° + %%. In particular we need Lemma 15 below for
the proof of Lemma 12. We can write

0
p 2P

JO -V
A W = ,Bw()(—lv) + o - mwl(—lv)

The formulae are the same with wo, w1 replaced by wo, w1, estimates of the same kind
hold. The alternative functions are markgd with a tilde: Ba and ga. _

We can easily estimate f\x\ZR |Z = H(Fa)(x)|dx for R > 1: writing §a := F ' (Fa)
we have the following Lemma:

Lemma 15. For A\, A > 1 we have:

a/ fa(z)|dz < ||-AFx||p2VATR—1 = O(LR™/?). (142)
|z|>R

In particular, with R~ = o < 1 and L < Lo it is lesser than K La*/?.
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