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Abstract

We study the Bogoliubov-Dirac-Fock model that allows to consider relativistic elec-
trons interacting with the vacuum in the presence of an external electrostatic field. It
can be seen as a Hartree-Fock approximation of QED, where photons are neglected. A
state is described by its one-body density matrix: an infinite rank, self-adjoint operator
which is a compact perturbation of the negative spectral projector of the free Dirac
operator.

We are interested in the properties of minimizers of the BDF-energy in the presence
of an external field with charge density ν ≥ 0 in the regime α, α log(Λ) and αν (in
some norms) small where α is the coupling constant and Λ the ultraviolet cut-off. We
prove that the density of such minimizer is integrable and compute the effective charge
of the system. We also ensure the existence of minimizers under charge constraint
M ∈ N∗ provided that there holds M −1 <

∫
ν close to the nonrelativistic limit α→ 0

with α log(Λ) fixed to a small value. This contrasts with the assumptions of [Arch.
Ration. Mech. Anal, 192(3):453-499(2009)] where Λ is fixed. As a consequence, the
nonrelativistic model we obtain in the limit keeps track of the charge renormalisation:
it is different from the Hartree-Fock model obtained.

1 Introduction

The relativistic quantum theory of electrons is based on the Dirac operator [22]:
mc2β −∑3

j=1 i~cαj · ∂j . Here c is the speed of light, m the mass of electron, ~ the
Planck’s constant,

β :=

(
idC2 0

0 −idC2

)
, αj :=

(
0 σj

σj 0

)
∈ End(C4),

where the σj ’s are the Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1)

The Dirac operator acts on H := L2(R3,C4), it is self-adjoint with domain H1(R3,C4).
In the one-particle theory of Dirac, the energy of a free particle (with wave function
ψ ∈ L2(R3,C4)) is 〈D0ψ , ψ〉. The spectrum of D0 is (−∞,−mc2]∪[mc2,+∞) and one
cannot exclude negative energy state a priori. To explain why electrons with negative
energies are not observed, Dirac postulated all the negative energy states are already
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occupied by "virtual" electrons, the so-called Dirac sea. By the Pauli principle a real
electron can only have positive energy.

In this paper we study the Bogoliubov-Dirac-Fock (BDF) model which can be seen
as a mean-field approximation of Quantum Electrodynamics (QED) and which was
introduced by Chaix and Iracane. It enables us to consider a system of relativistic
electrons interacting with the vacuum in the presence of an electrostatic field (e.g.
that one created by some nucleus). This paper is a continuation of previous works by
Hainzl, Gravejat, Lewin, Séré, Solovej [9, 10, 12, 11, 7] and Sok (unpublished work
arxiv.1211.3830). In this paper we will extend some results of [7].

This model is derived from full QED by making several approximations: the starting
point is the full Hamiltonian H defined on the Fock space Fel⊗Fpho (the tensor product
of that one of the electrons and that one of the photons) and the first approximation
is to neglect the photons and work only with Fel (see [2] for more details).

We use relativistic units ~ = c = 1 and set the bare particle mass equal to 1. The
fine structure constant is written α. We write D0 = −iα ·∇+β the free Dirac operator
acting on the Hilbert space H = L2(R3,C4) and P 0

− (resp. P 0
+) the negative (resp.

positive) spectral projector of D0. on
In the BDF model a system is described by a "Hartree-Fock" state in the Fock space,

fully characterized by its one-body density matrix (1pdm) P , an orthogonal projector
of L2(R3,C4). The projector P 0

− is the one-body density matrix of the free vacuum
Ω0 of the Fock space Fel. In fact we rather consider the reduced 1pdm Q := P − P 0

−.
These BDF states are defined in the appendix of [9], it can be shown that a projector
P is the 1pdm of a BDF state ΩP iff Q is Hilbert-Schmidt. By algebraic computation,
it can be shown that the formal difference of the energy 〈ΩP |H|ΩP 〉 of the state ΩP

and that of Ω0 is a function of Q, the so-called BDF energy.
We assume there is an external density of charge ν (real-valued) of finite Coulomb

norm:

D(ν, ν) = ||ν||2C :=
4π

(2π)3

∫ |ν̂(k)|2
|k|2 dk =

∫∫
ν(x)ν(y)∗

|x− y| dxdy.

The last equality holds for suitable ν (for instance ν ∈ C ∩ L6/5(R3)).
Formally the BDF energy for a BDF state with reduced 1pdm Q is:





TrP0
−
(D0Q)− αD(ρQ, ν) +

α
2

(
D(ρQ, ρQ)− Ex[Q]

)
,

TrP0
−
(D0Q) := Tr

{
P 0
−(D0Q)P 0

− + P 0
+(D0Q)P 0

+

}
,

Ex[Q] :=

∫∫ |Q(x, y)|2
|x− y| dxdy.

(2)

Here, α > 0 is the coupling constant, Q(x, y) the integral kernel of the operator Q
and ρQ is its density: ρQ(x) = TrC4(Q(x, x)). We recognize the kinetic energy, the
interaction energy with ν, the direct term and the exchange term as in Hartree-Fock
theory. This expression does not always make sense even if Q is Hilbert-Schmidt (that
is if

s
|Q(x, y)|2dxdy < +∞), in particular it is not always possible to define ρQ.

An ultraviolet cut-off Λ > 0 is needed: in [9, 10, 12, 11], the authors have considered
a sharp cut-off, that is they replaced L2(R3,C4) by its subspace HΛ consisting of
functions whose Fourier transforms vanish outside a ball B(0,Λ). Moreover an operator
D0 different from D0 is introduced in [12] with projectors

P0
− := χ(−∞,0)(D0) and P0

+ := χ(0,+∞)(D0).

In fact Hainzl et al. studied the periodized hamiltonian HL in a finite box [−L

2
, L

2
) (with

periodic boundary conditions). For L large enough they prove there exists a unique
ground state which tends to γ0 := P0

−− 1
2

as L tends to +∞. Defining the BDF energy
with respect to this minimizer ("substracting 〈ΩP0

−
|H|ΩP0

−
〉") gives a more relevant

model. There holds D0 := α · w1(−i∇) + βw0(−i∇) and D0 satisfies the following
equation:

D0 = D0 +
α

2

sgn(D0)(x, y)

|x− y| . (3)
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This operator D0 was first studied by Lieb and Siedentop in [18] in another context.
We know w1(−i∇) = −i∇

|−i∇|w1(−i∇) and w0, w1 are radial functions satisfying

∀p ∈ B(0,Λ), |p| ≤ w1(p) ≤ w0(p)|p| and 1 ≤ w0(p) ≤ 1 + Cst × α log(Λ). (4)

Useful estimates on w0,w1 are proved in arxiv.1211.3830.

Remark 1. Our convention for the Fourier transform F is the following:

∀ f ∈ L2(R3) ∩ L1(R3) : f̂(p) :=
1

(2π)3/2

∫

R3

f(x)e−ip·xdx.

Given that, it is possible to define properly a functional Eν
BDF out of (2), defined on

a subspace K of

I = {Q ∈ S2(HΛ), Q
∗ = Q, −P0

− ≤ Q ≤ P0
+}.

The set I is the convex hull in S2(HΛ) of the reduced 1pdm’s and K is defined in
the next section. In the BDF energy we replace the kinetic energy TrP0

−
(D0Q) by

Tr0(D0Q) defined by:

Tr0(D0Q) := Tr
{
P0

−(D0Q)P0
− + P0

+(D0Q)P0
+

}
, (5)

A global minimizer of Eν
BDF is interpreted as the polarized vacuum in the presence of

an external density ν. To describe a physical system with M electrons, we consider the
sector charge of K defined by the condition Tr0(Q) = M . We define then the energy
functional for q ∈ R:

{
Eν

BDF(q) := inf {Eν
BDF(Q), Q ∈ Q(q)},

Q(q) := {Q ∈ K, Tr0(Q) = q}.

An important question is that of the existence of a minimizer for Eν
BDF(q). In [11],

it was shown that a sufficient condition for it is the validity of binding inequalities at
level q:

∀ q′ ∈ R\{0, q}, Eν
BDF(q) < Eν

BDF(q − q′) + E0
BDF(q

′). (6)

A much more difficult task is to check that these inequalities hold. In [11], the authors
showed that, given a density ν ∈ L1(R3,R+) ∩ C, an integer 0 ≤ M <

∫
ν + 1 and a

cut-off level Λ0 > 0, then there exists a minimizer of Eν
BDF(M) provided α ≤ ε0(ν,Λ0)

for some number ε0(ν,Λ0). It was proved in arxiv.1211.3830 that E0
BDF(1) admits

a minimizer provided α,Λ−1, L := α log(Λ) are small enough which shows that an
electron can bind alone in the Dirac sea without any external density. In both cases
the results hold in the nonrelativistic regime α≪ 1.

We know a minimizer for Eν
BDF(M) should satsify a self-consistent equation of the

form [11, 7]

Q+ P0
− = χ(−∞,µ)

(
D0 + α((ρQ − ν) ∗ 1

|·| −
Q(x,y)
|x−y| )

)
=: χ(−∞,µ)(DQ). (7)

Here, µ is a Lagrange multiplier due to the charge constraint M , interpreted as a
chemical potential. For M > 0,Λ0 > 0 we have µ > 0 and as α → 0, a scaling by α−1

of χ(0,µ)(DQ) tends - up to translation and extraction of a subsequence - to a minimizer
of the Hartree-Fock energy EZ

HF for M electrons with Z :=
∫
ν. In arxiv.1211.3830, it

is shown that in the case of E0
BDF(1) the nonrelativistic limit with L fixed gives the

Choquard-Pekar model [15].
In this paper we show that, provided L = α log(Λ) ≤ L0, there exists a minimizer

for Eν
BDF(M) as soon as M <

∫
ν + 1 and α ≤ ε1(ν,L) for some constant ε1(ν,L).

The nonrelativistic limit is a pertubed Hartree-Fock model: writing Z =
∫
ν and

a = ( 2
3π
L)/(1 + 2

3π
L) < 1 the energy is

∀Γ ∈ S1(L
2(R3,C4)), 0 ≤ Γ ≤ 1, Tr(Γ) =M :

EZ
nr(Γ) :=

1
2
Tr(−∆Γ)− Z(1− a)Tr

(
1
|·|Γ
)
+ 1

2

{
||ρΓ||2C − Ex[Γ]

}
− a||ρΓ||2C .
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The last term must be thought of as −aTr(ρΓ ∗ 1
|·|Γ). The vacuum polarizes due to the

presence of ν and the electrons, the positive charge ν attracts a cloud of virtual charges
which makes it appear smaller (hence the term Z(1 − a)) while the electrons repelled
them resulting to an attractive well created by the distortion (hence the term −a||ρΓ||2C
like in a polaron model). Our result gives a wider range of existence of ground state in
the space of parameters (α,Λ) compared to that of [11], where the quantity α log(Λ0)
is neglected and considered as o

α→0
(1).

To prove this existence result it is necessary to have a good understanding of a
minimizer Q0 and of its density ρQ0 . In [7] the authors proved that, in the simplified
model without the exchange term, the density of a minimizer is integrable. This is
a natural result: in the presence of a finite number of charged particles with finite
Coulomb energy the vacuum should polarize accordingly and its density should be
finite.

Mathematically speaking however this is a non-trivial result because a minimizer
of Eν

BDF(M) is not trace-class. As in [7] we prove in this paper that if Q is such a
minimizer, provided L is small enough and M, ||ν||2C > log(Λ), then ρQ ∈ L1 ∩ C and
TrP0

−
(Q) =M 6=

∫
ρQ. Moreover, the following charge renormalisation formula holds:

∫
(ρQ − ν) =: Z3(M − Z) ≃ M − Z

1 + 2
3π
L
, (8)

where Z3 is interpreted as the renormalization constant [8]. This means that the total
observed charge

∫
(ρQ − ν) is different from the real charge M − Z of the system.

The quantity L = α log(Λ) is related to Z3. In the reduced BDF model where the
exchange term is neglected, Gravejat et al. showed in [7] that the density ρQ of a
minimizer of the reduced energy Eν

rBDF(M) is radial as soon as ν is radial and that, in
this case, away from the origin, the electrostatic potential of the system is

α(ρQ − ν) ∗ 1

| · | (x) ∼
x→+∞

αZ3(M − Z)

|x| .

In the full model we were unable to prove such behaviour at infinity but we think this
is true. Taking L small corresponds then to considering Z3 close to 1.

The main contribution of this paper is the integrability result stating that the
density of a minimizer is in L1. It cannot be easily obtained from [7], the presence of
the exchange term complicates the study. In our results, we were unable to remove the
technical conditions M, ||ν||2C > log(Λ). We emphasize here that we can prove the same
results with another choice of cut-off considered in [7], the one consisting in replacing
D0 by D0(1− ∆

Λ2 ) in L2(R3,C4).
The paper is organized as follows: in the next section we properly define the vari-

ational problem Eν
BDF and states the main results. In Section 3, we derive from the

Cauchy expansion of a minimizer the two fixed point schemes we use. Moreover a priori
estimates are proved in Subsection 3.2. In Section 4 we prove important estimates on
a term of the Cauchy expansion (”Q1,0”) and prove Theorem 1. Section 5 is devoted
to prove estimates for the fixed point method and apply it to prove that the density
of a minimizer is in L1 (under some assumptions). We prove the formula of charge
renormalization (Theorem 2) and the existence of minimizers close to the nonrelativis-
tic limit (Theorem 3) in Section 6. The nonrelativistic energy is studied in Appendix
B. The very technical Appendix C is devoted to prove Proposition 1. We prove Lemma
8 which is used for Sections 4 and 5 in Appendix A.

2 Description of the model and main results

BDF Energy. We assume there is an external density of charge ν (real-valued) of
finite Coulomb norm (||ν||C < +∞).

First let us introduce the ultraviolet cut-off Λ > 0 used: following the choice of [7],
we replace D0 by D0. Let us recall Sp(HΛ) is the Schatten class of compact operators
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A in HΛ such that Tr(|A|p) < +∞ [21]. As in [7] and [11] we will deal with

S
P0

−

1 := {Q ∈ S2(HΛ), Q
++, Q−− ∈ S1(HΛ)} (9)

where Qε1ε2 := P0
ε1QP0

ε2 . We recall the kinetic energy functional is
Tr0
(
|D0|(Q++ −Q−−)

)
. We will work in a subset of this space, namely

K := {Q, −P0
− ≤ Q ≤ P0

+} ∩S
P0
−

1 ⊂ {Q, Q∗ = Q} ∩S
P0
−

1 , (10)

the closed convex hull (under that norm) of the difference of two orthogonal projections

of type P − P0
− ∈ S

P0
−

1 .
We would like to define the density ρQ such that it coincides with the usual density

when Q is (locally) trace-class: ρQ(x) = TrC4(Q(x, x)) and such that it is of finite
Coulomb energy.

Let Q be in S
P0

−

1 , then ρQ is well defined by duality:

∀ V ∈ C′, QV ∈ S
P0

−

1 and Tr0(QV ) = C′〈V , ρQ〉C. (11)

and the map: Q ∈ S
P0

−

1 7→ ρQ ∈ C is continuous [7]. Furthermore ρQ(x) is well defined
for Q is locally trace-class.
Finally the exchange term is well defined: thanks to Kato’s inequality [1, 12, 9]

2

π

∫∫ |Q(x, y)|2
|x− y| dxdy ≤ Tr(|∇|Q2) ≤ Tr(|D0|Q2) = Tr{|D0|1/2Q2|D0|1/2}

and for Q ∈ K : ≤ Tr{|D0|1/2(Q++ −Q−−)|D0|1/2} ≤ TrP0
−
(D0Q),

(12)

Notation 2. For a density ρ ∈ C we write: vρ = v[ρ] := ρ ∗ 1
|·| .

For an operator Q ∈ S
P0
−

1 with integral kernel Q(x, y) we define the operator RQ =
R[Q] by the formula:

RQ(x, y) :=
Q(x, y)

|x− y| .

We remark that Ex[Q] = Tr(R∗
QQ) =: ||Q||2Ex.

Moreover we write
BQ := v[ρQ]−RQ.

The BDF energy is defined as follows:

Eν
BDF(Q) := TrP0

−
(D0Q)− αD(ν, ρQ) +

α

2

(
D(ρQ, ρQ)−

∫∫ |Q(x, y)|2
|x− y| dxdy

)
, Q ∈ K.

(13)
As said in the introduction we define the energy functional Eν

BD(q) by the infimum
over Q(q) = {Q ∈ K, TrP0

−
(Q) = q}.

Notation 3. We write sp for D̂0(p)√
w0(p)2+w1(p)2

the action of sign(D0) in the Fourier space.

The function
√

1 + |p|2 is also written E(p) and Ẽ (p) :=
√
w0(p)2 + w1(p)2.

Remark 4. We will work in the regime

α ≤ α0 ≪ 1 and L := α log(Λ) ≤ L0 ≪ 1. (14)

We consider systems with M electrons and an external charge density ν ≥ 0 with
||ν||C , Z := ||ν||L1 < +∞. We will often consider M = O(Z) and
||ν||2C +M = O(log(Λ)).

Throughout this paper we will use the letter K to denote a constant independent
of the parameters α,Λ,M, ν. K(M, ν) is a constant depending on M,ν and so on. The
inequality a > b means that a ≤ Kb for a, b > 0. When m > 1 is some integer, then as
in [9] we write

Km :=
1

2π

∫ +∞

−∞

dη

E(η)m
.
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For M ∈ N∗, let us say that the problem Eν
BDF(M) has a minimizer: as pointed

out in [11, 7] such a minimizer γ′ = γ +N must be of the following form:




γ + P 0
− = χ(−∞,0)

{
D0 + α((ρ[γ′]− ν) ∗ 1

|·| −R[γ′])
}
=: χ(−∞,0)(Dγ′ ),

N = χ(0,µ]

{
D0 + α

(
(ργ′ − ν) ∗ 1

|·| − (Rγ′ )
)}

=
∑M0

j=1 |ψj〉〈ψj |,
so Dγ′ψj = µjψj and we write:n := ρN =

∑
j |ψj |2.

(15)

We choose 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µM0 = µ < 1. A priori M0 6=M but in our regime they
are equal (Lemma 3). Indeed in the spirit of [9] the equation of the dressed vacuum γ
enables us to say that (γ′, ργ′ − ν) is the only fixed point of some function F (1) defined
in (a ball of) the Banach space X1 = Q1 × C where

||Q||2Q1
= ||Q||2T :=

∫∫
(Ẽ (p) + Ẽ (q))|Q̂(p, q)|2dpdq.

Cauchy’s expansion: Let γ′ = γ+N be a minimizer for Eν
BDF(M), the decomposition

is explained in (15).

Notation 5. Throughout this paper n := ρN , moreover we write ρ′γ for ργ′ and the
double prime means −ν is added:

ρ′′γ := ργ + n− ν, n′′ = n− ν.

We also write B′
γ = Bγ′ := ρ′′γ ∗ 1

|·| −R[γ′].

Notation 6. From now on, for any g : R3 → [1,+∞) satisfying the condition

∃K(g) > 0 | ∀ p, q, p1 ∈ R
3, g(p− q) ≤ K(g)(g(p− p1) + g(p1 − q)),

we define two Hilbert spaces:

Qg :=
{
Q ∈ S2,

∫∫
(Ẽ (p) + Ẽ (q))g(p− q)|Q̂(p, q)|2dpdq < +∞

}
,

Cg :=
{
ρ ∈ S ′(R3),

∫
g(k)

|k|2 |ρ̂(k)|2dk < +∞
}
.

(16)

The letter g always refers to a function of this kind. The case g ≡ 1 gives the space
Q1 of operators Q with Tr(|D0||Q|2 +Q∗|D0|Q) < +∞ and C1 = C. As an example of
such functions g one can take g(p− q) := E(p− q)a for a > 1.

Writing the Cauchy expansion [9] in (15) we get:




γ +N = N − 1

2π

∫ +∞

−∞
dη
( 1

Dγ′ + iη
− 1

D0 + iη

)
=

+∞∑

j=1

αjQj(γ
′, ρ′′γ),

Qj(γ
′, ρ′′γ) := − 1

2π

∫ +∞

−∞
dη

1

D0 + iη

(
Bγ′

1

D0 + iη

)j
.

(17)

Notation 7. We define Qk,l as the part of Qk+l(Q,ρ) which is polynomial of degree
k in RQ and polynomial of degree l in ρ and ρk,l(Q, ρ) as its density. For ℓ ≥ 1 and
(Q, ρ) ∈ S2(H

1/2) ∈ C, Q̃ℓ[Q, ρ] is the operator:

Q̃ℓ[Q, ρ] :=

+∞∑

j=ℓ

αj−ℓQj [Q, ρ].

Moreover for (ε1, · · · , εJ+1) ∈ {+,−}J+1 we define Q
ε1 ··· εJ+1

J with the same formula
as in (17) save we replace (D0 + iη)−1 by P 0

εj/(D0 + iη) in the same order. The same

holds for Q
ε1···εJ+1

k,ℓ . At last we write Q
ε1a1ε2···aJεJ+1

k,ℓ with aj ∈ {v, R} for the operator

− 1

2π

∫ +∞

−∞
dη

P 0
ε1

D0 + iη
A1

P 0
ε2

D0 + iη
· · ·AJ

P 0
εJ+1

D0 + iη
,

where Aj = v = ρ′′γ ∗ 1
|·| if aj = v or Aj = −R(γ′) if aj = R.
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As shown in [9, 7] we have

ρ0,1[ρ] = −F
−1(BΛ) ∗ ρ (18)

where F
−1(BΛ) is a radial L1 function. Going further, we see Q1,0[·] is a very specific

operator.

Lemma 1. F1,0 : Q 7→ Q1,0(Q) is a bounded linear map of Sp for p = 1 and p = 2
with respective norms O(log(Λ)) and O(

√
log(Λ)). By interpolation it is in L(Sp) for

1 < p = 1+ε < 2 with norm O((log(Λ))1−
ε
2 ). Moreover F1,0 is also a bounded operator

in L(Qg) with norm O(1), and the function

ρF1,0 : Q ∈ Qg 7→ ρ
(
F1,0[Q]

)
∈ Cg

is bounded with norm O(
√

log(Λ)). Provided α log(Λ) is sufficiently small, the operator
(Id − αF1,0) is invertible with inverse T in all those Banach spaces with norm O(1).
The function t : Q ∈ Qg 7→ ρ

(
T[Q]−Q

)
∈ Cg is bounded and

||tQ||Cg >
√
Lα||Q||Qg .

This Lemma is proved in Section 4. We write

T := T− Id, τQ := ρT(Q), τj,k := ρT(Qj,k) and tQ := ρT(Q). (19)

If Q ∈ Qg ∩S
P0
−

1 we obtain that τQ ∈ C. If ρQ ∈ Cg then τQ ∈ Cg.
The self-consistent equation (15) is rewritten:

(Id − αF1,0)(γ
′) = N + αQ0,1(ρ

′′
γ) +

+∞∑

j=2

Qj(γ
′, ρ′′γ).

Taking the inverse T, we get:

γ′ = T
{
N + αQ0,1(ρ

′′
γ) +

+∞∑

j=2

Qj(γ
′, ρ′′γ)

}
. (20)

The important proposition holds:

Proposition 1. For ρ ∈ C we have ατ0,1(ρ) = −f̌Λ ∗ρ where f̌Λ is a radial L1 function
whose L1-norm is O(α log(Λ)).

Its technical proof is in Appendix C.
We also need a theorem in the same spirit of Furry’s one [6, 9]:

Theorem 1. There exists K > 0 such that for any ρ0, ρ1 (say in C) and α
√

log(Λ) ≤ K
there holds:

ρ
{
T(Q0,2(ρ0))

}
= ρ
{
T
(
Q1,1(TQ0,1(ρ1), ρ0)

)}
= 0. (21)

Remark 8. T(Q0,2(ρ0)) and T(Q1,1(T(Q0,1(ρ1)), ρ0)) may not vanish but their density
do due to the fact that the trace TrC4 is taken. The smallness of α

√
log(Λ) is to ensure

the T operator is well defined on Q1.

Computation of
∫
R
ργ(x)dx:

Theorem 2. Let M be in N and γ′ = γ+N be a minimizer of Eν
BDF(M) and assume

M, ||ν||2C > log(Λ) and (14), the decomposition of γ′ is that of (15). Then ργ ∈ L1 and

∫
ργ(x)dx = − αfΛ(0)

1 + αfΛ(0)
(M − Z) (22)

Existence of minimizers.
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Theorem 3. There exists L0 > 0 satisfying the following result:
for any non-negative function ν ∈ C ∩ L1 with Z =

∫
ν and 0 < L ≤ L0, there

exists α1 = α1(ν, L) > 0 such that if α ≤ α1 and fΛ(0)
1+fΛ(0)

= a then for any integer

0 ≤M < Z + 1 the problem Eν
BDF(M) admits a minimizer.

Let γ′ = χ(0,µ](Dγ′) be a minimizer, decomposed as in (15) and let Uα be defined
as follows:

Uα :
L2(R3,C4) → L2(R3,C4)

φ(x) 7→ α−3/2φ( x
α
)
.

Then as α tends to 0, U∗
αχ(0,µ](Dγ′)Uα tends to a minimizer of

EZ
nr(Γ) := 1

2
Tr(−∆Γ)− Z(1− a)Tr

(
1
|·|Γ
)

+ 1
2
(D(ρΓ, ρΓ)− Ex[Γ])− aD(ρΓ, ρΓ), 0 ≤ Γ ≤ 1, Tr(Γ) = M.

Remark 9. Thanks to Section C and [7] we know that

fΛ(0)

1 + fΛ(0)
=

2
3π
α log(Λ)

1 + 2
3π
α log(Λ)

+O(α+ (α log(Λ))2).

Banach spaces. We use several Banach spaces. For p ∈ [1,+∞], s ≥ 0, ||·||Lp

(resp.||·||Hs ) is the norm of the usual Lp (resp. Sobolev) space. We write ||·||Sp for the
norm of Schatten class operators Sp [21]. The norm of bounded linear operator in H

is written ||·||B . We recall ||·||Ex and ||·||C have already been defined in Sections 1 and
2 and ||·||Qg , ||·||Cg are defined in Remark 6.

With the fixed point method we would like to estimate together

• ||FQ(Q,ρ)||T and ||Fρ(Q,ρ)||C,

• In general ||FQ(Q, ρ)||Qg and ||Fρ(Q, ρ)||Cg . We define Xg := Qg × Cg

Remark 10. Throughout the paper we write:

∀ p ∈ B(0,Λ), sp := ̂sign(D0)(p) =
D̂0(p)

Ẽ (p)
. (23)

3 Description of minimizers

3.1 Minimizers and fixed point schemes

Let γ′ = γ+N be a minimizer for Eν
BDF(M). From Eq. (17) and (18), it is possible to

define a fixed-point scheme in the spirit of [9]: we define

F (1) = F
(1)
Q × F

(1)
ρ : X1 → X1,

F
(1)
Q (Q′, ρ′′) = N +

∞∑

ℓ=1

αℓQℓ(Q
′, ρ′′), (24a)

F (F (1)
ρ (Q′, ρ′′); k) =

1

1 + αBΛ(k)
n̂′′(k)+

1

1 + αBΛ(k)

(
αρ̂1,0(Q

′; k)+
∞∑

ℓ=2

αℓρ̂ℓ(Q
′, ρ′′; k)

)

(24b)
To prove F (1) is well-defined we use the following Lemma proved in Section 5.

Lemma 2. Let g be some function satisfying (6), with constant K(g) > 0. There exists
C0 > 0 such that for any J ≥ 2, the linear operator:

(Q, ρ) ∈ Qg × Cg 7→ (QJ(Q, ρ), ρJ (Q,ρ)) ∈ Qg × Cg

is bounded with norm lesser than 2KJ
(g)C

J
0J

1/2.

This gives:
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Lemma 3. Let γ′ = γ +N be a minimizer for Eν
BDF(M). In the regime of Remark 4

the following holds:

1. F (1) : BX1(0, R0) → BX1(0, R0) is well-defined for some R0 > 0 and this restric-
tion is a Lipschitz function with constant lesser than 1.

2. (γ′, ρ′′γ) is in the previous ball and so is the unique fixed point of F (1), moreover:

||F (1)(γ′, ρ′′γ)− (N,n′′)||X1 = o(1).

3. As a consequence N = χ(0,µ](DQ) has rank M0 =M .

Proof of part 3. If we assume the first two points, the last one is clear. Indeed as γ
is a difference of an orthogonal projector and P0

−, we get |Tr0(γ)| > ||γ||2S2
= o(1). As

shown in [9], this must be an integer: Tr0(γ) = 0 and

Tr(N) = Tr0(N) = Tr0(γ
′)− Tr0(γ) =M.

2

It is more subtle to prove ργ is in L1: we need another fixed point scheme.
We see ρ′′γ as the fixed point of a function F (2) defined in (a ball of) C and also

defined in (a ball of) C ∩ L1, namely:




h2 = α2τ1,1
{
T[N ] + α2

{
αTQ̃3(γ

′, ρ′′γ) +TQ2,0(γ
′, ρ′′γ)

}
, ρ′′γ

}
+ α2τ2,0(γ

′)

F
(2)
2 (ρ′′) = α2

(
τ1,1
{
α2
[
TQ1,1(γ

′, ρ′′) +TQ0,2(ρ
′′)
]
, ρ′′
})

h3 = α4τ
(
Q̃4(γ

′, ρ′′γ)
)
+ α3

{
τ3,0(ρ

′′
γ) + τ2,1(γ

′, ρ′′γ)
}

F
(2)
3 (ρ′′) = α3τ0,3(ρ

′′) + α3τ1,2(γ
′, ρ′′)

(25)

F
{
F (2)(ρ′′)

}
=

1

1 + fΛ(·)
n̂′′ +

1

1 + fΛ(·)
{
ĥ2 + F

{
F

(2)
2

}
+ ĥ3 + F

{
F

(2)
3

}}
(ρ′′) (26)

Remark 11. The definition of F (2) may appear complicated. It is built on the self-
consistent equation:

ρ′γ = τ
{
N + αQ0,1(ρ

′′
γ) + α2

(
Q̃2(γ

′, ρ′′γ)−Q1,1(γ
′, ρ′′γ)

)}
+ α2τ

[
Q1,1(F

(1)
Q (γ′, ρ′′γ), ρ

′′
γ)
]
.

Notation 12. We introduce the function FΛ := fΛ
1+fΛ

, studied in Appendix C: among

other results we prove there that F̌Λ ∈ L1.

Lemma 4. Let γ′ = γ +N be a minimizer for Eν
BDF(M) and F (2) the function built

on it. In the regime of Remark 4, this is a well-defined function in C and C ∩ L1.
There exists R0 > 0 such that B(0, R0) is F (2)-invariant and on which F (2) is a

contraction; ρ′′γ is the only fixed point in both Banach spaces. In particular ργ ∈ L1.

Remark 13. The study of Q1,0 enables us to give the linear response of the vacuum to
the presence of electrons N and the external potential ν:

{
γ = αT[Q0,1((δ0 − F̌Λ) ∗ (n− ν + tN))] + TN + · · ·
ργ = −F̌Λ ∗ (n− ν) + (δ0 − F̌Λ) ∗ tN + · · ·

Remark 14. Results of Lemma 2 and 3 are already in arxiv.1211.3830 but we have
chosen to rewrite a simplified proof here because we use the same estimates to prove
Lemma 4 in a more difficult way.
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3.2 A priori estimates

Lemma 5. Let M ∈ N and Q a test function Q for Eν
BDF(M) and assume

Eν
BDF(Q) ≤ Eν

BDF(M)+ε where 0 < ε = o(α||ν||2C). Then we have ||Q||2S2
> M+α||ν||2C

and
Tr(|∇|Q2) > α||ν||2C + α1/2M +

√
αM ||ν||C ,

α||ρQ − ν||2C > α||ν||2C + α3/2M +
√
αMα||ν||C .

As a corollary we get the following result.

Lemma 6. Assume we are in the regime of Remark 4 and let Q be as in Lemma 5.
Let DQ be DQ := D0 + αB = D0 + α((ρQ − ν) ∗ 1

|·| −RQ). In the sense of self-adjoint
operator we have

(1− o(1))|D0| ≤ |D0 + αBQ| ≤ (1 + o(1))|D0|, (27)

where the o(1) is O
(
α||ν||C + α5/4M1/2 + (αM)1/4α||ν||1/2C

)
.

Proof of Lemma 5: It is known [11] that Eν
BDF(M) ≤M . There holds:

M + ε+ α
2
||ν||2C ≥ Eν

BDF(Q) + α
2
||ν||2C ≥

(
1− απ

4

)
Tr0(D0Q) + α

2
||ρQ − ν||2C

≥
(
1− απ

4

)
||Q||2S2

+ α
2
||ρQ − ν||2C.

We can say more. Indeed:

Tr0(D0Q)−M = Tr(|D0|1/2(Q++ −Q−−)|D0|1/2)− Tr0(Q)

≥ Tr(|D0|1/2Q2|D0|1/2)− Tr(Q2)

≥ 1

(2π)3

∫∫
(Ẽ (p)− 1)|Q̂(p, q)|2dpdq,

(28)

and Ẽ (p)− 1 ≥ 1
2

p2

E(p)
. Then thanks to Kato’s inequality (56):

Tr(QRQ) ≤ π
2
Tr(|∇|Q2) which leads to:

1

2
Tr
( −∆

|D0|
Q2
)
+
α

2
||ρQ − ν||2C ≤ ε+ α

( ||ν||2C
2

+
π

4
Tr(|∇|Q2)

)
.

Splitting at level r0 = απ√
1−(απ)2

(to get α |p|π
4

≤ 1
4

|p|2
E(p)

for |p| ≥ r0) we obtain:

Tr
( −∆

|D0|
Q2
)

> α(||ν||2C +M), (29)

thus by the Cauchy-Schwartz inequality:

Tr(|∇|Q2) > α||ν||2C +
√
αM +

√
αM ||ν||C . (30)

Proof of Lemma 6:

For all f ∈ HΛ we have:

〈 |D0|2f , f〉(1−α|||D0|−1B||B)2 ≤ 〈|D0+αB|2f , f〉 ≤ 〈 |D0|2f , f〉(1+α|||D0|−1B||B)2.
(31)

However thanks to (53) and second point of Lemma 8: ||RQ|∇|−1/2||B >
√

Tr(QRQ)
and

||(ρQ − ν) ∗ 1
|·| |∇|−1/2||B > ||(ρQ − ν) ∗ 1

|·| ||L6 > ||ρQ − ν||C.
As the square root is monotone, there holds

(1− α|||D0 |−1BQ||B)|D0| ≤ |D0 + αBQ| ≤ (1 + α|||D0|−1BQ||B)|D0|, (32)

and in the regime precised in Remark 4, this gives (1 − o(1))|D0| ≤ |D0 + αBQ| ≤
(1 + o(1))|D0|. This o(1) is of order O(α(||ρQ − ν||C + || |∇|1/2Q||S2

)), that is of order
O
(
α||ν||C + α5/4M1/2 + (αM)1/4α||ν||1/2C

)
. 2

A priori estimates of a minimizer
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Lemma 7. Let us take γ′ = γ +N a minimizer of Eν
BDF(M), decomposed as in (15).

Then we have in the regime (14)

Tr(|D0|N) > log(Λ), ||γ||T > > L,

||n′′||C >
√

log(Λ), ||ργ ||C > L
√

log(Λ).

Proof: For Eν
BDF(M) with M, ||ν||2C > log(Λ), we have thanks to Lemma 5:

α(||ρ′′γ ||C +
√

Tr(|∇|γ′)) >
√
α(α1/2||ν||C + α3/4M1/2 + (αM)1/4α1/2||ν||1/2C ) =: α1/2ℓ.

We have ℓ = O(
√
L). Using Eq. (20) and assuming Lemma 2 and Proposition 1 above

we get that:

||ργ ||C ≤ ||F̌Λ ∗n′′||C + ||(δ0 − F̌Λ) ∗ (tN +
∑

j≥2

αjτj)||C > L||n′′||C +
√
Lα||N ||T +O(Lα).

As ||n′′||C ≤ ||ρ′′γ ||C + ||ργ ||C we get

||n′′||C > ||ν||C + (αM)1/4(M1/4 +
√

||ν||C) +
√
LαM +O(αℓ2) >

√
log(Λ).

Thanks to the equations D0ψj = µjψj −Bψj , there holds:

Tr(|D0|N) > M(1 +O(
√
αℓ)) > log(Λ).

Finally we have

||γ||T >
√
Lα||n′′||C + α

√
Tr(|∇|Q2) +O(Lα) > L+O(Lα) > L

||ργ ||C > L||n′′||C +
√
LαM +O(Lα) > L

√
log(Λ).

(33)

2

4 The operator Q1,0(·)

Remark 15. • If Q is a nonnegative operator then so is RQ when it is well defined.
Moreover if Q is self-adjoint then so is RQ.

• The R· operator commutes with Fourier multiplier of the form g(p − q), indeed
we have

R̂Q(p, q) =
1

2π2

∫
Q̂(p− l, q − l)

|l|2 .

In particular there holds:
[∂j , RQ] = R([∂j , Q]). (34)

Lemma 8. Let Q be in S(R3 ×R3).

1. We have:
|| |∇|−1/2RQ||S2

>
√

Tr(R∗
QQ).

In particular for any g ≥ 1 there holds:
∫∫

g(p− q)

|p| |R̂Q(p, q)|2dpdq >
∫∫

|p+ q|g(p− q)|Q̂(p, q)|2dpdq.

2. There exists K > 0 such that for all 0 < ǫ ≤ 1

|| |D0|−
1+ε
2 RQ|D0|−

1+ε
2 ||S1

≤ K
ε
||Q||S1

,

|| |D0|−(1+ε)RQ||S2
≤ K√

ε
||Q||S2

.

Taking |D0|−1/2 instead of |D0|−(1+ε)/2 we get the same estimates above provided
Q ∈ S2(HΛ) and ε−1 is replaced by log(Λ).

We extend all those inequalities by density in the corresponding Banach spaces.

We prove this Lemma in Appendix A.
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4.1 Proof of Lemma 1

In the Schatten norms Let us consider the operator Q1,0 defined as:

Q1,0 : Q 7→ Q1,0(Q) := − 1

2π

∫ +∞

−∞
dη

1

D0 + iη
RQ

1

D0 + iη
. (35)

We recall s· is defined in (23). There holds [9]:

Q̂1,0(p, q) =
1

2

1

Ẽ (p) + Ẽ (q)

(
R̂(p, q)− spR̂(p, q)sq

)
(36)

which is a difference of two operators who are in S2 (resp. S1) if Q is in S2 (resp.
S1). By interpolation it is in Sp (1 ≤ p ≤ 2) if Q is so. Let us show the S1-norm is
O(log(Λ)) while the S2-norm is O(

√
log(Λ)). Indeed

1

f(p) + f(q)
=

∫ +∞

s=0

e−sf(p)−sf(q)ds,

therefore if Q is nonnegative, so is
∫ +∞

s=0

D0

|D0|F
−1(e−sẼ(·))RQF

−1(e−sẼ(·)) D0

|D0|ds :

it is a sum of nonnegative operators. We can rewrite Q1,0 (and Q0,1) as

Jt(x− y) := F
−1(exp(−tẼ (p)))(x− y) (37a)





Q1,0(Q) = 1
2

∫ +∞

t=0

(JtRQJt − Jt
D0

|D0|RQ
D0

|D0|Jt)dt

Q0,1(ρ) = − 1
2

∫ +∞

t=0

(
Jt(ρ ∗ 1

|·| )Jt − Jt
D0

|D0| (ρ ∗
1
|·| )

D0

|D0|Jt

)
dt

(37b)

Then we remark that (Ẽ (p) + Ẽ (q))−1 ≤ Ẽ (p)−1/2 Ẽ (q)−1/2 and that

|| |D0|−
1
2R(F−1(|Q̂(p, q)|))|D0|−

1
2 ||S2

≤ K
√

log(Λ)||F−1(|Q̂(p, q)|)||S2

= K
√

log(Λ)||Q̂||S2
= K

√
log(Λ)||Q||S2

.

By interpolation (1 < p = 1− ε+ 2ε < 2), there exists KS

(1,0) > 0

||Q1,0(Q)||Sp ≤ KS

(1,0)(log(Λ))
1− ε

2 ||Q||Sp , (38)

ρ[Q1,0(·)] We show here inequalities needed to estimate T(Qℓ(Q, ρ)) and τℓ(Q, ρ) in
norms ||·||Qg , ||·||Cg . There exists a constant CR (defined in [9]) such that for any
function g ≥ 0
∫∫

(Ẽ (p) + Ẽ (q))g(p− q)|Q̂1,0(Q,p, q)|2dpdq ≤ C2
R

∫∫
g(p− q)E(p+ q)|Q̂(p, q)|2dpdq.

(39)
By Cauchy-Schwartz inequality: (cf [9] and inequality (95))

|ρ̂1,0(Q, k)|2 > |k|2
∫

B(0,Λ)

|R̂(u+ k
2
, u− k

2
)|2

1 + Ẽ (u, k/2)
du

∫

B(0,Λ)

du

1 + Ẽ (u, k/2)

1

1 + |u|2 + |k|2/4 ,

(40)
where Ẽ (u, k/2) := max(Ẽ (u+ k/2) , Ẽ (u− k/2)). So the following upper bound
holds:

|ρ̂1,0(Q, k)|2 ≤ C(1,0)

∫
E(2u)|Q̂(u+ k

2
, u− k

2
)|2du, (41)

where 0 < C(1,0) = C(1,0)(Λ) satisfies C(1,0) > log(Λ).
Well-definedness of T and τ
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Thanks to (38) we can prove Lemma 1: for α log(Λ) sufficiently small the function
T is a linear bounded operator in L(Sp) for 1 ≤ p = 1 + ε ≤ 2 with norm lesser than

C(p)
T,S :=

+∞∑

ℓ=0

(
αKS

(1,0)(log(Λ))
1− ε

2
)ℓ

=
1

1− α(log(Λ))1−
ε
2KS

(1,0)

which is finite as soon as α log(Λ) is sufficiently small. We write CT,S := C(1)
T,S.

As T = (Id − αQ1,0)
−1 =

∑+∞
ℓ=0 α

ℓQ
◦(ℓ)
1,0 (·) it suffices to show that αQ1,0(·) is a

bounded operator with norm lesser than 1. Thanks to inequality (39) we see that it is
bounded with norm lesser than αCR. And T is a bounded linear operator with norm
lesser than

CT,Qg :=
1

1− αCR
. (42)

Then inequalities (39) and (41) enable us to say that for ℓ ≥ 1:

|ρ̂(G◦(ℓ)
1,0 (Q); k)|2 ≤ α2ℓCℓ

(1,0)|k|2
∫
E(2u)|Q̂(u+ k

2
, u− k

2
)|2du

Therefore:
∫
g(k)

|k|2 |ρ̂(G◦(ℓ)
1,0 ; k)|2 ≤ α2ℓCℓ

(1,0)

∫∫
g(p− q)E(p+ q)|Q̂(p, q)|2dpdq (43)

and t is a bounded linear operator with norm lesser than

Ct,C :=
+∞∑

ℓ=1

(α
√

C(1,0))
ℓ = O(α

√
log(Λ)) (44)

for α
√

log(Λ) sufficiently small.

Notation 16. Let us define for 1 ≤ p = 1 + ε ≤ 2:

Yα,Λ(p) = Y (p) > C(p)
T,S, (45)

which is an upper bound of the L(Sp)-norm of Q 7→ |D0|−7/12R(T[Q])|D0|−7/12: cf
Lemma 8 in Appendix A.1.

We have thus proved:
{

||T(Q)||Qg ≤ CT,Qg ||Q||Qg =
||Q||Qg

1−αCR
,

||τQ||Cg ≤ Ct,C||Q||Qg .
(46)

4.2 Proof of Theorem 1

Before the proof let us define recursively the function A
(ℓj)

J
j=1

J by:

{
Aℓ1

1 Q̂(p, q) := Q̂(p− ℓ1, q − ℓ1)− spQ̂(p− ℓ1, q − ℓ1)sq,

A
(ℓ1,L)
J Q̂(p, q) := Aℓ1

1

(
AL

J−1Q
)
(p, q) with J ∈ N∗, ℓj ∈ R3.

(47)

It appears in the Fourier transform of Q◦J
1,0[Q] (see Appendix C), s· is defined in (23).

Proof: The proof is based upon the following fact:

Lemma 9. The trace TrC4 of the product of an odd number of Dirac matrices (that
is α1,α2,α3, β) vanishes.

Taking 〈·〉 in the sense of algebra we define:




AD := 〈α1,α2,α3, β〉,
A+

D := 〈Id, (1− δjk)αjαk, βαj〉
A−

D := α1A+
D +α2A+

D +α3A+
D + βA+

D

(48)
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It is clear that AD = A+
D +A−

D and Lemma 9 just says that

∀M ∈ A−
D : TrC4(M) = 0.

Remark 23 and Appendix C implies that for almost all (p, q) ∈ R3 ×R3:

• Ĝ◦J
1,0(Q0,1(ρ); p, q) ∈ A+

D,

• if Q̂(p, q) ∈ Aε
D then so is Ĝ◦J

1,0(Q; p, q).

Now let us study Q0,2(ρ):

Q0,2 = − 1

2π

∫ +∞

η=−∞

dη

D0 + iη
vρ

1

D0 + iη
vρ

1

D0 + iη
.

We recall Qε1 ε2 ε3
0,2 and Qε1,R,ε2,v,ε3

1,2 are defined in Section 2. By the residuum formula
we have Qε ε ε

0,2 = 0 for any ε ∈ {+,−}. We then look at Q+−−
0,2 and Q−++

0,2 together,
Q+−+

0,2 and Q−+−
0,2 , Q−−+

0,2 and Q++−
0,2 . Those pairs are chosen such that:

A =
1

2π

∫ +∞

−∞
dη

∫

p1

dp1
P 0
+(p)

Ẽ (p) + iη
v̂(p− p1)

P 0
−(p1)

−Ẽ (p1) + iη
v̂(p1 − q)

P 0
−(q)

Ẽ (q) + iη

=

∫

p1

dp1
8

1

Ẽ (p) + Ẽ (p1)

1

Ẽ (p) + Ẽ (q)
(1 + sp)v̂(p− p1)(1− sp1)v̂(p1 − q)(1− sq),

B =
1

2π

∫ +∞

−∞
dη

∫

p1

dp1
P 0
−(p)

Ẽ (p) + iη
v̂(p− p1)

P 0
+(p1)

−Ẽ (p1) + iη
v̂(p1 − q)

P 0
+(q)

Ẽ (q) + iη

= −
∫

p1

dp1
8

1

Ẽ (p) + Ẽ (p1)

1

Ẽ (p) + Ẽ (q)
(1− sp)v̂(p− p1)(1 + sp1)v̂(p1 − q)(1 + sq),

However

1
2
(1 + sp)v̂(p− p1)(1− sp1)v̂(p1 − q)(1− sq)− (1− sp)v̂(p− p1)(1 + sp1)v̂(p1 − q)(1 + sq)

= spv̂(p− p1)sp1 v̂(p1 − q)sq + spv̂(p− p1)v̂(p1 − q)− v̂(p− p1)v̂(p1 − q)sq − v̂(p− p1)sp1 v̂(p1 − q).
(49)

Remark 17. Thinking of Q1,2(Q, ρ) we have done as if v̂(p − p1) and v̂(p1 − q) were
matrices.

In (49) there only remains matrices in A−
D. Symmetrically:

• 1
2
(1 + sp)v̂(p− p1)(1− sp1)v̂(p1 − q)(1 + sq)− (1− sp)v̂(p− p1)(1 + sp1)v̂(p1 − q)(1− sq)

= −spv̂(p− p1)sp1 v̂(p1 − q)sq + spv̂(p− p1)v̂(p1 − q) + v̂(p− p1)v̂(p1 − q)sq − v̂(p− p1)sp1 v̂(p1 − q),

• 1
2
(1− sp)v̂(p− p1)(1− sp1)v̂(p1 − q)(1 + sq)− (1 + sp)v̂(p− p1)(1 + sp1)v̂(p1 − q)(1− sq)

= spv̂(p− p1)sp1 v̂(p1 − q)sq − spv̂(p− p1)v̂(p1 − q) + v̂(p− p1)v̂(p1 − q)sq − v̂(p− p1)sp1 v̂(p1 − q).
(50)

Therefore for almost all (p, q): Q̂0,2(ρ; p, q) ∈ A−
D : its trace TrC4 vanishes and for

all J ≥ 1:

ρ̂(G◦J
1,0(Q0,2(ρ));k) = Cst

∫∫

u,ℓ1

· · ·
∫

ℓJ

dudℓ∏
1≤j≤J

|ℓj |2
TrC4

A
(ℓj)

J
j=1

J Q̂0,2(ρ)(u+ k
2
, u− k

2
)

∏
0≤j≤J

(Ẽ (u+ k/2 − Lj) + Ẽ (u− k/2− Lj))

(51)

where for almost all (p, q, ℓj): TrC4

{
A

(ℓj)
J
j=1

J Q̂0,2(ρ; p, q)
}

= 0 for those matrices are

in A−
D.

Thus ρ̂(G◦J
1,0(Q0,2(ρ)); k) = 0 for almost all k ∈ R3 and so τ̂0,2(ρ;k) = 0 for almost

all k ∈ R3, that is τ̂0,2(ρ) = 0.

It remains to prove that τ1,1
(
αT(Q0,1(ρ0)), ρ1

)
= 0. It suffices to show that for all

J, J ′ ≥ 0: ρ
{
G◦J

1,0

[
Q1,1

(
αG◦J′

1,0 [Q0,1(ρ0)], ρ1
)]}

vanishes. Once again we look at

• Q+R−v−
1,1 (G◦J′

1,0 (Q0,1(ρ0)), ρ1) and Q−R+v+
1,1 (G◦J′

1,0 (Q0,1(ρ0)), ρ1),
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• then Q+v−R−
1,1 (G◦J′

1,0 (Q0,1(ρ0)), ρ1) and Q−v+R+
1,1 (G◦J′

1,0 (Q0,1(ρ0)), ρ1), and so on.

As Ĝ◦J′

1,0 (Q0,1(ρ0); p, q) ∈ A+
D for almost all p, q, then Q̂+R−v−

1,1 (G◦J′

1,0 (Q0,1(ρ0); p, q), ρ1)+

Q̂−R+v+
1,1 (G◦J′

1,0 (Q0,1(ρ0)), ρ1; p, q) ∈ A−
D for almost all p, q thanks to (49) and (50). So

its trace TrC4 vanishes. The same result holds for the other cases: Q+v−R−
1,1 +Q−v+R+

1,1 ,
Q+−+

1,1 +Q−+−
1,1 , Q−−+

1,1 +Q++−
1,1 and as in (51):

ρ̂(G◦J
1,0(Q1,1(G

◦J′

1,0 (ρ0), ρ1)); k) = 0 for almost all k.

2

5 The fixed point method

We give here proofs of Lemmas 2, 3 and 4.

5.1 Tools

• Let us now recall some Sobolev inequalities in R3. For suitable f -say H1- we have

||f ||L6 > ||∇f ||L2 , ||f ||L4 > |||∇|3/4f ||L2 ,

||f ||L3 > |||∇|1/2f ||L2

(52)

In particular, we use them to the following inequalities: for ρ ∈ C, vρ := ρ ∗ 1
|·| and

φ ∈ H1/2:
||vρφ||L2 > ||vρ||L6 ||φ||L3 > ||ρ||C |||∇|1/2φ||L2 . (53)

||ρ∗ 1
|·| ||L4 > |||∇|3/4ρ∗ 1

|·| ||L2 >

√∫ |ρ̂(k)|2
|k|5/2 dk >

(
inf
ε>0

{
2πε1/2||ρ̂||2L∞+ε−1/2||ρ||2C

})1/2
.

(54)
With vρ := ρ ∗ 1

|·| equation (54) will be used in:

|| 1
D0+iη

vρ||S4
, || 1

|D0+iη|1/2 vρ
1

|D0+iη|1/2 ||S4
≤ K

1/4
2

E(η)1/4
||ρ ∗ 1

|·| ||L4 (55)

We recall Kato’s and Hardy’s inequalities for φ ∈ L2(R3):




∫

R3

|ϕ(x)|2
|x| dx ≤ π

2
〈|∇|ϕ , ϕ〉,

∫

R3

|ϕ(x)|2
|x|2 dx ≤ 4〈(−∆)ϕ , ϕ〉,

(56)

and the Kato-Seiler-Simon’s inequality (KSS) for compact operators in B(L2(R3)):

∀ 2 ≤ p ≤ +∞ : ||f(−i∇)g(x)||Sp ≤ (2π)−3/p||f ||Lp ||g||Lp . (57)

• We recall that for any p, q ∈ B(0,Λ) we have (see arxiv.1211.3830.)

∣∣P̂0
−(p)− P̂0

−(q)
∣∣ =

∣∣P̂0
+(p)− P̂0

+(q)
∣∣ > |p− q|

max(Ẽ (p) , Ẽ (q))
. (58)

By (58) we get the following result.

Lemma 10. Let ρ ∈ C, then there exists K > 0 such that for any a > 1/2 and
ε ∈ {+,−} we have:

||P0
ε vρP0

−ε|D0|−a||S2
≤ K√

2a − 1
||ρ||C .
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Proof: It is obvious once we have seen the integral kernel of its Fourier transform is
lesser than:

K
|ρ̂(p− q)|
|p− q|

1

E(q)a max(E(q), E(p))
.

2

• For m > 1 we define the constant Km as follows:

Km =
1

2π

∫

R

dx

E(x)m
. (59)

By Laplace’s method [3], we have

O
m→+∞

(m−1/2). (60)

5.2 Q0,1

We estimate ||Q0,1||Qg as in [9], we remark that:

∫

B(0,Λ)

du

E(u+ εk/2)2
Ẽ (u+ k/2) + Ẽ (u− k/2)

(Ẽ (u+ k/2) + Ẽ (u− k/2))2
≤ 4π

∫ Λ

0

du√
1 + r2

≤ 4π(1 + log(Λ)) > log(Λ),
(61)

leading to:
∫∫

g(p− q)(Ẽ (p) + Ẽ (q))|Q̂0,1(ρ; p, q)|2dpdq > (1 + log(Λ))||ρ||2Cg
, (62)

where we have used (58).

5.3 Proof of Lemma 2

We recall that for J ≥ 1:

QJ :=
1

2π

∫ +∞

−∞

dη

D0 + iη

∏

1≤j≤J

(
B

1

D0 + iη

)

where B = vρ −RQ.
We write

a(Q) := F
−1(|Q̂|) and a(ρ) := F

−1(|ρ̂|).
It is clear that |Q̂k,ℓ(p, q)| is lesser than the integral kernel of the Fourier transform of

a(Qk,ℓ) :=
1

2π

∫ +∞

−∞

dη√
|D0|2 + η2

(
a(ρ) ∗ 1

|·| +R[a(Q)]
)J
.

We write a(vρ) = va(ρ) and a(RQ) := Ra(Q) and dη :=
√

|D0|2 + η2. We have:

||a(vρ)||L6 > ||∇avρ||L2 > ||a(ρ)||C = ||ρ||C ,
||a(vρ)||L4 > || |∇|3/2a(vρ)||L2 > ||â(ρ)||L∞ + ||a(ρ)||C = ||ρ̂||L∞ + ||ρ||C ,
|| 1

|·|1/2 a(RQ)||S2
> ||a(RQ)||Ex > ||a(Q)||T = ||Q||T.

By the KSS inequality, there exist C6,C4 > 0:

||d−1/2
η vρd

−1/2
η ||S6

≤ C6E(η)−1/2||ρ||C ,
||d−5/12

η vρd
−7/12
η ||S4

≤ C4E(η)−1/4||vρ||L4 .
(63)

As g satisfies (6), we have:

g(p− q)â(QJ(Q, ρ); p, q) ≤ JKJ
(g)â

(
QJ

[
F

−1(g(p′ − q′)Q̂(p′, q′)),F−1(ρ)
]
; p, q

)
.
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It suffices to check that for p0 = p, pJ+1 = q and p1, · · · , pJ ∈ R3 we have:

g(p− q) ≤
J+1∑

j=1

Kj
(g)g(pj−1 − pj) ≤ JKJ

(g)

J+1∏

j=1

g(pj−1 − pj).

In the definition of ||·||Qg , there remains to multiply by Ẽ (p)1/2 + Ẽ (q)1/2. We use
the first or the last d−1

η to get:

Ẽ (r)1/2√
Ẽ (r)2 + η2

≤ 1

(Ẽ (r)2 + η2)1/4
with r ∈ {p, q}.

For all the terms QJ(Q, ρ) with J ≥ 3 we get that:

||aQJ (Q, ρ)||Qg ≤
JKJ

(g)

2π

(
|| 1

|·|1/2R[a(Q)]||S2
+ C6||ρ||C

)J ∫ +∞

−∞

dη

Ẽ (η)(J+1)/2
.

For J = 2, there is a problem for Q0,2(ρ) because the product of two operators in S6

is not necessarily Hilbert-Schmidt. By the Cauchy expansion we have [9]

Q+···+
J = Q−···−

J = 0.

So it suffices to treat Qε1,ε2,ε3
0,2 with (ε1, ε2, ε3) 6= (+ + +), (− − −). In particular we

have a change of sign +− or −+. By Hölder inequality and Lemma 10 we have for
ε ∈ {+,−}:

||d−1/2
η vε,−εd−1/4

η ||S2
> ||ρ||C

{∫ dq

E(q)7/2

}1/2

> ||ρ||C .

Hence using the above inequality and (63) we get:

||Q0,2(ρ)||Qg > ||ρ||2C
∫ +∞

−∞

dη

E(η)1+4−1
.

By (60), there exists K > 0 such that

||QJ (Q, ρ)||Qg ≤ J1/2(K ×K(g)(||Q||F + ||ρ||Cg )
)J
.

To deal with ρJ , we use the same method as in [9] and estimate ||ρJ ||C by duality.
We consider ζ ∈ S(R3) a Schwartz function and prove that for any k, ℓ ≥ 0 with
k + ℓ ≥ 2 we have:

∣∣Tr(Qk,ℓζ)
∣∣ ≤ Cst(Q, ρ, k, ℓ)

√∫ |p|2|ζ̂(p)|2
g(p)2

dp = Cst(Q, ρ, k, ℓ)||ζ||C′
g
.

We emphasize that by Furry’s Theorem [6, 9] we have ρ0,2J = 0 for any J ∈ N∗.
First we must prove that Qk,ℓζ is trace-class. We use Hölder’s inequalities for S2

and do as in [9]:

||Qk,ℓζ||S1
≤ ||Qk,ℓ|D0|2||S2

|| 1
|D0|2 ζ||S2

> E(Λ)2||Qk,ℓ||S2
||ζ||L2 .

It is clear that
|Q̂k,ℓζ(p, p)| ≤ | ̂a(Qk,ℓ)ζ|.

Writing dη(p) :=
√
Ẽ (p)2 + η2, p0 = p and m = (m1, · · · ,mJ) ∈ {vρ, RQ}J we have:

2π| ̂a(Qm
k,ℓ)ζ(p, p)| ≤

∫

R

dη
∫

(B(0,Λ))J

dp
dη(p)

J∏

j=1

|m̂j(pj , pj−1)|dη(pj)−1|ζ̂(pJ − p)|
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We replace |ζ̂(pJ − p)| by:

|ζ̂(pJ−p)|×
g(pJ − p)

g(pJ − p)
≤ JKJ

(g)

|ζ̂(pJ − p)|
g(pJ − p)

J∏

j=1

g(pj−pj−1) =: JKJ
(g)|ζ̂′(pJ−p)|

J∏

j=1

g(pj−pj−1).

(64)
We write R′ := R

[
F

−1(g(p − q)|Q̂(p, q)|)
]

and V ′ := v
[
F

−1(g(p)|ρ̂(p)|)
]
. For (k, ℓ)

different from (0, 3), (1, 1), (0, 2J) we get that:

|Tr(Qk,ℓζ)| ≤
(k + ℓ)Kk+ℓ

(g)

2π

(
k+ℓ
k

)∫

R

dη||d−1/2
η ζ′d

−1/2
η ||S6

||d−1/2
η R′d

−1/2
η ||kS2

||d−1/2
η V ′d

−1/2
η ||ℓS6

>
(k + ℓ)Kk+ℓ

(g)

2π

(
k+ℓ
k

)
Kk+ℓ

∫

R

dη

E(η)(1+j+ℓ)/2
||Q||kQg

||ρ||ℓCg
.

To deal with ρ1,1, ρ0,3 we use the same method as for ||Q0,2||Qg . We treat the case
of ρ[Q+R−v−

1,1 ] as an example and the other terms are dealt with in the thesis of the
author (to appear in 2014). We have:

|TrC4(Q̂+R−v−
1,1 (p0, p2)ζ̂(p2−p0))| ≤

∫

R

∫

(B(0,Λ))3

dηdp1dp2|R̂Q(p0, p1)||v̂(p1 − p2)|
dη(p0)dη(p1)dη(p2)

|ζ̂−+(p2−p0)|.

Using Lemma 10 and (64) we get that:

|Tr(Q+R−v−
1,1 ζ)| > ||Q||Qg ||ρ||CgK5/4||ζ||C′

g
.

2

5.4 Estimates for F (2)

Let us look at (26): that is let us take γ′ = γ +N a minimizer of Eν
BDF(M) and define

the function F (2). Two Banach spaces will be considered: first C and then C ∩ L1. We
recall that for η ∈ R we write dη =

√
|D0|2 + η2.

5.4.1 Estimates in the C-norm

Thanks to previous estimates (Lemmas 5, 6, a priori estimates (33) and estimates in
the ||·||Cg -norm), in the regime M, ||ν||C > log(Λ) there hold the following non-sharp
estimates:





||h2||C > α2
{
||ρ′′γ ||C

[
||N ||T + α2(||γ′||T + ||ρ′′γ ||C)2

]
+ ||γ′||2T

}

> α2 × log(Λ) = Lα

||h3||C > α3(||γ′||T + ||ρ′′γ ||C)3 > (Lα)3/2.

(65)

Then F
(2)
2 (ρ′′) and F

(2)
3 (ρ′′) are at most cubic in ρ′′:





||F (2)
2 (ρ′)||C > α4(||γ′||T + ||ρ′′||C)||ρ′′||2C

||F (2)
3 (ρ′)||C > α3(||ρ′′||C + ||γ′||T)||ρ′′||2C

||dF (2)
2 (ρ′)||L(C) > α4(||γ′||T||ρ′′||C + ||ρ′′||2C)

||dF (2)
3 (ρ′)||L(C) > α3(||γ′||T||ρ′′||C + ||ρ′′||2C).

(66)

5.4.2 Estimates in the L1
-norm

Our aim in this part is to prove Lemma 11 below which states that F (2) is a well-defined
C

1 function of C ∩ L1.
• First let us prove that h2, h3 ∈ L1 (we recall they are defined in (25)). In fact

they are densities of trace-class operators, to see this we use the methods in the proof
of Lemma 2 above.
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1. N =
∑

j |ψj〉〈ψj | ∈ S1 so T[N ] ∈ S1 and

||τN ||L1 ≤ ||T[N ]||S1
≤ CT,S||N ||S1

. (67)

2. Q2,0(γ
′) ∈ S1 : We have:

||Q2,0(γ
′)||S1

> ||γ′||2ExK2. (68)

3. Q0,ℓ(ρ
′′
γ) with ℓ ≥ 4. As Q+···+

0,ℓ = Q−···−
0,ℓ = 0 there is at least one change of sign

+− or −+. Then with the help of Lemma 10 and (63) we have

||Q0,ℓ(ρ
′′
γ)||S1

> ||ρ′′γ ||ℓCK(ℓ+1)/2+1/4,

the product of ℓ− 1 operators in S6 and one in S2 is trace-class.

4. Similarly Qk,ℓ(γ
′, ρ′′γ) ∈ S1 with k ≥ 2 or k ≥ 1 and ℓ ≥ 3 :

||Qk,ℓ(γ
′, ρ′′γ)||S1

>

(
k + ℓ

k

)
(K||γ′||T)k(K||ρ′′γ ||C)ℓK1+(k+ℓ)/2. (69)

5. Thanks to Furry’s Theorem and Theorem 1:

τ
{
Q0,2(ρ

′′
γ)
}
= τ1,1

{
T[Q0,1(ρ

′′
γ)], ρ

′′
γ

}
= 0. (70)

6. With the same methods: Q0,3(ρ
′′
γ), Q1,2(γ

′, ρ′′γ) ∈ S6/5:

||Q0,3(ρ
′′
γ)||S6/5

> ||ρ′′γ ||3CK2+1/4 and ||Q1,2(γ
′, ρ′′γ)||S6/5

> ||γ′||T||ρ′′γ ||2CK1+3/2.

We use (45) and the inequalities:

||d−3/8
η vρd

−5/8
η ||S6

> E(η)−1/2||ρ||C and ||d−5/8
η R

(
T[Q]

)
d−5/8
η ||S6/5

> Y ( 6
5
)||Q||S6/5

.

Thus:




||T1,1

{
TQ0,3(ρ

′′
γ), ρ

′′
γ

}
||S1

> 2CT,SK5/4||ρ′′γ ||C
(
Y ( 6

5
)||ρ′′γ ||3CK2+1/4

)
,

||T1,1

{
TQ1,2(γ

′, ρ′′γ), ρ
′′
γ

}
||S1

≤ 2CT,SK5/4||ρ′′γ ||C
(
3Y ( 6

5
)||γ′||T||ρ′′γ ||2CK1+3/2

)

||T1,1

{
TN, ρ′′γ

}
||S1

> 2CT,SK5/4||ρ′′γ ||CY ( 6
5
)M.

(71)

7. We apply T, h2 is the density of Q(h2) and h3 of Q(h3) with




Q(h2) = α2
{
TQ1, 1

[
TN + α2T[Q2,0(γ

′) + Q̃3(γ
′, ρ′′γ)]; ρ

′′
γ

]
+TQ2,0(γ

′)
}

Q(h3) = α3
{
TQ3,0(γ

′) +TQ2,1(γ
′, ρ′′γ) + αQ̃4(γ

′, ρ′′γ)
}

The previous estimates leads to a sequence of numbers (bℓ)ℓ≥2 with the following
asymptotic behaviour:

bℓ = Oℓ→+∞(ℓ1/2) (72)

and a constant C0 > 0 such that:
∣∣∣∣
∣∣∣∣α2Q2,0(γ

′) + α3[Q3,0 +Q2,1](γ
′, ρ′′γ) + α4Q̃4(γ

′, ρ′′γ)

∣∣∣∣
∣∣∣∣
S1

+α3

∣∣∣∣
∣∣∣∣Q0,3(ρ

′′
γ) +Q1,2(γ

′, ρ′′γ)

∣∣∣∣
∣∣∣∣
S6/5

≤
+∞∑

ℓ=2

bℓ(αC0)
ℓ(||ρ′′γ ||C + ||γ′||T)ℓ =: Ah,S.

(73)
We have:

||Q(h2)||S1
> α2CT,S

(
2K5/4Y ( 6

5
)(M + Ah,S) + ||γ′||2Qg

)
(74)

and write Bh2,S this upper bound. Similarly:

||Q(h3)||S1
≤ CT,S

+∞∑

ℓ=3

bℓ(αC0)
ℓ(||ρ′′γ ||C + ||γ′||T)ℓ =: Bh3,S1

. (75)
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Remark 18. The introduced numbers Ah,S,Bh2,S1
,Bh3,S are not constants: they all

depend on α and the minimizer γ′. As we have a priori estimates (Lemma 5) we know
that these upper bounds are small provided we are in the regime of Remark 4. Indeed
we have (

1− απ

4

)
||γ′||2T +

α

2
||ρ′′γ ||2C ≤ α

2
||ν||2C +M,

so α(||γ′||T+||ρ′′γ ||C) > α||ν||C+
√
αM = O((Lα)1/4). In particular those upper bounds

are o(1).

• Let us estimate F (2)
2 (ρ′′) and F

(2)
3 (ρ′′) in the L1-norm for ρ′′ ∈ C ∩ L1. To this

end we use (55) and (54) at level ε = 1 for instance: there exists K(v)

L4 > 0 such that:

||vρ′′ ||L4 ≤ K
(v)

L4 {||ρ′′||L1 + ||ρ′′||C}. (76)

We use the second inequality of (63) and Lemma 10 with a = 7/12. Following the
method used to prove Lemma 2.

Lemma 11. Let ρ′′ be in C ∩ L1 and γ′ a minimizer for Eν
BDF(M) with density ρ′γ .

We have:

||TQ0,3(ρ
′′)||S1

> 6K13/12CT,S{||ρ′′||L1 + ||ρ′′||C}2||ρ′′||C
||TQ1,2(γ

′, ρ′′)||S1
>

(
3
1

)
K2CT,S||γ′||T{||ρ′′||L1 + ||ρ′′||C}2

||Q0,2(ρ
′′)||S4/3

> 4K7/3||ρ′′||C{||ρ′′||L1 + ||ρ′′||C}
||Q1,1(γ

′, ρ′′)||S4/3
> 2K7/4||γ′||T{||ρ′′||L1 + ||ρ′′||C}

||TQ1,1

{
TQ0,2(ρ

′′), ρ′′
}
||S1

> 2K13/12Y ( 4
3
)CT,S||Q0,2(ρ

′′)||S4/3
{||ρ′′||L1 + ||ρ′′||C}

||TQ1,1

{
TQ1,1(γ

′, ρ′′), ρ′′
}
||S1

> 2K13/12Y ( 4
3
)CT,S||Q1,1(γ

′, ρ′′)||S4/3
K

(v)

L4 {||ρ′′||L1 + ||ρ′′||C}
(77)

Similarly we can estimate ||dF (2)
j ||L(C∩L1). As ||γ′||T >

√
log(Λ) we have:





||F (2)
2 (ρ′′)||C∩L1 > α4||ρ′′||2C∩L1

{√
log(Λ) + ||ρ′′||C∩L1

}

||F (2)
3 (ρ′′)||C∩L1 > α3||ρ′′||2C∩L1

{√
log(Λ) + ||ρ′′||C∩L1

}
,

||dF (2)
2 (ρ′′)||L(C∩L1) > α4||ρ′′||2C∩L1

{√
log(Λ) + ||ρ′′||C∩L1},

||dF (2)
2 (ρ′′)||L(C∩L1) > α3||ρ′′||2C∩L1

{√
log(Λ) + ||ρ′′||C∩L1

}
.

(78)

5.5 Application of the Banach fixed point theorem

5.5.1 F (1)

With exactly the same method of [9] let us apply the Banach fixed point theorem to
F (1) with the help of estimates of the previous subsections. We recall the different
steps.

Let us define ( where K(g) > 0 is defined in (6) and C0 > 0 is the constant of
Lemma 2)

Xg := Qg × Cg, with : ||(Q, ρ)||Xg := K(g)C0(||Q||Q + ||ρ||Cg ). (79)

Thanks to the previous estimates we can say that the function F (1) is well defined in
a ball BXg (0, R) with R = O(

√
log(Λ)), say R = K0

√
log(Λ). Indeed:

||F (1)(Q′, ρ′′)||Xg ≤ ||(N,n′′)||Xg + ακ1(Λ)||(Q′, ρ′′)||Xg +

+∞∑

ℓ=2

αℓ
κℓ||(Q′, ρ′′)||ℓXg

, (80)

where {
κ1(Λ) = OΛ→+∞(

√
log(Λ))

κℓ = Oℓ→+∞(ℓ1/2),
(81)
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in particular 1 is the radius of convergence of the power series f(x) =
∑+∞

ℓ=2 κℓx
ℓ and:

||dF (1)(Q′, ρ′′)||L(Xg) ≤ ακ1(Λ) + αf ′(α||(Q′, ρ′′)||Xg ). (82)

For||(N, n′′)||Xg 6= (0, 0) it is clear that F (1)(0, 0) = (N,F−1(− 1
1+αBΛ(·) n̂

′′)) 6= 0. So

Sup
(Q′,ρ′′)∈BXg (0,R)

||dF (1)(Q′, ρ′′)||L(Xg) ≤ ακ1(Λ) + αf ′(αR) =: ν(R). (83)

For (Q′, ρ′′) ∈ BXg (0, R) we have

||F (1)(Q′, ρ′′)||Xg ≤ ||F (1)(Q′, ρ′′)− F (1)(0, 0)||Xg + ||F (1)(0, 0)||Xg

≤ ν(R)||(Q′, ρ′′)||Xg + ||F (1)(0, 0)||Xg .

Thus a sufficient condition for BXg (0, R) being invariant under F (1) is:

||F (1)(0, 0)||Xg ≤ (1− ν(R))R. (84)

As F (1)(0, 0) 6= 0 this gives ν(R) < 1.
Let us say that ||(N, n′′)||Xg = ε0R = ε0K0

√
log(Λ), ε0 < 1. We have:

||F (1)(0, 0)||Xg ≤ ε0R, (85)

it suffices to take α > 0 such that
√
LαK0 ≪ 1 and then take R accordingly. The

constant K0 depends on the constants in the conditions M, ||ν||C >
√

log(Λ): we get
R = K0

√
log(Λ) and for sufficiently small α the Theorem can be applied on that ball.

5.5.2 F (2)

We work with (C, ||·||C) and (C ∩ L1,max(||·||C , ||·||L1 )). In Appendix C it is proved
that ||f̌Λ||L1 ≤ KαBΛ(0) where we can choose K = 2 for α log(Λ) sufficiently small.
Thus:

F
−1(FΛ) = F

−1

{
fΛ

1 + fΛ

}
=

+∞∑

ℓ=1

(−1)ℓ+1f̌∗ℓ
Λ ∈ L1

and its L1-norm is lesser than 2αBΛ(0)
1−2αBΛ(0)

≤ 4αBΛ(0) as soon as αBΛ(0) ≤ 4−1. More-
over we can write

1

1 + fΛ
= 1− fΛ

1 + fΛ
;

therefore if ρ ∈ L1 then F
−1{ 1

1+fΛ
ρ̂}−1 ∈ L1 and its L1-norm is lesser than

(1 + 4αBΛ(0))||ρ||L1 ≤ 2||ρ||L1 .

In particular:
||F−1( 1

1+fΛ
n̂′′)||L1 ≤ 2(M + Z).

So we have:
{

||F (2)(ρ′′)||C∩L1 ≤ 2(M + Z) + ||h2 + h3||C∩L1 +Kα3(
√

log(Λ) + ||ρ′′||C∩L1)||ρ′′||2C∩L1

||dF (2)(ρ′′)||L(C∩L1) ≤ Kα3||ρ′′||C∩L1(2
√

log(Λ) + 3||ρ′′||C∩L1).

(86)
where the constants K can be chosen indepently of α ≤ α0 and α log(Λ) ≤ L0 for α0, L0

sufficiently small. The term
√

log(Λ) is due to ||γ′||T >
√

log(Λ) (Lemma 5). We get
similar estimates for F (2) defined in C. So it suffices to take R > 2 sufficiently large so
that BC∩L1(0, R) is invariant under F (2) ; then this function will be a contraction and
we will be able to apply the fixed point theorem. Then:

• There is exactly only one fixed point of F (2) in BC(0, R) by the Banach-Picard
Theorem, ργ+n−ν is such a fixed point. Indeed by Section 3.2, (γ+N, ργ+n−ν)
has norm Q1 × C bounded by K

√
log(Λ) in the regime (14) and is a fixed point

of F (1). So it is a fixed point of F (2) (which is derived from F (1)).
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• There is exactly only one fixed point of F (2) in BC∩L1(0, R) by the same theorem.
In particular it is also a fixed point of F (2) in BC(0, R) as BC∩L1(0, R) ⊂ BC(0, R).
By unicity ργ ∈ L1.

6 Proofs of Theorems 2 and 3

6.1 Proof of Theorem 2

Proof: The fact that ργ ∈ L1 is a result of Section 5.5. We recall that if Q ∈ S1,
then

∫
ρQ = Tr(Q) = TrP0

−
(Q). Writing

A := αT[Q0,1(ρ
′′
γ)] C := α3T

{
Q1,1

[
T[Q0,1(ρ

′′
γ)], ρ

′′
γ

]}

B := α2T(Q0,2(ρ
′′
γ)) S := γ − (A+B + C)

(87)

it has been shown in Section 5 that S ∈ S1. Theorem 1 says ρB = ρC = 0.
Let us show that B++, B−−, C++, C−− are trace-class. As for any Q (say in S2),

we have
P 0
−Q1,0(Q)P 0

− = P 0
+Q1,0(Q)P 0

+ = 0,

there only remains α2Q0,2(ρ
′′
γ)

ε,ε for B and α3Q1,1

(
TQ0,1(ρ

′′
γ), ρ

′′
γ

)ε,ε
for C. As

Q+++
0,2 = Q−−−

0,2 = Q+++
1,1 = Q−−−

1,1 = 0

there only remain Q+−+
0,2 , Q−+−

0,2 , Q+−+
1,1 , Q−+−

1,1 . Using Lemma 10 with a = 3
4

and
Cauchy-Schwartz inequality we get

|| 1

|D0|3/8
P 0
ε vρP

0
−ε

1

|D0|3/8
||S2

> ||ρ||C > ||ρ||C (88)

We recall that || 1

|∇|1/2RQ||S2
> ||Q||Ex. These two estimates enables us to prove the

following inequalities (ε ∈ {+,−}):

||Qε,−ε,ε
0,2 (ρ′′γ)||S1

> K3/2||ρ′′γ ||2C ,
||Qε,−ε,ε

1,1 (γ′, ρ′′γ)||S1
> K7/4||γ′||Ex||ρ′′γ ||C .

As shown in Sections 5 and C we have Q++
0,1 = Q−−

0,1 = 0 and that ρA = −f̌Λ∗(ρ′γ) ∈ L1.

∫
ργ =

∫
(ργ++ + ργ−−) +

∫
{ρA+− + ρA−+ + ρB+− + ρB−+ + ρC+− + ρC−+}

= TrP0
−
(γ)− αfΛ(0)

∫ {
ργ + n− ν

}
−
∫

{ρB++ + ρB−− + ρC−− + ρC++}

= 0− αfΛ(0)
{∫

ργ +M − Z
}
− TrP0

−
(B)− TrP0

−
(C).

So it suffices to show that Tr(B++ + B−−) = Tr(C++ + C−−) = 0. This is straight-
forward when written in Fourier space [9]. 2

6.2 Proof of Theorem 3

We follow the method of [11]. Thanks to a result of Borwein and Preiss (Theorem
4.[11]), we consider an approximate minimizer γ′

0 = γ0+N0 of Eν(M). Indeed, we can
extend Eν

BDF to K = ∩{Q ∈ S2 : Q∗ = Q, 0 ≤ Q+P 0
− ≤ 1} by setting Eν

BDF (Q) := +∞
whenever Q /∈ K. This extension is lower semi-continuous and bounded from below in
the S2-topology and the set

M := {Q ∈ K, (Q+ P 0
−)

2 = Q+ P 0
−,Tr0(Q) =M}
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is closed in the same topology. Its convex closure in S2 is

K(M) := {Q ∈ K, Tr0(Q) =M}.

Applying the theorem, for each ε > 0 there exists a projector P and A ∈ K(M)
such that γ′

0 := P − P 0
− minimizes the functional Eν

BDF + εTr((A− ·)2) on M and

Eν
BDF(γ

′
0) ≤ Eν

BDF(M) + ε2, ||γ′
0 −A||S2

≤
√
ε.

As in [11], γ′
0 satisfies the self-consistent equation

γ′
0 + P 0

− = χ(−∞,µ0](Dγ′
0
+ 2ε(sgn(D0)− A))

= χ(−∞,µ0](D̃ + αBγ′
0
− 2εA)

(89)

where µ0 ∈ R and D̃ := D0 + D0
2ε

|D0| . We choose ε = λ−1 small e.g. ε = Γ(Λ
α
)−1:

using the proof of Lemma 5 we show the following a priori estimate holds for γ′
0 :

Tr(|∇|(γ′
0)

2) + α||ρ′′γ0 ||
2
C > α||ν||2C +

√
αM +

√
αM ||ν||C .

Using the Cauchy expansion we have

γ0 =
+∞∑

j=0

αjQj(ρ
′′
γ0 , γ

′
0) +

2

λ
Wλ(A,αB(γ′

0)),

where Q̃j has the same formula as Qj with D̃ instead of D0. By the same method as
in Section 5 we have:

|| |D0|1/2Wλ||S2
+ ||ρ[Wλ]||C > ||A||S2

(
1 + α[||ρ′′γ0 ||C + || |∇|1/2γ′

0||S2
]
)
,

indeed it suffices to replace R[γ′
0] by A in the Qj ’s and notice A ∈ S2. Replacing D0

by D̃ is harmless; as before, by defining some function F̃ (1) we can show Tr0(γ0) = 0
(but with an alternative BΛ cf Section C). Let (ψj)1≤j≤M be an orthonormal family
of eigenvectors of D̃ + αBγ′

0
+ 2/ε(1 − P 0

− − A) spanning Ran(N0) (with eigenvalues
(µj)). In particular we can write

ργ0 := −F
−1(F̃Λ) ∗ n′′

0 + (δ0 − F
−1(F̃Λ)) ∗ τrem ∈ C

where ||τrem||C > ||t[N0]||C + α2||τ̃2||C + ||A||S2
/λ and F̃Λ is defined in Section C. We

write fΛ := F
−1(F̃Λ) for short. As in Section 5 we get:

||γ0||S2
> α(||ρ′′γ ||C + ||γ′

0||T)
||ργ0 + fΛ ∗ n′′

0 − (δ0 − fΛ) ∗ t[N0]||C > α2(||γ′
0||T + ||ρ′′γ0 ||C)2.

||−fΛ ∗ n′′
0 + (δ0 − fΛ) ∗ t[N0]||L1 > L(Z +M).

(90)

We then scale γ′
0 by α−1 (we mark this procedure by an underline) as in [11] we get:

[(w0(−iα∇)β

α2
− iw1(−iα∇)

α2
α ·∇

)
+ρ[γ′

0]∗
1

| · | −R[γ
′
0]+

2

α2λ
( 1
2
−P 0

−−A)
]
ψj =

µj

α2
ψj .

(91)

Remark 19. We have Uα−1ψ(x) = α
3
2ψ(αx) = ψ(x) and for an operator S we have:

S := U∗
α−1SUα−1 .

This mean-field operator Hα−1 can be decomposed as follows: Hα−1 = H
(1)

α−1 +hrem

where

H
(1)

α−1 :=
D0

α2
+ (δ0 − fΛ) ∗ n′′

0 −R[N0], n
′′
0 (x) = α−3n′′(x/α), F̃Λ(k) = F̃Λ(αk).
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As in Lemma 13 and 14 in [11] we can show that there exists ε > 0 such that
lim supα→0(α

−2(µj − 1)) < −ε < 0 for all 1 ≤ j ≤ M and that (ψ
j
)j is bounded

in H1(R3,C4)M (as α tends to 0). Lemma 13 is based on a min-max description of
eigenvalues in the gap of the mean-field operator Hα−1 . We refer to this paper for the
proofs, the only difference lies in the presence of −fΛ ∗ (n0

′′) ∗ 1
|·| and (δ0 − fΛ) ∗ tN0 :

we need the following lemma (proved below).

Lemma 12. Let χ be a Schwartz function and for R > 0: χR(x) := R−3/2χ(x/R).
Then there holds:

∣∣∣〈fΛ ∗ (n0
′′) ∗ 1

|·|χR − ZF̃Λ(0)
χR
|·| , χR〉

∣∣∣ > ZL
R2 ||∇χ||2L2

+ 1
R
||∇χ||L2 ||χ||L2

(
L

∫

|y|> 1
α

ν(y)dy + Z

∫

|y|> 1
α

|fΛ(y)|dy
)
,

and
∫

|y|> 1
α

|fΛ(y)|dy > Lα1/2. Moreover

∣∣∣〈(δ0 − fΛ) ∗ tN0 ∗ 1
|·|χR , χR〉

∣∣∣ > L2M
R2 ||∇χ||2L2

+ 1
R
||∇χ||L2 ||χ||L2

(
L

∫

|y|> 1
α

|tN0 |(y)dy + LM

∫

|y|> 1
α

|fΛ(y)|dy
)
.

To prove (ψj)j is H1-bounded we show that:

M

α4
+

Tr(−∆N0)

α2
≤ Tr(D02N0)

α4
≤ M

α4
+K(M,ν)

{
Tr(−∆N0) +

||∇N0||S2

α2

}
. (92)

The lower bound is clear and for the upper bound we use (91), Lemma 5 and Proposition
5 (for estimations of w⋆(αp)

2, ⋆ ∈ {0, 1}). We get:
∣∣∣
∣∣∣ρ[γ0] + ρ[fΛ ∗ n′′

0 − (δ0 − fΛ) ∗ tN0 ]ψj

∣∣∣
∣∣∣
L2

> α3/2(||ρ′′γ0 ||C + ||γ′
0||T)2|| |∇|1/2ψj ||L2

> K(M,ν)|| |∇|1/2ψj ||L2 .

Moreover:

||R[γ0]ψj ||L2 > ||γ0||S2
||∇ψj ||L2 > α3/4K(M, ν)||∇ψj ||L2

||v
[
fΛ ∗ n′′

0 − (δ0 − fΛ) ∗ tN0

]
ψj ||2L2 ≤ 4||∇ψj ||2L2 ||ρ[fΛ ∗ n′′

0 − (δ0 − fΛ) ∗ tN0 ]||2L1

> L2(Z +M)2||∇ψj ||2L2∣∣〈v
[
fΛ ∗ n′′

0 − (δ0 − fΛ) ∗ tN0

]
ψj , ψj〉

∣∣ ≤
∣∣D(ρ

[
fΛ ∗ n′′

0 − (δ0 − fΛ) ∗ tN0

]
, |ψj |2)

∣∣
> L(Z +M)〈|∇|ψj , ψj〉.

(93)
Summing over 1 ≤ j ≤M the inequalities (93) we get (92):

M∑

j=1

||∇ψj ||L2 ,Tr(|∇|N0) ≤
√
M
√

Tr(−∆N0).

We conclude as in [11] (the proof uses [20]) provided that there hold binding in-
equalities for the non-relativistic limit: this is the result of Proposition 2 in Appendix
B.

In particular there holds

lim
α→0

α−2(Eν
BDF (M)−M +

α

2
D(F̌Λ ∗ ν, ν)

)
= Enr(M), (94)

where Enr is the non-relativistic energy cf Appendix B.
Proof of Lemma 12 With f(x) = |χR|2 ∗ F

−1(F̃Λ), we first estimate
|
s
f(x)ν(y)(1/|x− αy| − 1/|x|)dxdy|: it is lesser than

∫∫
|f(x)|ν(y)|αy| dxdy

|x||x− αy| .

24



Splitting at level α−1 for y, we use Hardy’s and Kato’s inequalities:




∫

|y|≤ 1
α

ν(y)dy

∫ |f(x)|dx
|x||x− αy| ≤ (4Z||F̃Λ||L1 )

||∇χ||2
L2

R2

∫

|y|> 1
α

ν(y)dy

∫
|αy| dx

|x||x − αy| |f(x)| ≤ 2π
2

∫

|y|> 1
α

ν(y)dy||F̃Λ||L1

||∇χ||L2 ||χ||L2

R
.

We estimate Z
∣∣s |χR(x)|2fΛ(y)(1/|x−αy|−1/|x|)dxdy

∣∣ in the same way with the help
of Lemma 15 in Appendix C. For the terms with tN0 we use the fact that:

||tN0 ||L1 = ||tN0 ||L1 > LM and
∫

tN0 =

∫
tN0 = 0,

and use the same method. 2

A Estimates and inequalities

Notation 20. In Section A and C, e refers to any unitary vector in R3 and for p ∈ R3,
ωp := p

|p| .
We recall there exists Cs > 0 such that:

sp := ̂sign(D0)(p) = D̂0(p)

|D0| (p) =
w0(p)β+w1(p)α·ωp

Ẽ(p)
.

Id− spsq = sp(sp − sq) = (sp − sq)sq

|Id− spsq| ≤ |sp − sq | =
∣∣∣P̂0

−(p)− P̂0
−(q)

∣∣∣ ≤ Cs
|p−q|

max(Ẽ(p),Ẽ(q))
.

(95)

A.1 Proof of Lemma 8

• We recall [16] 1
|∇| (x− y) = Cst/|x− y|2. By Cauchy-Schwartz inequality we have

Tr(R∗
Q|∇|−1RQ) =

∫∫∫
TrC4

tQ(x, y)

|x− y|
Cst

|y − z|2
Q(z, x)

|z − x| dxdydz

>
∫∫∫

|Q(x, y)|2 1

|y − z|2
dxdydz

|z − x|2

>
∫∫ |Q(x, y)|2

|x− y| = Tr(R∗
QQ).

We writem(|p+q|) the multiplication in Fourier space by |p+q|; R· and 1

|∇|1/2 commute

with the multiplication in Fourier space by g(p− q) (written m(g)). We get thanks to
Kato’s inequality that

||m(gs) · 1

|∇|1/2R[Q]||S2
= || 1

|∇|1/2R[m(g) ·Q]||S2
> ||m(|p+ q|)m(g) ·Q||S2

.

Similarly for a > 0 the operator |D0|−a acts in Direct space as a convolution operator
with a positive function φa: indeed we have [16]:

1
1−∆

(x− y) =
e−|x−y|

4π|x− y|
and for any 0 < ε < 1 (see [17], footnote p. 87):

1

|D0|2ε
=

sin(επ)

π

∫ +∞

0

tp−1 x

t+ x
dt.

Thus for a = 1 + ε > 1 we have by Cauchy-Schwarz inequality:

Tr(R∗
Q

1
|D0|2aRQ) ≤

∫∫
|Q(x, y)|2 1

|·|2 ∗ φ2a(x− y)dxdy,

≤
∫∫

|Q(x, y)|2|| 1
|·|2 ∗ φ2a||L∞

>
∫∫

|Q(x, y)|2dxdy
∫

dp

|p|E(p)2a
>

||Q||2S2

2(a− 1)
.
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Then let us take a finite rank operator Q(x, y). As Q = Q+Q∗

2
+ Q−Q∗

2
one may

suppose it is self-adjoint and writing Q = Q+−Q− one may suppose it is nonnegative;
so is RQ and |D0|−a/2RQ|D0|−a/2.

There holds:
∫

TrC4(R̂(p, p))

E(p)2a
dp =

1

2π2

∫∫
dℓ

|ℓ|2Tr(Q̂(p− ℓ, p− ℓ))
dp

E(p)2a

=
1

2π2

∫
dpTr(Q̂(p, p))

∫
dℓ

|ℓ|2
1

E(p+ ℓ)2a

> ||Q̂||S1

2a− 2
.

Going in Fourier space we have:

F
(
|D0|−1/2) : f(p) 7→ χ|p|<Λ

f(p)

Ẽ (p)1/2
,

thus writing ΠA the projection onto {f ∈ L2, supp f̂ ⊂ B(0, A)} we have

|| |D0|1/2RQ||S2
≤ || |D0|1/2Π2ΛRQΠ3Λ||S2

.

Then as |D0|−1/2Π2Λ ≤ e|D0|−
1
2
− 1

2 log(Λ) for Λ ≥ e we get:

Tr
(
Π3ΛRQ∗

Π2Λ

|D0|RQΠ3Λ

)
≤ Tr

(
RQ∗

e

|D0|
1
2
+

1
2 log(Λ)

RQ

)
> log(Λ)||Q||2Ex.

B The non relativistic limit

We fix the value FΛ(0) = a. For any trace-class operator 0 ≤ Γ ≤ 1 with density ρΓ
the non-relativistic energy is

EZ
nr(Γ) := 1

2
Tr(−∆Γ)− Z(1− a)Tr

(
1
|·|Γ
)

+ 1
2
(D(ρΓ, ρΓ)− Ex[Γ]) − aD(ρΓ, ρΓ).

(96)

If we drop the last term, this is exactly the Hartree-Fock energy EHF with a nucleus of
charge Z0 := Z(1 − a) and if we drop Tr( 1

|·|Q) we get the Pekar-Tomasevitch energy

E0
nr = EPT[a, U = 1] (cf [5]): this last functional is what we obtain by putting the

system at infinity.
We write EPT := EPT[1, U = a−1]: putting any test function at infinity there holds:

Enr(M) ≤ a2EPT(M) and EPT(M) = MEPT(1) for sufficiently small a, we refer to

Corollary 1 in [5]: there exists U0 such that if U
here
= 1

a
≥ U0 then there is no binding

for EPT(M), M ≥ 2.

Remark 21. We can easily show stability of matter of the second kind for a ≤ a0 by
splitting the energy in two: a Hartree-Fock one and a Pekar-Tomasevitch one,

EZ
nr(Γ) =

x2

2
Tr(−∆Γ) + y2

2
(D(ρΓ, ρΓ)− Ex[Γ]) − Z(1− a)Tr

(
1
|·|Γ
)

+ 1−x2

2
Tr(−∆Γ) + 1−y2

2
(D(ρΓ, ρΓ)− Ex[Γ]) − aD(ρΓ, ρΓ) with 0 < x, y < 1.

Optimizing in x and y we get a lower bound O(Cst(a)M) for M ≥ 2Z0 + 1.

We define

G(x) = {Γ ∈ S1 : Γ∗ = Γ, 0 ≤ Γ ≤ 1,
√
−∆Γ ∈ S2 and Tr(Γ) = x} with x ∈ R

∗
+.

Enr(M) corresponds to the infimum over G(M). We want to prove:

Proposition 2. For any M < Z + 1, the variational problem EZ
nr(M) admits a mini-

mizer.
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By Lieb’s method in [15], it is easy to see that there is a minimizer for EZ
nr(1).To prove

binding for 2 ≤ M ≤ Z(1 − a) we can follow Lieb’s and Simon’s method [19, 20]. We
will however prove it with the method of concentration-compactness. We prove the
problem EZ

nr(M) admits a minimizer by induction over M by using:

Proposition 3. For each m > 0 the following assertions are equivalent

• ∀0 < k < m : EZ
nr(m) < EZ

nr(m− k) + E0
nr(k).

• Each minimizing sequence for EZ
nr(m) is precompact in H1(R3 ×R3).

In the case m ∈ N∗, it suffices to prove binding inequalities for K ∈ (0,m) ∩N.

This proposition is standard and we will not give the proof here but refer to [14,
13, 20]. As E0

nr(M0) =M0E
0
nr for M0 ∈ N∗ we need to show

EZ
nr(M) < EZ

nr(M − 1) + E0
nr(1).

To this end, one just needs to find a test function Q whose energy is lesser than
EZ

nr(M − 1) + E0
nr(1). We can show that Lieb’s variational principle holds (cf propo-

sition 3 in [11]). In fact for any orthonormal family (φ1, φ2) , with Pφ := |φ〉〈φ| and
0 < t < 1, we have

EZ
nr(Γ + t(Pφ1

− Pφ2
))− EZ

nr(Γ) =
t
2
(||∇φ1||2L2 − ||∇φ2||2L2 + 2(1− a)D(ρΓ, |φ1|2 − |φ2|2))

−tR[Tr(ΓR[Pφ1
− Pφ2

])]− t2
{
D(|φ1|2, |φ2|2)−D(φ∗

1φ2, φ
∗
1φ2) +

a
2
|||φ1|2 − |φ2|2||2C

}
.

(97)
This shows that EZ

nr(m) is also the infimum of EZ
nr over

{Γ ∈ G(m) : Γ = P + (m− [m])|φ〉〈φ|, P 2 = P = P ∗, φ ∈ Ker(P )}.

Taking φ2 = 0 in (97) shows that EZ
nr(·) is concave in [M0,M0 + 1] with M0 ∈ N. It

is also clear that EZ
nr is decreasing since large binding inequalities hold. We consider a

minimizer of EZ
nr(M − 1) of the form Γ =

∑
1≤j≤M−1

|ψj〉〈ψj |, each ψj satisfying

−∆

2
ψj − Z0

| · |ψj + (1− a)ρ[Γ] ∗ 1

| · |ψj −R[Γ]ψj + εjψj = 0, with εj > 0.

In particular we can easily show the ψj ’s are in H2(R3) and fast decaying. We consider
a minimizer of the problem at infinity: this is just a minimizer φCP of EPT(1) scaled
by a: φ0(x) = a3/2φCP(ax), we chose it to be radial [15]. Following [13], we take a
Schwartz function 0 ≤ χ ≤ 1 that satisfies χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2
and χR(x) = χ(x/R) with R > 0 to be chosen. We consider for some e ∈ S2:

Γ′ := χRΓχR + τ−5Re|χRφ0〉〈χRφ0|τ5Re

where τx0ψ(x) := ψ(x− x0). We have 0 ≤ Γ′ ≤ 1 and Tr(Γ′) ≤M , so
Enr(Γ

′) ≥ Enr(M). As the wave functions (ψj)’s and φ0 are fast decaying, the following
holds:

EZ
nr(Γ

′) = EZ
nr(Γ) + E0

nr(φ0) +

∫ (
ρ[Γ] ∗ 1

| · | (x)−
Z0

|x|
)
|τ5Reφ0(x)|2dx

−aD(ρ[Γ], |τ5Reφ0|2) + o(R−1).

As R tends to infinity we get:

EZ
nr(Γ

′) ≤ EZ
nr(M−1)+E0

nr(1)+
(M − 1)(1− a)− Z0

5R
+o(R−1) < Enr(M−1)+E0

nr(1).
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C Proof of Proposition 1

Remark 22. We write:

E(u, k/2) := max
(
E(u+ k/2), E(u− k/2)

)
≥
√

1 + |u|2 + |k|2
4
,

Ẽ (u, k/2) := max
(
Ẽ (u+ k/2) , Ẽ (u− k/2)

)
≥ E(u, k/2).

Our aim is to prove Proposition 4 below.

Proposition 4. Let ρ0 ∈ C. Then we have:

αρ(T[Q0,1(ρ0)]) = −f̌Λ ∗ ρ0

where fΛ ∈ L1 is a radial function. Moreover




fΛ =

+∞∑

J=0

αJfΛ,J

fΛ,0 = αB̌Λ and ǧΛ :=

+∞∑

J=1

αJfΛ,J ,

with
||fΛ||L1 > L and ||ǧΛ||L1 > Lα.

In particular F̌Λ := F
−1
(

fΛ
1+fΛ

)
∈ L1.

We also study an alternative function FΛ, needed for the proof of Theorem 3, at
the end of this section.

We need the following proposition.

Proposition 5. The function D̂0 : B(0,Λ) → R3 is infinitely differentiable. In par-
ticular so is Ẽ (·) and there exists L0 ≥ 0 such that if L := α log(Λ) ≤ L0 then for any
J ≥ 1 there exists CJ > 0 such that:

||dJw0||L∞ ≤ αCJ and ||dJ
w1||L∞ ≤ χJ=1 + LCJ .

Proof: In the spirit of arxiv.1211.3830, we can prove it by induction over J : in [12]

it is proved D̂0 is infinitely differentiable. Thus the function

|D̂0(p)| =
√
w0(p)2 +w1(p) ·w1(p),

is infinitely differentiable and does not vanish on B(0,Λ). Thanks to the self-consistent
equation one has:

dJ D̂0(p) = dJD̂0(p) +
α

4π2

1

| · |2 ∗ dJ
( D0

|D0|
)
(p).

2

Proof of Proposition 4: Throughout this proof we write k := re.
1. Let us see:

τ̂1,0(ρ) = −fΛ(·)ρ̂(·),
We recall (36) that for any Q ∈ S2(HΛ) we have:

Q̂1,0(Q,p, q) =
1

4π2

1

Ẽ (p) + Ẽ (q)

∫

ℓ

dℓ

|ℓ|2
(
Q̂(p− ℓ, q − ℓ)− spQ̂(p− ℓ, q − ℓ)sq

)
,

and (cf [9])

Q̂0,1(ρ; p, q) =
4π

25/2π3/2

ρ̂(p− q)

|p− q|2
1

Ẽ (p) + Ẽ (q)
(spsq − 1). (98)

Let us recall the definition of A
(ℓj)

J
j=1

J :
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{
Aℓ1

1 Q̂(p, q) := Q̂(p− ℓ1, q − ℓ1)− spQ̂(p− ℓ1, q − ℓ1)sq,

A
(ℓ1,L)
J Q̂(p, q) := Aℓ1

1

(
AL

J−1Q
)
(p, q).

(99)

For instance:

A
(ℓ1,ℓ2)
2 Q̂(p, q) = Aℓ1

1

(
Q̂(·p − ℓ2, ·q − ℓ2)− s·pQ̂(·p − ℓ2, ·q − ℓ2)s·q

)
(p, q)

=
{
Q̂(p− ℓ1 − ℓ2, q − ℓ1 − ℓ2)− sp−ℓ1Q̂(p− ℓ1 − ℓ2, q − ℓ1 − ℓ2)sq−ℓ1

}

−sp

{
Q̂(p− ℓ1 − ℓ2, q − ℓ1 − ℓ2)− sp−ℓ1Q̂(p− ℓ1 − ℓ2, q − ℓ1 − ℓ2)sq−ℓ1

}
sq.

Writing LJ :=
∑J

j=1 ℓj with L0 := 0 ∈ R3 we obtain:

Ĝ◦J
1,0(Q; p, q) =

αJ

(4π2)J

∫

ℓ1

· · ·
∫

ℓJ

dℓ∏
1≤j≤J

|ℓj |2
A

(ℓj)
J
j=1

J Q̂(p, q)
∏

0≤j≤J−1

(Ẽ (p− Lj) + Ẽ (q − Lj))
. (100)

In particular the Fourier transform of the density of G◦J
1,0(Q) is

ρ̂(G◦J
1,0(Q); k) = 1

(2π)3/2

∫

u

TrC4Ĝ◦J
1,0(Q;u+ k

2
, u− k

2
)du

=
αJ

(2π)3/2(4π2)J

∫∫

u,ℓ1

· · ·
∫

ℓJ

TrC4

dudℓ∏
1≤j≤J

|ℓj |2
A

(ℓj)
J
j=1

J Q̂(u+ k
2
, u− k

2
)

∏
0≤j≤J−1

(Ẽ
(
u+ k

2
− Lj

)
+ Ẽ

(
u− k

2
− Lj

)
)

=
αJ

(2π)3/2(4π2)J

∫∫

u,ℓ1

· · ·
∫

ℓJ

dudℓ∏
1≤j≤J

|ℓj |2
TrC4

{
(1− s

u− k
2

s
u+

k
2

)A
(ℓj)

J−1
j=2

J Q̂(u+ k
2
, u− k

2
)
}

∏
0≤j≤J−1

(Ẽ
(
u+ k

2
− Lj

)
+ Ẽ

(
u− k

2
− Lj

)
)

.

(101)
Above the domain of ℓj is:

B̃j(r) :=
{
ℓj ,

∣∣u− Lj ± r
2
e
∣∣ < Λ

}
.

The domain of u is B̃0(r) :=
{
u,
∣∣u± r

2
e
∣∣ < Λ

}
. In particular

supp ρ̂(G◦J
1,0(Q)) ⊂ B(0, 2Λ).

Remark 23. We would like to apply (101) to the operator Q0,1(ρ) and by looking at (98)
one may realize that Q̂0,1(p, q) is not a scalar matrix because of the term spsq − Id. It
is in the algebra spanned by the Dirac matrices α1,α2,α3, β as a sum of even products
of Dirac matrices. The form of Q̂1,0(Q) is similar to Q̂0,1: it only adds an even number
of Dirac matrices to Q̂. This is an important remark to be done to prove Theorem 1.

For any J ≥ 1 and ρ ∈ C we get that ρ̂(G◦J
1,0(Q0,1[ρ]); k) is equal to:

4παJ ρ̂(k)

(25π3)
1
2 (2π)3/2(4π2)J

∫

∏
0≤j≤J

B̃j(r)

dudℓ

|k|2 ∏
1≤j≤J

|ℓj |2
TrC4

{
(1− s

u−k
2

s
u+

k
2

)A
(ℓj)

J
j=2

J−1 (s
u−k

2

s
u+

k
2

− 1)
}

∏
0≤j≤J

(Ẽ
(
u+ k

2
− Lj

)
+ Ẽ

(
u− k

2
− Lj

)
)

= ρ̂(k)

∫

∏
0≤j≤J

B̃j(r)

dudℓSJ (u− Lj ± k
2
)TJ(u− Lj ± k

2
)

(102)
where SJ (u−Lj ± k

2
) is a scalar which is a function of |u−Lj ± k

2
| while TJ(u−Lj ± k

2
)

is the trace TrC4 of a sum of products of s
u−Lj−

k
2

. We have to deal with 1
|k|2 and we

must show this integral is well defined. The first problem is easily resolved:

1

|k|2 (su−LJ+k/2su−LJ−k/2−1)(1−su−k/2su+k/2) =
(su−LJ+k/2su−LJ−k/2 − 1)

|k|
(1− su−k/2su+k/2)

|k|
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which is a smooth function by Taylor’s formula (for |k| or for k in R3\{0}). Moreover
there holds the following estimate thanks to (95):

∣∣∣∣
su−LJ+k/2su−LJ−k/2 − 1

|k|
1− su−k/2su+k/2

|k|

∣∣∣∣ ≤ 4C2
s

E(u− LJ , k/2)

≤ 4C2
s

|u−LJ |E(u,k/2)
.

Then we remark that for any U :
∫

ℓ

dℓ

|ℓ|2
1

|U − ℓ|Ẽ (U − ℓ, k/2)
≤
∫

ℓ

dℓ

|ℓ|2
1

|U − ℓ|2 ,

≤ 1
|U|

∫
dℓ

|ℓ|2|e− ℓ|2 .

Taking one after the other the Uj ’s defined by Uj = u − Lj for 1 ≤ j ≤ J − 1 and
integrating over ℓj+1 there remains but the integral over u:

∫

u∈B̃0(k)

2C2
sdu

Ẽ(u,k/2)

1

|u|Ẽ(u,k/2)
×
{
2

∫
dℓ

|ℓ|2|e− ℓ|2
}J

≤
{
2

∫
dℓ

|ℓ|2|e− ℓ|2
}J ∫

u∈B̃0(r)

2C2
sdu

|u|2Ẽ(u,k/2)

= (K log(Λ))×
(
C′

1,0

)J
.

At last we obtain:

α|ρ̂(G◦J
1,0(Q0,1(ρ));k)| ≤ αJ+1

(2π)3/2(4π2)J
2J+1C2

s

{∫
dℓ

|ℓ|2|e− ℓ|2
}J ∫

u∈B̃0(r)

du

|u|2Ẽ(u)
|ρ̂(k)|

> C1,0

(
αC′

1,0

)J
α log(Λ)|ρ̂(k)|.

(103)
As a consequence there holds:

αρ̂(G◦J
1,0(Q0,1(ρ));k) = −gΛ;J(k)ρ̂(k) (104)

and
∑∞

J=0 fΛ,J is well defined (at least in L∞ ∩ L2) as soon as α is sufficiently small:

ατ̂0,1(ρ, k) = −
(
αBΛ(k) +

+∞∑

J=1

gΛ;J(k)

)
ρ̂(k) =: −fΛ(k)ρ̂(k), (105)

with
|fΛ(k)| ≤ αBΛ(k) + α2 log(Λ)K = O(α log(Λ)). (106)

2. Let us prove this function is radial. Let e1 and e2 in S2 and r > 0. We must show
that fΛ(re1) = fΛ(re2). There exists R ∈ SO3(R) such that e2 = Re1. In (102) for
k = re2, we change variables in the integrals: v = R−1u and mj = R−1ℓj . Writing
Mj = m1 + · · · +mj , we get: SJ (R(v −MJ ± r

2
e1)) = SJ (v −MJ ± r

2
e1). We must

show the same holds for TJ . Let b = (b1, b2, b3) be the canonical base of R3. We define

α′
j := α · Rbj .

These new matrices satisfy the same relation as the α’s:

{α′
j , α

′
k} = 2δjk and {α′

j , β} = 0.

Thus we have TJ(R(v −MJ ± r
2
e1)) = TJ(v −MJ ± r

2
e1) and fΛ is radial.

From now on we can change variables:
{

u0 := u and for 1 ≤ j ≤ J, uj := u− Lj , lj = uj − uj−1,

uj ∈ B(|k|) :=
{
v ∈ B(0,Λ),

∣∣v ± |k|
2
e
∣∣ < Λ

}
.

(107)
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3. Now our purpose is to show that fΛ is in F (L1) with a (rather) precise bound on
||f̌Λ||L1 . It is already known:

fΛ(k) = αBΛ(k) +OL∞(α2 log(Λ)) = O(α log(Λ)).

As fΛ is radial we take a fixed vector e ∈ S2 and study fΛ(k) = fΛ(|k|) with the
help of the integral formulae where k is replaced by |k|e.

The strategy is to differentiate fΛ and prove that its Sobolev norms ||−∆fΛ||L2 and
||−∆fΛ||Lp are "small" where p < 2 is some constant to be chosen later. By Cauchy-
Schwartz inequality in Direct space, we get then an upper bound of ||f̌Λ||L1 . We will
use the co-area formula [4].

Following the method of [7], we then show that f̌Λ ∈ L1 with L1-norm lesser than
1 in order to give a meaning to

∞∑

ℓ=1

(−1)ℓ
{
f̌Λ
}∗ℓ

.

Remark 24. 1. As fΛ is radial we have:

(−∆)fΛ = (−∆r)fΛ = −
(
∂2
r + 2

r
∂r
)
fΛ. (108)

2. For any u ∈ R3 and r ≥ 0 Taylor’s formula gives:




(1− su+2−1resu−2−1re) = r{sum1(− r
2
)−m1(

r
2
)su}

with m1(
x
2
) :=

∫ 1

t=0

dsu+txe/2 ·
(e
2

)
dt.

(109)

We write w(p) :=

(
w0(p)

w1(p)

)
∈ R4 and σ(p) := w(p)

Ẽ(p)
.

As we have 〈σ(u) , dσ(u)〉 = 0, Taylor’s Formula at order 2 gives





1− 〈σ(u+ r e

2
) , σ(u− r e

2
〉)

r2
:= 〈a(u) , a(u)〉+ 〈σ(u) , m2(r) +m2(−r)〉

+r〈a(u) , m2(r)−m2(−r)〉+ r2〈m2(r) , m2(−r)〉,

a(u) := dσ(u) · e

2
and m2(

x
2
) :=

∫∫

[0,1]2

d2σu+ stxe/2 ·
(
e

2
, e

2

)
tdsdt.

(110)

3. For any − 1
2
≤ x ≤ 1

2
:

Ẽ (u+ xe) ≥ E(u+ xe) ≥ E(u)

2
. (111)

In particular if one takes the modulus of the derivative over r in (109) or (110)
for 0 ≤ r ≤ 1, we get the following upper bounds:

(a) K/Ẽ (u) for the first derivative,

(b) K/Ẽ (u)2 for the second.

Lemma 13. The functions ∂rfΛ and ∂2
rfΛ are well defined in R3 with support in

B(0, 2Λ). Moreover we have for J ∈ N:




|∂rfΛ,J (p)| > J αJ+1 log(Λ)KJ+1 log(Λ)
E(p)

χ|p|<2Λ |∂rfΛ(p)| > L
E(p)

χ|p|<2Λ,

|∂2
rfΛ,J (p)| > J αJ+1 log(Λ)KJ+1 log(Λ)

E(p)
χ|p|<2Λ |∂2

rgΛ| > α2 log(Λ)

E(r)2
χr<2Λ.

(112)

As a consequence:

Lemma 14. For α sufficiently small, ǧΛ ∈ L1 and

||ǧΛ||L1 > (α log(Λ))2. (113)
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Remark 25. At the very end of the proof of Lemma 13, we refer the reader to the thesis
of the author for a (last) technical assumption: proving that lim

|x|→2Λ−
∂2
rfΛ(x) = 0.

Proof of Lemma 14

We assume Lemma 13: as (−∆r) = −(∂2
r + 2

r
∂r) we get that fΛ ∈ H2(R3) with:

||−∆fΛ||L2 > L (114)

since
∫

dk
|k|2E(k)2

< +∞. Although ∂j
rgΛ : R∗

+ → R has no singularity at 0, the function

−∆fΛ has a singularity in 1
r

because of the term 2
r
∂rfΛ. The L2-norm remains finite

since the domain is R3. More generally, we have

−∆fΛ ∈ L3/2(R3) ∩ L2(R3).

Let 3
2
< p < 2 to be chosen and q = 2p

3p−2
. We use the generalized Young inequality:

1

|·|−3/q ∈ Lq
w(R

3) and 1

|·|−3/q ∗ (−∆fΛ) ∈ L2(R3). By Plancherel’s Theorem this gives

in Direct space the following result:

| · |2f̌Λ
| · |3−

3
q

∈ L2(R3), that is | · |
7p−6
2p f̌Λ ∈ L2(R3).

We choose 3
p
− 3

2
= 4−1, that is p = 12

7
, thus:

∫

B(0,1)

|f̌Λ(x)|dx ≤
√√√√
∫

|x|
7
4 |f̌Λ(x)|2dx

∫

B(0,1)

dx

|x|7/4 > ||−∆fΛ||
L

12
7

∣∣∣
∣∣∣ 1

| · |11/4
∣∣∣
∣∣∣
L

11/12
w

> L.

Then it is clear that

∫

|x|≥1

|f̌Λ(x)| ≤ ||−∆fΛ||L2

√√√√
∫

|x|≥1

dx

|x|4 > L.

2

Proof of Lemma 13

• The idea of the proof is that each time one differentiates with respect with the radius
r > 0, it leads to an additional term 1

E(U)
in the integrand or a change of the domains

and so a better upper bound of the sum.
We will often use the following inequality:
∫

B(0,Λ)

dv

|u− v|2(Ẽ
(
v + k

2

)
+ Ẽ

(
v − k

2

)
)|u+ ε k

2
|
≤ 1

|u+ ε k
2
|

∫
dv

|v|2|v − e|2 , (115)

and for convenience we write:

uε := u+ ε
k

2
, ε ∈ {1,−1}. (116)

That the function (and its derivatives) has an extension in 0 would be clear from (109)
and (111): differentiating under the integral sign in the Taylor’s formula, one gets:

∣∣∣dJ+1
su+tre/2 ·

(
(te/2)J ,

e

2

)∣∣∣ ≤ KJ 1

E(u)J+1
, 0 < r, t < 1, (117)

thus the problem of singularity at r = 0 drops thanks to (111).
More generally the variable r appears in two ways:

1. in the domains B(r)J+1,

2. in a function of vj ± r e
2
.
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One may write:

fΛ,J (r) =

∫

B(r)J+1

GJ (u0 ± r e

2
, · · · , uJ ± r e

2
)du,

GJ = G0
J (u0 ± r e

2
, · · · , uJ ± r e

2
)
∏

1≤j≤J

1

|uj − uj−1|2
.

(118)

It is easy to see that G0
J : (R3)2J+2 → R is a differentiable function and that each time

we take ∂
uj+r

e

2
− ∂

uj−r
e

2
we gain a term K(r−1 + Ẽ

(
u± k

2

)−1
) for r > 1 or KẼ (u)−1

for r ≤ 1 (see Remark 24). This enables us to get upper bounds of the terms of ∂j
rfΛ,J

corresponding to derivatives of G0
J . Indeed for the first derivative: for ε, ε′ ∈ {+,−}

one has for 1 < |k| < 2Λ:




∫
duj

|uj − uj−1|2Ẽ (uj + εk/2)2
≤ 1

|uj−1 + εk/2|

∫

R3

duj

|uj |2|uj − e|2 ,
∫

dui

|ui − ui−1|2|ui + εk/2|Ẽ (ui, k/2) Ẽ (ui + ε′k/2)
> 1

|k|
(

1
|ui−1+k/2| +

1
|ui−k/2|

) ∫

(R)3

dui

|ui − e|2|ui|2
.

(119)
If one deals with the term with (∂u0+k/2 − ∂u0−k/2)G0 one has:
∫

B(r)

du0

|u0 − εk/2|Ẽ (u+ εk/2)

( 1

Ẽ (u+ εk/2)2
+

1

Ẽ (u− εk/2)2
)

> 2

|k|

∫

B(0,2Λ)

du0

Ẽ (u0)
2 |u0|

> log(Λ)

|k| .

(120)
If r ≤ 1, Remark 24 enables us to say that

∫

B(r)J+1

|∂rG0
J (uj ± re/2)|∏

1≤j≤J

|uj − uj−1|2
> αJ+1J

(
K

∫
du

|u|2|u− e|2
)J

log(Λ).

For the second derivative: in the case of the terms corresponding to ∂v1∂v2G
0
J with

va = ui(a) + ε(a) k
2
, the above upper bounds enable us to say that if i(1) 6= i(2) then it

suffices to apply twice (119),(120) and we get an upper bound of the form:

KJ2
(
χ|k|≤1 +

χ1<|k|<2Λ

|k|2
)
αJ+1

(
K

∫
du

|u|2|u− e|2
)J

log(Λ),

If i(1) = i(2), then as:
∫

du

|u− v|2|u|Ẽ
(
u, k

2

)
( 1

Ẽ (u+ k/2)2
+

1

Ẽ (u− k/2)2

)
> 1

|k|2|u| , (121)

we obtain an upper bound of the form

KJ(χ|k|≤1 +
χ1<|k|<2Λ

|k|2 )αJ+1
(
K

∫
du

|u|2|u− e|2
)J

log(Λ).

If i(1) = i(2) = 0, we integrate first over u0, then over u1, u2, · · · , uJ and use (121)
with u = u0, v = u1: this gives

for 1 < r < 2Λ,
∣∣∣∂2

r

1− s
u0+

k
2

s
u0−

k
2

r(Ẽ
(
u0 +

k
2

)
+ Ẽ

(
u0 − k

2

)
)

∣∣∣ >
r−2 + Ẽ

(
u0 +

k
2

)−2
+ Ẽ

(
u0 − k

2

)−2

|u|Ẽ
(
u, k

2

) .

If r ≤ 1 we use Remark 24 as before.
• There remains to deal with the terms corresponding to differentiation over r in the
domain B(r)J+1.

We rewrite (118) using the co-area formula. Indeed, let us write for ε ∈ {1,−1}
and r ∈ [0, 2Λ]:

Bε(r) := {p, |p+ εr
2
e| < Λ, 〈p , εe〉 > 0} and B(r) := B1(r) ∪B−1(r) ⊂ B(0,Λ).
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In particular B(Λ) = {p ∈ B(0,Λ), 〈p , e〉 6= 0}. We define the function:

z :
B(Λ) → [0, 2Λ]

p ∈ Bε(Λ) 7→ r such that
∣∣∣u+

rεe

2

∣∣∣ = Λ.

We apply the co-area formula with the level function z. If p ∈ Bε0 , we write ε(p) := ε0
and

n(p) :=
p+ ε(p)z(p) e

2∣∣p+ ε(p)z(p) e
2

∣∣ = Λ−1(p+ ε(p)z(p) e
2
).

For 0 ≤ r < 2Λ we write S(r) := {p ∈ B, z(p) = r} and Sε(r) := S ∩Bε; each Sε(r) is
a spherical cap of S(− rεe

2
,Λ). The measure of B(0,Λ)\B(Λ) is zero and the function

z is differentiable with

∇z(p) = −2ε(p)

〈np , e〉n(p).

Thus for any integrable function F : B(0,Λ) → R and 0 ≤ r < 2Λ one has:
∫

B(r)

F (p)dp =

∫ 2Λ

t=r

dt

∫

S(t)

F (p)dH2(p), (122)

where dH2(p) is the Hausdorff measure on S(r). If we take spherical coordinates with
axis Re in Sε(r) there holds dH2(p) = Λ2 sin(θ)dθdφ in the domain:

Mε(r) = {(θ, φ) ∈ (0, π)× (−π, π), cos(θ) ≥ r

2Λ
}.

Notation 26. For convenience we write du for both dH2(u) (integration over a spherical
cap) or dH1(u) (integration over a curve).

• For each uj we may rewrite the integration over ui ∈ B(r). This enables us to get
the full derivative ∂rfΛ,J . For each 0 ≤ j ≤ J we need to estimate

∫

B(r)j−1×S(r)×B(r)J−j

du0 · · · d̂uj · · · duJdH2(uj)∏
1≤j≤J

|uj − uj−1|2
|G0

J (ui ± k
2
)|.

In Sε(r) we take spherical coordinates and write v = uj−1 + εr
2
e, if j = 0 we replace

uj−1 by u2 and integrate over u1, u2, · · ·uJ . Using one gets (119) we have:
∫

Mε(r)

Λ2 sin(θ)dθdφ

|v − Λn|2
1

|Λn|(Ẽ (Λn) + Ẽ (Λn− k))
≤
∫

S2

sin(θ)dθdφ

|v − Λn|2

≤ 2π
Λ|v| log

(
Λ+|v|
Λ−|v|

)
.

Then writing v := ui−1 + ε k
2

we have:

∫

B(r)

dui

|ui − ui−1|2|ui + ε k
2
|
log
(

Λ+|ui+ε
k
2
|

Λ−|ui+ε
k
2
|

) 1

Ẽ (ui, k/2)
=

∫

B(r)+
εk
2

dui

|ui − v|2|ui|Ẽ (ui)
log
(

Λ+|ui|
Λ−|ui|

)

≤
∫

B(0,1)

du

|u− vΛ−1|2|u|Ẽ (Λu)
log
(1 + |u|
1− |u|

)
≤ 2π

∫ 1

r=0

Λdr

|v|Ẽ (Λr)
log
(1 + r

1− r

)
log
∣∣∣Λ

−1|v|+ r

Λ−1|v| − r

∣∣∣

≤ 2π

∫ 1

0

Λdr

|v|Ẽ (Λr)

(
log2

(1 + r

1− r

)
+ log2

∣∣∣Λ
−1|v|+ r

Λ−1|v| − r

∣∣∣
)

> |v|−1.

Finally for sufficiently small α, we have

|∂rfΛ,J (r)| ≤ KL(αK)J
(
χr≤1 +

χ1<r<2Λ

r

)
.

By dominated convergence we get that as r tends to (2Λ)− then ∂rfΛ,J tends to 0,
thus gΛ ∈ H1(R3).
• Let us deal now with the second derivative. There remains to deal with:
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1. One derivative in B(r) and one derivative in the integrand.

2. Two derivatives in two different B(r).

3. Two derivatives in the same B(r).

In fact, one has to deal with the last two cases together because each term alone is
not well defined and only the sum gives a finite term. If we see the derivative as the
coefficient of the second term in the Taylor series of gΛ,J (r+ δr), then each term gives
O

δr→0
(−δr log(δr)) but the sum is O(δr) due to some cancellation.

1.
1.1. One derivative in uj± r

2
e and one in the domain of ui with i 6= j. Up to integrationg

over uj from j = 0 to j = J , we can suppose that j < i. We split S(r) between S+(r)
and S−(r). In Sε(r), having used (115) (and (95) at the beginning) we get:

∫

Sε(r)

dui

|ui−1 − ui|2Ẽ
(
ui + ε k

2

)
|ui + ε k

2
|
≤
∫

S2

dui

Λ2| |u
ε
i−1|
Λ

− ui|2

> 1

Λ|uε
i−1|

log
( 1 +

|uε
i−1|
Λ

Λ− |uε
i−1|

)
.

Taking spherical coordinates with respest with −ε k
2
, we have for any v ∈ B = B+∪B−:

∫

B(0,Λ)

du

|ui−1 − vε|2|ui−1|Ẽ (ui−1)
log
(1 + |ui−1|

Λ

1− |ui−1|
Λ

)
> 1

|v|

∫ 1

0

dz log
(1 + z

1− z

)
log
( |vε|

Λ
+ z

|vε|
Λ

− z

)

> 1

|vε|

∫ 2

0

log
(1 + z

1− z

)2
,

∫

B(0,Λ)

du

|ui−1|Ẽ
(
u2
i−1

) log
(1 + |ui−1|

Λ

1− |ui−1|
Λ

)
>

∫ Λ

0

dz

E(z)
log
(1 + z|

Λ

1− z
Λ

)

> 1 + Λ−1.

We use the same method as for the first derivative: when integrating over uj , we use
(Ẽ
(
uj +

k
2

)
+ Ẽ

(
uj − k

2

)
)−1 ≤ Ẽ

(
k
2

)−1
. In this first subcase, we get an upper bound

of the form:
J2(Kα)J+1 log(Λ)

ΛE(k)
.

1.2. One derivative in uj ± r
2
e and one in the domain of uj . Splitting the integration

over S+(r) and S−(r), and using (115), we have to estimate
∫

Sε(r)

dui

|ui − v|2|ui + ε k
2
|Ẽ (ui, k/2) Ẽ

(
ui + ε′ k

2

) ≤
∫

Sε(r)

dui

|ui − v|2|ui + ε k
2
|Ẽ (ui, k/2) Ẽ

(
ui − ε k

2

) .

(123)
Above v is either ui+1 or ui−1 depending on the order of integration (from uJ to u0 or
from u0 to uJ if the derivatives act on u0 +

k
2
). Moreover ε, ε′ ∈ {1,−1} and the term

with ε′ comes from the derivative in the integrand. Using (115) several times (starting
with (95)) we get the term |ui + ε k

2
| = |uε

i | in (123).
In (123), we use spherical coordinates and get the following upper bound:

∫

S2

Λ2du

Λ2

1

|Λu− vε|2Ẽ (Λu− re)
≤ 2

∫

S2

du∣∣Λu− |vε|e
∣∣2E(u− re)

. (124)

We write

x := |vε|, A := Λ2 + x2, B :=
√

1 + Λ2 + r2, a :=
2xΛ

x2 + Λ2
and b :=

2Λr

1 + Λ2 + r2
.
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The upper bound is equal to

4π

AB

∫ 1

−1

dy

(1− ay)
√
1− by

=
4π

ABa

2b√
1+b+

√
1−b∫

0

dz

z2 + 2z
√
1− b+ b( 1

a
− 1)

.

If a ≤ 1
2
, then this integral is

O
(

1

AB

∫ 1

−1

dy√
1− by

)
= O

(
1

Λ2E(vε)

)
.

Similarly, if b ≤ 1
2
, we have:

O
(

1

AB

∫ 1

−1

dy

1− ay

)
= O

(
1

Λ2E(vε)

)
.

If 1
2
< a, b ≤ 1, we look at the second formula. We have z2 ≥ 2z

√
1− b for

z ≥ 2
√
1− b and 2

√
1− b < 2b√

1+b+
√
1−b

iff b > 4
5
.

For 1
2
< b ≤ 4

5
, a > 1

2
we get the upper bound:

20π

AB

∫ 1

−1

dy

1− ay
> 1

Λ2|vε| .

For b > 4
5
, a > 1

2
, we have the upper bound

4π

AaB




2
√

1−b∫

0

dz

2z
√
1− b+ b( 1

a
− 1)

+

2b√
1+b+

√
1−b∫

2
√

1−b

dz

z2 + b( 1
a
− 1)

.




The first integral gives (without 4π/(AB))

1

2a
√
1− b

log

(
1 +

4(1− b)

b( 1
a
− 1)

)
≤ 1√

1− b
log

(
1 + 5

1− b

1− a

)
.

If 1− b ≤ 1− a, then this gives O((1− b)−1/2), else this gives O( log(1−a)√
1−b

).

The second integral gives (without 4π/(AaB)), with X := (a−1 − 1)−1:

√
X

b

∫ 2
√

bX√
1−b+

√
1+b

2

√
1−b
b

X

dz

z2 + 1
>
∫ 2

2
√

1−b

Xz2

1 +Xz2
dz

z2

> 1√
1− b

=

√
1 + Λ2 + r2√
1 + (Λ− r)2

.

We have:

log(1− a)

AB
√
1− b

= 2
log
∣∣
√

Λ2+x2

Λ−x

∣∣
(Λ2 + x2)

√
1 + (Λ− x)2

>
1 + log(1− |vε|

Λ
)

(Λ2 + |vε|2)
√

1 + (Λ− |vε|)2
.

Let us emphasize that the condition a > 2−1 is equivalent to

|vε|
Λ

≥ 2−
√
3.

Bringing all these results together, we get the following upper bound:

K

Λ2|vε|
(
1− χ|vε|>(2−

√
3)Λ log

(
1− |vε|

Λ

))
.
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In the process of integrating over the u′
is, we have to integrate over v with this upper

bound. Taking spherical coordinates with respect to − εr
2
e, we have:





∫

B(0,Λ)

dv

|v′−v|2Ẽ(v)|v| > 1

|v′|

∫
dv

|v|2|v − e|2
∫

B(0,Λ)

dv

|v|Ẽ(v)2
> log(Λ).

Moreover, writing AΛ := A(0, (2−
√
3)Λ,Λ) the annulus, we have:





∫

AΛ

log(1− |v|
Λ

)dv

|v′−v|2|v|Ẽ(v)(Λ2+|v|2) > 1

Λ2|v′|

∫ 1

2−
√

3

− log(1− z)dz

z(1 + z2)
log
∣∣∣
|v′|
Λ

+ z
|v′|
Λ

− z

∣∣∣

> 1

Λ2|v′| ,∫

AΛ

log(1− |v|
Λ

)dv

|v|Ẽ(v)2(Λ2+|v|2) > 1

Λ2

∫ 1

2−
√

3

− log(1− z)dz

z3
.

2.
2.1. One derivative in the domain of uj and one in the domain of ui with i − j ≥ 2.
We integrate over uj′ from j′ = 0 to j′ = j and from j′ = J to j′ = i using the method
for the first derivative. Integration over u with u either uj or ui (and v either uj+1 or
ui−1) is:

∑

ε∈{1,−1}

∫

Sε(r)

du

|u− v|2
1

|u+ ε
k

2
|Ẽ
(
u+ ε

k

2

) > 1

Λ2

∑

ε

∫ 1

r
2Λ

dy

Λ2 + |vε|2 − 2Λ|vε|y

>
∑

ε

1

Λ|vε| log
(
Λ+ |vε|
Λ− |vε|

)
.

(125)
If j + 2 ≤ i then, integrating over uj+1 we have:

∫

B(r)

duj+1

|uj+1 − uj+2|2
1

|uε
j+1|(Ẽ

(
u+
j+1

)
+ Ẽ

(
u−
j+1

)
)
log

(
Λ+ |uε

j+1|
Λ− |uε

j+1|

)

> 1

Λ

∫

B(0,1)

du
|u|2|u−Λ−1uε

j+2
|2 log

(
1 + |u|
1− |u|

)

>
∫ 1

0

dr

|uε
j+2|

log

(
1 + r

1− r

)
log

(
r +

|uε
j+2|
Λ

r − |vε|
Λ

)
> 1

|uε
j+2|

,

and we conclude as before. Else j + 1 = i and we have:

∫

B(r)

duj+1

|uε
j+1|2

1

Ẽ
(
u+
j+1

)
+ Ẽ

(
u−
j+1

) log
(
Λ+ |uε

j+1|
Λ− |uε

j+1|

)2

> 1

Λ

∫ Λ

z=0

dz

Ẽ (z)
log

(
1 + z

Λ

1− z
Λ

)2

(1− r
2Λ

)

> (1− r
2Λ

)(log(Λ) + 1).

2.2. One derivative in the domain of uj and one in the domain of uj+1. We only look
at the corresponding coefficient in the Taylor series of gΛ,J (r + δr) with r′ = r + δr.
Indeed, let us treat for instance

∫∫

(uj ,uj+1)∈B(r′)×S(r)

dujduj+1

|uj−uj+1|2
|〈n(uj+1) , e〉|

2

∫

B(r)J−1

G0
J (uℓ ± k

2
)∏

a 6=j+1 |ua − ua+1|2

=:

∫∫

(uj ,uj+1)∈B(r′)×S(r)

dujduj+1

|uj−uj+1|2
|〈n(uj+1) , e〉|

2
GJ,j(uj , uj+1).
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We substract the integral of the same function but over (uj , uj+1,u
′) in

B(r)× S(r)×B(r)J−1 where u′ = (u0, · · · , ûj , ûj+1, · · · ) and use the co-area formula.
We get

∫ r

r+δr

dt

∫

S(t)

∫

S(r)

dujduj+1

|uj − uj+1|2
|〈n(uj) , e〉|

2

|〈n(uj+1) , e〉|
2

GJ,j(uj , uj+1). (126)

We deal with GJ,j(uj , uj+1) as in the case 2.1. Let us say for instance 0 < δr ≪ 1,
then for any (uj+1, t) ∈ S(r)× (r, r′) we have:

dist(uj+1, S(t)) ≥ Λ
∣∣
√

1 + 〈nu , e〉
Λ

δr + ( (t−r)
2

)2 − 1
∣∣ = O

δr→0
(Λ|(t− r)〈nu , e〉|).

By the Theorem of projection onto a closed convex R3, we have

|uj+1 − uj |2 ≥ |uj+1 −ΠS(t)uj+1|2 + |ΠS(t)uj+1 − uj |2.

If r′ < r, then we consider instead the projection of uj ∈ S(r) onto B(t). Anyway the
quantity in (126) is

O
δr→0


 (αK)J

Λ2

∫ r+δr

r

dt

∫

S2

da|〈a , e〉| log
(
1 +

1

|t− r|2|〈a , e〉|2
)
=

(αK)J

Λ2
δr(1− log(δr))


 .

The corresponding term is not Lipschitz because of the term −δr log(δr).
3. Let us write the expansion of

∫

B(r′)

|〈nuj , e〉|duj

2

∫

B(r)J

du0 · · · d̂uj · · · duJGJ (uℓ ± k
2
) =:

∫

B(r′)

FJ,j(uj)duj . (127)

We substract
∫

B(r)

FJ,j(uj)duj in (127) and get

∫ r

r+δr

dt

∫

S(t)

dujFJ,j(uj). (128)

We split (128) between integration over S+(t) and S−(t). For any t ∈ (r, r′], we write
s := t− r and:

Φt :
S(t) → S(r)

u ∈ Sε(t) 7→ v(u) := u+ zt(u)nu ∈ Sε(r) where |z(u)| = O
δr→0

(δr)
. (129)

From now on we assume v ∈ S(r) and u ∈ S(t) and write nu instead of nu to emphasize
this is a function of u ∈ S(t) and not of v ∈ S(r). The function zt : S(t) → R satisfies
the equation

∣∣∣u+ zt(u)nu + ε
r

2
e

∣∣∣
2

= Λ2 that is zt
(
1 +

zt
2Λ

− εs〈nu , e〉
2Λ

)
=
εs〈nu , e〉

2
− s2

8Λ
. (130)

Changing variables in the integration over S(t) we have:
∫

S(t)

dujFJ,j(uj) =

∫

Φt(S(t))

dvFJ,j(Φ
−1
t (v))J(Φt; Φ

−1
t (v))−1dv.

We need to determine Φ−1
t (v) and compute J(Φt; Φ

−1
t (v)).

First we have:

nu =
v − ztnu + ε r+s

2
e

Λ
= nv + ε

s

2Λ
e− zt

Λ
nu,
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thus
nu =

1

1 + zt
Λ

(nv + ε s
2Λ

e), (131)

and
nv =

(
1 +

zt
Λ

)
nu − εs

2Λ
e. (132)

Using the formula (131) in (130), we get that zt satisfies:

zt
(
1 +

zt
Λ

− εs

2Λ(1 + zt
Λ
)

(
〈nv , e〉+

εs

2Λ

))
=

εs

2(1 + z
Λ
)

(
〈nv , e〉+

εs

2Λ

)
− s2

8Λ
. (133)

In particular we have:

zt(u) =
εs

2Λ
〈nv , e〉+ O

δr→0
((δr)2). (134)

We differentiate zt in (130) and get:

dzt(u) :

TuSε(t) → R

h 7→ εs

2Λ

〈h , e〉
(
1 + zt

Λ

)

1 + zt
Λ

− εs
2Λ

〈nu , e〉
.

(135)

Thus differentiating in (129) and using (131) in (135) we get:

dΦt(u) :

TuSε(t) → TvSε(r)

h 7→
(
1 + zt

Λ

)
h+

εs

2Λ

〈h , e〉
(
1 + zt

Λ

)

1 + zt
Λ

− εs

2Λ(1+
zt
Λ

)
(〈nv , e〉+ εs

2Λ
)

nv + s
2Λ

e

1 + z
Λ

(136)
Let (a, b) be an orthonormal basis of TuSε(t) with b× nu = a, then we have:

J(Φt; u) = 〈dΦt(u)a× dΦt(u)b , nv〉
= 〈

([
1 + zt

Λ

]
a+ nudzt(u)a

)
×
([
1 + zt

Λ

]
b+ nudzt(u)b

)
× , nv〉

=
(
1 + zt

Λ

)2〈nu , nv〉 −
(
1 + zt

Λ

)[
〈a , nv〉dzt(u)a+ 〈b , nv〉dzt(u)b

]

=
(
1 + zt

Λ

)
(1 + εs

2Λ
〈nv , e〉) + εs

2Λ

(
1 + zt

Λ

)(
〈a , e〉dzt(u)a+ 〈b , e〉dzt(u)b

)

=
(
1 + zt

Λ

)
(1 + εs

2Λ
〈nv , e〉) + εs

2Λ

(
1− (〈nv , e〉+ εs

2Λ
)2

(1 + zt
Λ
)2

)
×

1 + zt
Λ

1 + zt
Λ

− εs

2Λ(1+
zt
Λ

)
(〈nv , e〉+ εs

2Λ
)

= 1 +
εs

2Λ

[
1− (〈nv , e〉+ εs

2Λ
)2

(1+
zt
Λ

)2
+ 〈nv , e〉

(
1
Λ
+ 1
)]

+ O
δr→0

((δr)2).

As u = v − ztnu = v + εs
2
〈nv , e〉nvj + O

δr→0
((δr)2), we get:

∫

Sε(t)

dujFJ,j(uj)r =

∫

Φt(Sε(t))

dvjFJ,j(vj +
εs
2
〈nvj , e〉nvj + O

δr→0
((δr)2))×

(
1− εs

2Λ

[
1− (〈nv , e〉+ εs

2Λ
)2

(1+
zt
Λ

)2
+ 〈nv , e〉

(
1
Λ
+ 1
)]

+ O
δr→0

((δr)2)
)
dv.

(137)
We have Φt(Sε(t)) 6= S(r). In spherical coordinates (r, θ, φ) with respect to −ε r

2
e

and positive vertical half-line R3
+εe we have

Φt(Sε(t)) ≃
{
(Λ, θ, φ),

rs

2Λ
√

1− rs
2Λ2 + s2

4Λ2

= cos(θt) ≤ cos(θ) ≤ 1
}
, (138)

and cos(θt) =
r
2Λ

− r2

8Λ2 s+ O
δr→0

((δr)2).
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At this point, we need to differentiate FJ,j : we have

FJ,j(uj) =
|〈nuj , e〉|

2

∫

B(r)J

du0 · · · d̂uj · · · duJ

G0
J (uℓ ± k

2
)∏

1≤i≤J

|ui − ui−1|2
.

We change variables as follows: vi := ui − uj , this enables us to remove uj from
the term |uj − uj±1|−2. Writing Bε(r, uj) := {v : |v + uj + ε k

2
| < Λ}, B(r;uj) =

B+(r;uj) ∪ B−(r;uj) and Sε(r, uj) := ∂Bε(r, uj), we have

FJ,j(uj) =
|〈nuj , e〉|

2

∫

B(r;uj)
J

dv0 · · · d̂vj · · · dvJ
G0

J (vℓ + uj ± k
2
)∏

1≤i≤J

|vi − vi+1|2
, (139)

with the convention vj = 0. We differentiate the formula (139): uj appears in the
integrand and in the domains B(r;uj). We deal with the terms corresponding to
differentiation of the integrand as before. Then we have for any integrable function F
and small displacement δu ∈ R3:

∫

Bε(r,uj+δu)

F(v)dv −
∫

Bε(r,uj)

F(v)dv =

∫

Sε(r;uj)

F(v)(〈n(v − uj) , δu〉+ O
δu→0

(|δu|2))dv,

(140)
where n(v − uj) is the outward normal of Sε(r, uj) at v. Substituting in (137), as in

the part 2.2. we get terms which are O
δu→0

(
|δu|(1− log |δu|)

)
. Writing uj = u we have

FJ,j(v − εs
2
〈nv , e〉nv + O

δr→0
((δr)2)) = O

δr→0
(−(δr)2 log(δr))

+FJ,j(v)− εs〈nv , e〉
2

∑

i6=j

∫

vi ∈ S(r; v)

v′
i ∈ B(r, v)J

duidv
′
i∏

1≤ℓ≤J

|vℓ − vℓ−1|2
G0

J (vℓ ± r
2
e)〈n(vi − uj) , nv〉.

(141)
We write C(r) := S+(r) ∩ S−(r) (this is a curve): integrating FJ,j(vj) over

Sε(r)∆Φδr(Sε(δr)) gives rise to a term:

− 2r2

8Λ2

∫

uj∈C(r),(ui)i6=j∈B(r)J

r

4Λ
du0 · · · duJGJ (uℓ ± k

2
) + O

δr→0
((δr)2).

Thus we get a term of order

− 2r2

8Λ2

∫

uj∈C(r),(ui)i6=j∈B(r)J

r

4Λ
du0 · · · duJGJ (uℓ ± k

2
) = O

( (αK)J+1

Λ2

)
.

Integrating the term FJ,j(v) × (J(Φt;uj)
−1 − 1), we get a well defined number in the

limit δr → 0. Furthermore this term is

O
( 1

Λ

∫

uj∈S(r)

∫
· · ·
∫

(u0,··· ,ûj,··· ,uJ )∈B(r)J

du0 · · · duJ |GJ (uℓ± k
2
)|
)
= O

( (αK)J+1 log(Λ)

Λ2
χr<2Λ

)
.

To conclude, we consider the term FJ,j(Φ
−1
t (v))− FJ,j(v).

Up to a term −δ2 log(δr) = o
δr→0

(δr), we can take S(r) instead of Φt(Sε(t)) and 1

instead of the full jacobian J(Φt;u). We have ε〈nv , e〉 = |〈nv , e〉|. In (141) we take
back the previous variables ui = v + vj , this gives

δr

∫

v∈Sε(r)

∑

i6=j

∫

(ui,u
′)∈S(r)×B(r)J−1

du0 · · · duJ
|〈nv , e〉|

2

(
−|〈nv , e〉|〈nv , nui〉

2

)
GJ (uℓ± k

2
).
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When we sum this term with that of (126), for each i 6= j we have
∣∣∣|〈nui , e〉| − |〈nv , e〉|〈nv , nui〉

∣∣∣ =
∣∣∣ε(ui)〈nui , e〉 − ε(v)〈nv , e〉 × ε(v)ε(ui)〈nv , nui〉

∣∣∣,
≤ min(

√
2|nui − nv |, 2).

Thus there is no more logarithmic divergence: for u = uj and v = uj−1 or v = uj+1,
we use the same method as that for (126) and get

∫∫

S(r)×S(r)

|nu − nv ||〈nu , e〉|dudv
|u− v|2

1

Ẽ (Λ)2 Λ2
.

We split the domain in 4: Sε(r)×Sε′(r): the case ε = ε′ gives finite number. Indeed if
we use spherical coordinates with respect to − εr

2
e, we have |nu − nv| ≤ |u−v|

Λ
, and the

integral is

O



∫

S2

du

Λ2|u− e|


 = O

(
1

Λ2

)
.

The integration over S+(r)× S−(r) is also finite. To see this we proceed as follows.
For convenience we write x := r

2Λ
, θ01 = arccos(x), θ0−1 = arccos(−x) and s(·) (resp.

c(·)) for sin (resp. cos). We take spherical coordinates with respect to −ε r
2
e for any

Sε(r) and obtain:

2π

Λ2

∫∫∫

(θ1,θ−1,φ)∈(0,θ0
1
)×(−π,θ0

−1
)×(−π,π)

s(θ1)s(θ−1)dθ1dθ−1dφ

(c(θ1)− c(θ−1)− 2x)2 + s(θ−1)2s2φ + (s(θ1)− s(θ−1)cφ)2

> 1

Λ2

∫∫∫

(θ1,θ−1,φ)∈(0,θ0
1
)×(−π,θ0

−1
)×(−π,π)

s(θ1)s(θ−1)dθ1dθ−1dφ

(c(θ1)− c(θ−1)− 2x)2 + c(θ−1)2φ2
=:

A

Λ2
.

We write θε = θ0ε − εφε: we have

εc(θε)− x = x(c(φε)− 1) +
√
1− x2s(φε),

x(c(φε)− 1) +
√
1− x2s(φε) ≥ φε

( 2
π

√
1− x2 − x

φε

2

)
,

≥ 2φε

π

(√
1− x2 − π

4
x arccos(x)

)
≥ 2φε

√
1− x

π

(
1− xπ

4

)

≥ 2φε

√
1− x

π

(
1− π

4

)
≥

√
1− x2φε

π

(
1− π

4

)
.

Thus we have

A >
∫∫

φ1,φ−1∈(0,θ0
1
)

sin(θ1)dφ1dφ−1
√
1− x2

√
φ2
1 + φ2

−1

>
∫

φ1∈(0,θ0
1
)

dφ1√
1− x2

log
(
1 +

arccos(x)

φ1

)

>
∫

φ∈(0,1)

log(1 + φ−1)dφ.

Conclusion We obtain at last the following upper bound for the terms of 2. and 3.:

J2 (αK)J+1 log(Λ)

Λ2
.

It is possible to show that the function ∂2
rfΛ(x) tends to zero as |x| tends to 2Λ, this

is proved in the thesis of the author (to appear in 2014). 2

Alternative FΛ
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In the proof of Theorem 3, one is lead to consider a pertubative self-consistent
equation with D0 replaced by D0 + 2

λ
D0

|D0| . In particular we need Lemma 15 below for
the proof of Lemma 12. We can write

D0 +
2

λ

D0

|D0| = βw̃0(−i∇) +α · −i∇
| − i∇| w̃1(−i∇).

The formulae are the same with w0, w1 replaced by w̃0, w̃1, estimates of the same kind
hold. The alternative functions are marked with a tilde: B̃Λ and g̃Λ.

We can easily estimate
∫
|x|≥R

|F−1(F̃Λ)(x)|dx for R ≥ 1: writing fΛ := F
−1(F̃Λ)

we have the following Lemma:

Lemma 15. For λ,Λ ≫ 1 we have:

α

∫

|x|≥R

|fΛ(x)|dx ≤ ||−∆F̃Λ||L2

√
4πR−1 = O(LR−1/2). (142)

In particular, with R−1 = α≪ 1 and L ≤ L0 it is lesser than KLα1/2.
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