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Abstract

We study the Bogoliubov-Dirac-Fock (BDF) model, a no-photon, mean-field approxi-
mation of quantum electrodynamics that allows to study relativistic electrons interacting
with the vacuum. It is a variational model in which states are represented by Hilbert-
Schmidt operators. We prove a charge renormalisation formula that holds close to the
non-relativistic limit: the density of a ground state is shown to be integrable although
such a state is known not to be trace-class. We prove that we can take the non-relativistic
limit by keeping track of the vacuum polarisation. We get an altered Hartree-Fock model
due to the screening effect.

1 Introduction

The relativistic quantum theory of electrons is based on the Dirac operator [24]:
me2f— Z?zl thcay - 05. Here c is the speed of light, m the mass of electron, & the Planck’s

constant,
L id(c2 O o O gj 4
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where the o;’s are the Pauli matrices:
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The Dirac operator is a self-adjoint operator acting on § := L2 (]R?’7 <C4) and whose domain
is H'(R*,C"). In the one-particle theory, the energy of a free particle 1 € L*(R*, C*) is
given by (Dot , %), while the spectrum of Dy is (—oo, —mc?] U [mc?, +00). According
to Dirac’s interpretation, all the negative energy states are already occupied by "virtual"
electrons, the so-called Dirac sea. By the Pauli principle a real electron can only have
positive energy.

In this paper we study the Bogoliubov-Dirac-Fock (BDF) model which is a mean-field
approximation of Quantum Electrodynamics (QED). This model, introduced by Chaix
and Iracane in [2], enables us to consider a system of relativistic electrons interacting
with the vacuum in the presence of an electrostatic field.This paper is a continuation of
previous works by Hainzl, Gravejat, Lewin, Séré, Siedentop, Solovej [12] [8] [0l 11 [10 [7]
and Sok (unpublished work [23]). In this paper we will extend some results of [7] and of
[10].

We use relativistic units h = ¢ = 4mep = 1 and set the bare particle mass equal to
1. The fine structure constant is written . The free Dirac operator is written D° =



—ic - V 4 B, furthermore we write $ := L?(R* C*) and define P® (resp. P{) as the
negative (resp. positive) spectral projector of Dy.

We will not recall here how the BDF energy is derived from QED but refer the reader
to [2] or |8 Appendix|. Let us just say that the starting point is the Hamiltonian of QED
HqEep, defined on the electronic Fock space F.;. The mean-field approximation consists
in restricting the Hamiltonian of QED Hqep to "Hartree-Fock" states, the so-called BDF
states.

These BDF states are fully characterized by their one-body density matrix (1pdm) P,
an orthogonal projector of L?(R3 C*). For instance, the projector P° is the 1pdm of the
free vacuum €2y of the Fock space F;. Taking P° as a reference state, we consider the
reduced 1pdm @Q := P — P°. Not all projectors are admissible: a projector P defines a
BDF states if and only if the difference P — P° is Hilbert-Schmidt.

Remark 1. We recall that a Hilbert-Schmidt operator is a compact operator Q whose
integral kernel Q(z,y) is square-integrable, or equivalently whose singular values form a
sequence in £2. If this sequence is in £, then the corresponding operator is trace-class.

Let Qp be a BDF state with 1pdm P. The formal difference of the energy (Qp|H|Q2p)
of the state 2p and that of g gives a function of @, the so-called BDF energy.

We assume the presence of an external density of charge v (real-valued) of finite
Coulomb norm:

2 _ k1 e v@vy)”
D(v,v) = |[v|)? = 4r k= H ﬁdxdy. (2)

The last equality holds for suitable v (for instance v € C N L5/%(R?)).
Formally the BDF energy of a state with reduced 1pdm @ is:

Trpo (DoQ) — aDl(pa,v) + 5 (Dlpa, po) - Bx[Q)),
Trpo (DoQ) := Tr{P? (DoQ)P? + P (DoQ) P}, 3)

Ex[Q] ::f %dmdy.

Here, a > 0 is the coupling constant, Q(z,y) the integral kernel of the operator @ and
pq is its density: pg(x) = Trea (Q(x,x)). We recognize the kinetic energy, the interaction
energy with v, the direct term and the exchange term as in Hartree-Fock theory.

This expression is not always well defined, in particular the formula for the density pg
makes sense a priori only if @ is (locally) trace-clas.

An ultraviolet cut-off A > 0 is needed: many choices are possible. In [8] [9] 1T} [10],
Hainzl et al. have considered a "sharp" cut-off in which L?(R®,C*) is replaced by its
subspace $4 made of functions whose Fourier transforms vanish outside a ball B(0, A).

In [I1], Hainzl et al. proposed another BDF energy based on an altered Dirac operator
D° and on its spectral projectors

PL = xey (D) (4)
In fact Hainzl et al. studied the periodized Hamiltonian Hy, in a finite box [—Z, L) (with
periodic boundary conditions). Setting an ultraviolet cut-off, the problem becomes finite
dimensional: for L large enough they prove there exists a unique ground state which
tends to P2 as L tends to +00. Thus the BDF energy with respect to this minimizer
("substracting (Qpo |H|Qpo )}") gives a more relevant model.

The operator D° has the same structure as the Dirac operator: D° := « - g1(—iV) +
Bgo(—iV) and it satisfies the following equation:
0
DO — DO + g Sgn(D )(:C7y) . (5)
2 |z—yl
Here go and g1 are smooth functions of B(0, A).
In this paper the energy functional Egpp is defined on a subspace K of G2($a ), made
of convex combinations of reduced 1pdm’s of form P —P%. The set K is properly defined



in the next section and Epr is defined as in (@) except that we replace the PY-trace by
a P2 -trace:
Tro(D°Q) := Tr{P2(D°Q)P + PL(D°Q)PY }, (6)

A global minimizer of Egpp is interpreted as the polarized vacuum in the presence of
v.

The charge of a state @ € K is given by Tro(Q). Thus the ground state of a system
with M electrons is given by a minimizer of Egpp over the corresponding charge sector.

Furthermore, we define then the energy functional for g € R:

Etpr(q) inf {€6pr(Q), Q € 2(q)},
(q) {Q € K, Tro(Q) = g}

The question becomes: does there exist a minimizer for Efpp(q)?
In [1I0], Hainzl et al. proved that a sufficient condition for the existence is the validity
of binding inequalities at level ¢:

V¢ € R\{0,q}, Etpr(q) < Eppr(qg—4q') + EgDF(q/)« (7)

A much more difficult task is to check that these inequalities hold.

In [I0], the authors showed the following.

Let a density v € L*(R*,R) NC, an integer 0 < M < Jv +1 and a cut-off level
Ao > 0 be given, then there exists minimizer for Egpp(M) provided a < eo(v, Ag) for
some number &9 (v, Ag) > 0.

In [23] we proved that EgDF(l) admits a minimizer provided that o, A™! and L :=
alog(A) are small enough. In other words, surprisingly an electron can bind alone in the
Dirac sea without any external density, due to the vacuum polarisation.

In both cases the results hold in the non-relativistic regime o < 1.

Let M € Z: a minimizer for Egpp(M) satisfies a self-consistent equation of the form
[10]
Q+ P2 = X(ouy (D" + al(p — 1)+ = L)) = (D). (®)

Here, p is a Lagrange multiplier due to the charge constraint M, interpreted as a chemical
potential. For M > 0, it is positive, the projector x(—o,0)(Dg) is interpreted as the
1pdm of the polarized vacuum while x[o,,j(Dgq) is the 1pdm of the "real" electrons. For
« sufficiently small, the last projector is indeed of rank M. Furthermore in the limit
a — 0, Ag > 0 fixed, its scaling by a~! tends (up to extraction) to a minimizer of the
Hartree-Fock energy Ep for M electrons and Z := J v, restricted to L*(R3,C*90).

In [23], a similar result is obtained with a minimizer for E3p(1) in the non-relativistic
limit @ — 0, alog(A) := Lo fixed, the limit is then the Choquard-Pekar model [15].

In this paper we show that, assuming L = alog(A) < Lo, there exists a minimizer
for Egpp(M) as soon as M < [v+1 and a < a1(v,L). The nonrelativistic limit is an
altered Hartree-Fock model: writing Z = [v and a = (£L)/(1+ & L) < 1 the energy is

VT € &1(L*(R?%, CY)),0<T <1, Te(T) = M :
E4.(T) = $T(=AT) = Z(1 - )T (4T) + 3{llor |12 — BxITT} — $llor )12

The vacuum polarizes due to the presence of v and the electrons: the positive charge v
attracts a cloud of negative charge which makes it appear smaller (hence the term Z(1—a))
while the electrons repelled them resulting to an attractive well created by the distortion
(hence the term —%||pr||¢ like in a polaron model). This result gives a wider range of
existence of ground state in the space of parameters (o, A) compared to that of [10], where
the quantity alog(Ao) is neglected and considered as ago(l)'

To prove it, it is necessary to have a good understanding of a minimizer Q)¢ and of its
density pg,. In [7] the authors proved that, in the simplified model without the exchange
term, the density of a minimizer is integrable. This is a natural result: the distortion of



the vacuum due to a finite number of charged particles with finite Coulomb energy should
also be finite.

Mathematically speaking however this is a non-trivial fact because a minimizer for
Efpp(M) is not trace-class. As in [7] we prove that, assuming that L is small enough
and M, ||v||? < log(A), then the density po of a minimizer @ is in L' N C. Moreover, the
following charge renormalisation formula holds:

M —
2= ©)
+5=L

(oo =v) = 230t - 2) =
where Z3 is interpreted as the renormalization constant [6]. This means that the total
observed charge [(pq — v) is different from the real charge M — Z of the system.

The quantity L = alog(A) is related to Zz. In the reduced BDF model where the
exchange term is neglected, Gravejat et al. showed in [7] that the density pg of a minimizer
of the reduced energy Eippr(M) is radial as soon as v is radial and that, in this case,
away from the origin, the electrostatic potential of the system is

1 aZs(M — Z)
alpq —v)x () S
In the full model we were unable to prove such behaviour at infinity but we think this is
true. Taking L small corresponds then to considering Zs close to 1.

The main contribution of this paper is the integrability result stating that the density
of a minimizer is in L' together with the charge renormalisation formula @. It cannot
be easily obtained from [7], the presence of the exchange term complicates the study.
In our results, we were unable to remove the technical conditions M, ||v||2 < log(A). We
emphasize here that we can prove the same results with another choice of cut-off considered
in [7], the one consisting in replacing D° by Do(1 — %) in L?(R®,CY).

The paper is organized as follows: in the next section we properly define the variational
problem Efpp and states the main results.

In Section Bl we derive two fixed point schemes from the equation satisfied by a mini-
mizer, using the Cauchy expansion. Moreover a priori estimates are proved in Subsection
2.2l

In Section M we prove important estimates on a term of the Cauchy expansion (”Q1,0”)
and prove Theorem [I1

Section [l is devoted to prove estimates for the fixed point method and apply it to
prove that the density of a minimizer is in L' (under some assumptions).

We prove the formula of charge renormalization (Theorem ) and the existence of
minimizers close to the nonrelativistic limit (Theorem [3)) in Section

The nonrelativistic energy is studied in Appendix[Bl The very technical Appendix
is devoted to prove Proposition [II We prove Lemma [§] which is used for Sections [ and
in Appendix [Al
Remark 2 (Fourier transform). Throughout this paper, the Fourier transform .% is defined
as the extension of

-~ 1

(p) := @ Jo (z)e” P *dz.

vV fe L(R*)NL'(R%):

Remark 3 (Form of D). The operator D° was first studied by Lieb and Siedentop in [I8]
in another context. We know gi(—iV) = %gl(—iV) and go, g1 are radial functions
satisfying

Vp € B(0,A), |p| < g1(p) < go(p)lp| and 1 < go(p) < 1+ Cst x alog(A).  (10)

We define
m := inf o(|D°|). (11)

For alog(A) and « sufficiently small, m is equal to go(0).
Useful estimates on go, g1 are proved in [23].



2 Description of the model and main results

BDF Energy We assume there is an external density of charge v (real-valued) of finite
Coulomb norm (||v|l¢ < +00).

Let us recall our choice of cut-off: following [10], we replace Do by D° and work in
Ha, defined by

9= {¢ € L*(R*,C*), supp® C Bya(0,A)}, A > 0.

We write 6,(9a) the Schatten class of compact operators A in 4 such that Tr(|A]P) <
+00 [22]. The set of P°-trace operators is [10]:

0
& ={QE€:(9),Q"",Q " € &)} (12)
where Q°1°2 .= 7731 QPSZ. This set is a Banach space with
HQHGPQ =107 oo +1Q Ml + Q7 " lley + 17 s, - (13)
1

We recall that Tro(|D°|(Q*" — Q™ 7)) is the kinetic energy functional.
We work in a subset of this space, namely

0 0
K={Q -PL<Q<PYNS” c{Q. Q" =Q}ne, . (14)
0
It is the closed convex hull of the P — P° ¢ 671)’, where P is an orthogonal projection.

The density po must be defined consistently with the usual formula when Q@ is (locally)
trace-class and it must also be of finite Coulomb energy.

0
Let @ be in 671)’, then pg is defined by duality:
0
VVeCr, QVe6, and Tro(QV) = o (V, po)e. (15)

0
The map Q € 6?7 — pq € C is continuous [7, Proposition 2]|.
The exchange term is well defined: thanks to Kato’s inequality [T}, [T} [§]

2Ty < 1r(v1Q7) < Do) = WD QD
and for Q €K: <Tr{|Do|'*(Q"F = Q)| Do|'/?} < Trpo (D°Q),
The BDF energy is defined as follows:
v . 0 o |Q
Eor(Q) 1= Trpo (D'Q) —aD(w,pa) + 5 (Dlpa, pa) - [ 200 d:cdy) Qek. (17)

As said in the introduction we define the energy functional Fgp(g) by the infimum
over Q(q) ={Q € K, Trpo (Q) = g}

For M € N*, let us say that the problem Egpp(M) has a minimizer: as pointed out
in [I0} [7] such a minimizer 4/ = v 4+ N must be of the following form:

7+ P2 = X(—oo0){D” + el(ply ’] - V) 17— ROYD} = X(—o0,0) (D),
N = x©u{D" +al(py —v) * 13 )} S5m0 ) (il (18)
so Dy = vy and we Write.n =pN =32 ;]2
We choose 0 < p1 < po < -+ < ppgg = 0 < m. A priori Mo # M but in our regime
they are equal (Lemma[3)). Indeed in the spirit of [8] the equation of the dressed vacuum

~ enables us to say that (v, p,» — v) is the only fixed point of some function F® defined
in (a ball of) the Banach space X1 = Q1 x C where

1QIIa, = QI = [[(E () + E (a))|Q(p, 0)|*dpdy.
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[
0
For an operator @ € (‘5?7 with integral kernel Q(z,y) we define the operator Rg =
R[Q] by the formula:

Notation 4. For a density p € C we write: v, = v[p] := p *

Rq(z,y) = —Ti(? Z|)

We remark that Ex[Q] = Tr(R5Q) =: ||Q||fx-
Moreover we write

Bg :=v[pg — v] — Rg and Dg :=D° + aBg. (19)

The Cauchy expansion Let vy =~ + N be a minimizer for Egpp(M), the decom-
position being that of (IS).

Notation 5. Throughout this paper n := py, moreover we write p, for p,/ and the double
prime means —v is added:

", "
Py =pytn—v, n =n-—v.

We also write B, = B/ := pJ x = — R[Y'].

By functional calculus, we expand X (=o00,0)(Dq@) —PY in power of o: this is the Cauchy
expansion [§]

1 [t 1
N =N- — d( ) j
v+ 27T/700 n D/ +in DO+Z7] jz::a Qi(Y,py),

Q( ’ H) L _L/‘+ood 1 (B 1 )j
J 77pw = 271' . nDO-'-’LT] 0% DO+Z7’1 .

We define Qi as the part of Qr+:(Q, p) which is a homogeneous polynomial of degree
k in Rg and odeegree lin p; pr,i(Q,p) denotes its density. For £ > 1 and (Q,p) €
Ga2(HY?) e C, Qe[Q, p] is the operator:

(20)

—+oo
QelQ. 0] = o7 °Q,[Q, pl.

j=¢
As shown in [8] [7] we have
poald] = —F 1(Ba) % p (21)

where #~1(Ba) is a radial L' function.

In the following Lemma, we refer to the Banach spaces Q. and &,: they are defined
below (26]). This Lemma is proved in Section @l
Lemma 1. Fip : Q — Q1,0(Q) is a bounded linear map of &, for p =1 and p = 2
with respective norms O(log(A)) and O(y/log(A)). By interpolation Fi is in L(S,) for
1<p=1+e <2 with norm O((log(A))'~2).

Moreover it is also a bounded operator in L(Qw) with norm O(1), and the function

pPFi0:Q € Qu— p(Fi0[Q]) €€

1s bounded with norm O(y/log(A)). Provided that alog(A) is sufficiently small, the oper-
ator (Id— aF1,0) is invertible with inverse T in all those Banach spaces with norm O(1).
The function t: Q € Qqu — p(T[Q] — Q) € &y is bounded and

ltelle, < VEIalQlq.-



We write
T:=T— Id, TQ ‘= PT(Q) Tj,k ‘= pT(Q].,k) and tQ = PE(Q)- (22)

0
IfQ e Qu=1N (‘5f7 then 7¢ € C and if (Q, pQ) € Quw X €y then 79 € €.
The self-consistent equation (I8) is rewritten as follows:

—+ o0

(Id = aF1,0)(Y) = N+ aQoa(ph) + > Q; (', ph).
=2

Taking the inverse T, we get:

“+ o0
v = T{N+aQo,1(p’4)+ZQJ'(’Y’7/J’4)}‘ (23)

j=2

The important proposition holds:

Proposition 1. For p € C we have ato,1(p) = —fA * p where fA is a radial L* function

whose L*-norm is O(alog(A)).

Its technical proof is in Appendix [Cl
There holds a Theorem a la Furry [5l §]:

Theorem 1. There exists K > 0 such that for any po,p1 (say in C) and a/log(A) < K
there holds:

PAT(Qo2(p0)} = p{T(Qui(TQo1(p1), p0)) } = 0. (24)

Remark 6. T(Qo,2(po)) and T(Q1,1(T(Qo,1(p1)), po)) may not vanish but their density
do due to the fact that the trace Trca is taken. The smallness of ay/log(A) is to ensure
the T operator is well defined on Q5.

Main Theorems

Theorem 2 (Computation of [, p(x)dz). Let M be in N and~y" = v+ N be a minimizer
of E%pp(M) and assume M, ||v||2 < log(A) and @8), the decomposition of v is that of
@R). Then p, € L' and

___afa(0)
[ @yt = S 01 - 2) (25)
Theorem 3 (Existence of minimizers). There ezists Ko > 0 satisfying the following result:
for any non-negative function v € C N L* with Z = Jvand 0 < L < 1/(MKo), there
exists a1 = ai1(v,L) > 0 such that if a < a1 then for any integer 0 < M < Z + 1 the
problem E%pp(M) admits a minimizer.

Let 7' = x(0,(D+') be a minimizer, decomposed as in (I8) and let Uy be defined as
follows:

L*(R*,CY — L3R CY
dz) = o PPe(E)
fa(0)

We write Trn@ = then as a tends to 0, Unx (0,4 (D~ )Ua tends to a minimizer of

a -

Ein() = 3Te(=AT) = Z(1 = a)Tr(5T) + 3(D(pr, pr) = Bx[T]) = D (pr, pr),
for 0<T <1, Tr(T) = M and H2T =0.

Remark 7. Thanks to Section [Cl and [7] we have

fa(0) _ _polosd)
1+ f2(0) 1+ Zalog(A)

+O(a+ (alog(A))?).



Banach spaces We use several Banach spaces. For p € [1,+o0], s > 0, ||||zr
(resp.||:||z=) is the norm of the usual LP (resp. Sobolev) space. We write |||, for
the norm of Schatten class operators &, [22]. The norm of bounded linear operator in £
is written ||-||z. We recall ||-||gx and ||-||c have already been defined in Sections 1 and 2
and ||||Qu s ||I'||e., are defined in Remark [§

Notation 8. From now on, for any w : R3 — [1, +00) satisfying the condition

3K >0|VYp,q.p € R?, w(p—q) < Kquy(w(p —p1) +w(pr —q)),

we define two Hilbert spaces:

Q. ={Qe6:, ﬂ(\/l 1P + V1I+[adP)wp - 9)|Q(p, ) dpdg < +o0},

w

26
eo = {pes®), [HAwIk < o). )

The letter w always refers to a function of this kind. The case w = 1 gives the space Q1
of operators @ with Tr(|D°||Q|* + Q*|D°|Q) < 400 and €; = C. Typically, we consider
w(p—q) = E(p—q)® for a > 1.

By the fixed point method we may estimate together

* [[FQ(Q,p)lr and [[Fp(Q, p)llc,
e In general ||Fo(Q,p)|lq. and ||F,(Q, p)llc, - We define Xy := Qu X €y

Notations

Notation 9 (On Dy and D). The operator sign(D°) is a Fourier multiplier that we write
DO (p)

%= V' 90(p)2+g1(p)?

. We also write

E(p) == \/1+ [p|]? and E (p) := \/90(p)? + g1(p)*. (27)

Remark 10 (Regime). We will work in the regime
a<ap<1and L:=alog(A) < Ly < 1. (28)

We consider systems with M electrons and an external charge density v > 0 with
vllc, Z == ||v]|1 < +oo. We will often consider M = O(Z) and ||v||3 + M = O(log(A)).
Throughout this paper the letter K denotes a constant independent of the parameters
a, A\, M,v. K(M,v) is a constant depending on M, v and so on. The inequality a < b
means that a < Kb for a,b > 0. When a > 1 is some integer, then as in [8] we write

1 oo dn —1/2
K, = — = O . 29
TRy =
Notation 11 (On Q). For (e1,--- ,es41) € {+, =} we define Q5 */*! with the

same formula as in (@0) except that we replace the J + 1 operators (D° + in)~'’s by
Psoj/(D0 +in). We define Qif[s“l analogously.
We write @', >"*/*/™" with a; € {v, R} for the operator

o 0
_i/+ n Pfol Ay PEO2 Ay P5.7+1
2 DO +in~ DO 4in DO 4 in’

—o0

WhereAj:v:pi;*Tl‘ifaj:fuorAj:—R(fy')ifaj:R.

Notation 12 (On fa). We introduce the function Fp := %, studied in Appendix[C] We

prove in particular that Fy € L' and that ||[Fal|z: < L.



3 Description of minimizers

3.1 Minimizers and fixed point schemes

Let ¥ = v+ N be a minimizer for Egpp(M). From Eq. @0) and 2I), we define a
fixed-point scheme:

FO =P < BV x — x,

Fé;)(Ql7p”) _ N+ZOCZQE(QI7PH)7 (303.)
=1
(1) /AW _ 1 o~ 1 ~ /. = 0~ A
FEDQ 1) = g™ 0+ Tramm (Po@i0) + L@ o' b)

(30b)
To prove F® is well-defined we use the following Lemma proved in Section

Lemma 2. Let w be some function satisfying &), with constant K,y > 0. There exists
Co > 0 such that for any J > 2, the linear operator:

(Q7p) € Qw X Q:w — (QJ(Q7P)7PJ(Q7P)) € Qw X Q:w

18 bounded with norm lesser than 2K{w) cg g2,
We apply the Banach-Picard Theorem.

Lemma 3. Let v = v+ N be a minimizer for Ebpp(M). In the regime of Remark[1
the following holds:

1. FM . By, (0, Ro) — Bx, (0, Ro) is well-defined for some Ro > 0 and this restriction
is a Lipschitz function with constant lesser than 1.

2. (v, pf;) is in the previous ball and so is the unique fized point of F(l), moreover:
IFV (', p5) = (N0, = o(1).

3. As a consequence N = x(o,u)(Dq) has rank Mo = M.

Proof of part 3. If we assume the first two points, the last one is clear. Indeed on the
one hand we have: |Tro(7)| < [|[7]|&, = o(1), on the other hand, as v is a difference of an
orthogonal projector and P%, it must be an integer [8l Lemma 2|. Thus Tro(vy) = 0 and

Te(N) = Tro(N) = Tro(y') - Tro(7) = M.

|
To prove that p, is integrable we need another fixed point scheme.
We see p as the fixed point of a function F® defined in (a ball of) C and also in (a
ball of) C N L'. We write:

ha = 06271,1{T[N]+062{04T@3(7'7P'§)+TQ2,0(W'7P'§)}7/J%'}+042T2,0(7')
FEP (") = o(ni{e?[TQii(v,p") + TQoz2(p")]. p"})
hs = a*7(Qa(,pY)) + ®{7s.0(p) + 21 (v, )}
EP(p") = o’ros(p") +alia(y, ")
(31)
F{FD (")} = 1+;A(.)ﬁ”+ 1+;A(-) {ho+ Z{EPY +hs + F{FP}} () (32)

Remark 13. The definition of F® may appear complicated. It is built on the following
self-consistent equation:

oy = T{N +aQui(p}) + 0> (@27, ) = Qua+, ) } + @7 [Qua(F (0,6, )]



Lemma 4. Let v =+ N be a minimizer for E%pr(M) and F® the function @I). In
the regime of Remark[I0, there exists Ro > 0 such that F® g well-defined in Be (0, Ro)
and in Benpi (0, Ro).

Furthermore these balls are F™® -invariant and F® is a contraction on them; Pl is
the only fized point in both Banach spaces. In particular p, € L.

Remark 14. The linear response of the vacuum to the presence of electrons N and the
external potential v is:

v =aT[Qo,1((6o — Fa) x (n —v+tn))] +Tn + -+
py =—FExnx(n—v)4 (00— Fa)*tn +---

3.2 A priori estimates

Lemma 5 (Estimates on the energy). Let M € N and Q a test function for E%pp(M).
We assume: E4pp(Q) < Ebpp(M) + & where 0 < € = o(al|v||2).
Then we have ||Q||&, < M + o||lv||2 and

Tr(|VIQ%) < allv|g + a2 M + VaM |ve,
allpe —vliz < alvlE +o*2M + VaMally|c.
As a corollary we get the following.

Lemma 6 (Estimates on the mean-field operator). In the regime of Remark[Id and for
Q as in Lemmald we have in the sense of self-adjoint operator:

(1= o(1))ID°] < D" + aBg| < (1 +o(1))[D"]. (33)

Both o(1) are O(al[vllc +a®* M2 + (aM)*a|v|?).

Lemma 7 (A priori estimates of a minimizer). Let v' = v+ N be a minimizer for
E%pp(M), decomposed as in [I8). Then we have in the regime (28)

Tr(ID°IN) < log(4), [lv[le
In"lle < Vlog(A), | llp~lle

< 2L
< Ly/log(A).

Proof of Lemma [Bt It is known that Egpp(M) < M [10]. There holds:

M+e+5lvIE = Eor(Q) + 5lIvIE = (1 - af)Tro(D°Q) + llpe — vI2
> (1-aF)lIQIE, + 5llee — vl

Furthermore:
Tro(D°Q) — M =Te(ID°|V2(Q* — Q™ 7)ID|V/?) — Tro(Q)
r(|D°|1/2Q |DO|“2> Q) ”
1
> ~1)IQ(p, q)|*dpdg,
and E (p) — 1> 1L p) Then thanks to Kato’s inequality (GI)):
Tr(QRq) < 2Tr(|V|Q?) which leads to:
1 —A 2 « 2 H ||C
(=2 Lipo — |2 <
3T (15 @) + 3o = vl < =+ a(F5E + FTH(VIQ).
Splitting at level o = ﬁ (to get al2l™ ‘ <L p 5 for |p| > 7o) we obtain:
A o 2
<
(15,1 @) < alllvliE + 1), (35)

thus by the Cauchy-Schwartz inequality: Tr(|V|Q?) < a||v||3 + VoM +VaM|v|ec. o
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Proof of Lemma [6t
For all f € $Ha we have:

(D°Ff, )=l D17 Blls)” < (D° +aBlf, f) <(ID°Ff, )1 +oz|||1>°|*1B||?)2j
36
However thanks to Ineq.(58) and the second point of Lemma [

IRa|V|™?|ls < VTr(QRq) and [[(po—1)+ IV %[5 < (pe—v)* T lls < llp@—Vlle-
As the square root is monotone, there holds
(1= al|D°|7" Bells)ID"| < |D” + aBql < (1+a||D°| " Balls)ID°), (37)

and in the regime of Remark [0 this gives (1 — o(1))|D°| < |D° + aBg| < (1 + 0(1))|DY.
This o(1) is of order O(a(||po — v|lc + || |[V]'?Q|ls,)), that is of order
O(alvllc + a®* M2 + (alM)allv]?). D

Proof of Lemma [Tt For E4ppr(M) with M, ||v||2 < log(A), we have thanks to Lemma

a(llplle + VIr(IVR) < Va(@ 2|yl + o M2 + (aM)V a2 |lv]|?) =: o'

We have £ = O(v/L). Using Eq. (23) and assuming Lemma 2 and Proposition [ above we
get, that:

lpslle < NIFx*n"lle + (S0 — Fn) = (tx + Y _o’7)lle S Llin"|le + VLa||N|x + O(La).
iz2

As [[n"lle < [lpYlle + [l lle we get
In"lle < Ivlle + (@) (M + V/llvlle) + VLaM + O(at?) < /log(A).
Thanks to the equations D%, = pj1p; — Bip;, there holds:
Tr(|D°|N) < M(1+ O(Vab)) < log(A).
Finally we have

Vv < VLalln"|le + ay/Tr(VIQ?) + O(La) £ L+ O(La) < L

(38)
Ipslle < Liin"llc + VIQ + O(La) < Ly/log(R).
|
4 The operator F
Remark 15. e If @ is a nonnegative operator then so is Rg when it is well defined.

Moreover if @ is self-adjoint then so is Rq.

e The R. operator commutes with Fourier multiplier of the form g(p — ¢), indeed we

have
Ap—lg-1)
In particular there holds:
[0, Ro] = R([9;, Q). (39)
Lemma 8. Let Q be in S(R® x R®) (Schwartz class).

1. We have:
IV]72Relle, < 1/Tr(RHQ).

In particular for any w > 1 there holds:

If 7w(’|’pT D\ o (p. q)Pdpdq < {[ I+ glw(p - 0)|Q(p, q)|*dpdg.
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2. There exists K > 0 such that for all0 <e <1

_lfe _lte x
[[1Do]™ 2 RqlDo|” "2 |ls; < ZQlls:s
Do)~ Rolls, < L[|Qlls,-

For Q € G3(Ha), we can replace |Do|~ /2 by |D°|7Y/2, provided that ' is
replaced by log(A).

By density, these inequalities hold for Q in the Banach spaces corresponding to the norms
in the r.h.s.

We prove this Lemma in Appendix A.

4.1 Proof of Lemma I

In the Schatten norms We recall F} ¢ is defined as

1 [tee 1 1
Fio:Q— Q10(Q) = —%/ dns +z'77RQ Dty (40)

—o0
The integral kernel of its Fourier transform is [8]:

1

1 ~ ~
SEw 1B (R(IL q) —spR(p, Q)Sq) : (41)

Q10(p,q) =

It corresponds to a difference of two operators which are in &, if @ is in &, for both cases
p=1and p = 2 (see below). By interpolation, for p € [1,2], if Q € &, then so is F1,0(Q).
Let us show the G;-norm is O(log(A)) while the Gz-norm is O(4/log(A)). Indeed

1 T F ) —sf(a)
—_— = e ST g,
f(p) + f(a) /ro

therefore if () is nonnegative, then so is

“+oo ~ ~
0 ~— — . — —sE(- 0
/ oo 7 He PO RQF (e E())\gowds‘
s=0

Writing Q = Q+TQ* + QfTQ* and splitting each self-adjoint operator into nonnegative and
nonpositive part, we may assume that @ > 0. Then from Eq. (), we get:

[1F1,0(Q)lls, < Klog(AM)]Qls, -

As (E(p)+ E(q)) ' < E(p)~Y? E(q)~"?, it follows that

11D~ 2 R(Z (10w, )P "2 s < K+/TogM1F (10w, 0))lss
= K\/logM)|Qlls, = K+/loaM)||Qlls»-

By interpolation (1 < p=1— ¢+ 2e < 2), there exists K(G{)O) >0

1Q1.0(@lls, < K&.0)(og(A) "2 [Qlls,. (42)
Remark 16. The operators Q1,0(Qo) (and Qo,1(po)) can be rewritten as
Ji(x —y) = F*(exp(—tE (p)))(x — y) (43a)
Foo 0 9
Q1,0(Qo) = %/ (J:RqoJ: — Je o Rao oy Jb)dt
t:0+oo o o (43b)
QO,l(PO) = _% (ljt vp()\:7t _\%% Vpo ‘/’g_o‘\%)dt

t=0

12



p[Q1.0(-)] We show here inequalities needed to estimate T(Q¢(Q, p)) and 7(Q,p) in

norms ||-/|Qu , ||*|le,, - There exists a constant Cr (defined in [8]) such that for any function
w >0
[ (B @)+ E (@)wp - 0)|@10(Q.p, ) Pdpdg < C% [[ wp - ) E(p+ 0)|Qp, ) *dpda.
(44)
By Cauchy-Schwartz inequality (¢f [8] and inequality (@8])):
= R(u+ Eoau— £ d 1
R B TS
1+ E (u, k/2) 1+ E (u, k/2) 1+ [u> + [k[?/4
B(0,A) B(0,A)
(45)
where E (u, k/2) := max(E (u+ k/2), E (v — k/2)). Thus we have:
Po@R) < Cooy [ BE0IQ+ 4,0~ §)du (16)

where 0 < C(q,0) = C(1,0)(A) satisfies C(q,0y < log(A).

Well-definedness of T and 7 Thanks to [@2]) we can prove Lemmal[ll for alog(A)
sufficiently small the function T is a linear bounded operator in L(&,) for 1 <p =14 < 2
with norm lesser than

—+oo
_E 1
CPs =" (aK§ 0 (log(A)'"2)" = _
= 1—a(log(A)'"2K§

which is finite as soon as alog(A) is sufficiently small. We write Cr,g := CEE)G.

AsT=(Id - oeFLo)*1 = ?:08 aeFﬁE)Z), let us show that aF} o is a bounded operator
in L(Qu) with norm lesser than 1. Thanks to inequality ([#4]), aF1,0 is bounded with norm
lesser than aC'r. Thus T is a bounded linear operator with norm lesser than

1
C = 47
T.Qu = T o (47)
Then thanks to Ineq. (44) and (Hf), for £ > 1 we have:
P @M < ¥ Clug k[ EuIQ+ 5= §)du
Therefore:
k) ~ o ~
[ AR < 0¥l [[ a0 - DB + D0 dpds (48)
and t is a bounded linear operator in L(€,,) with norm lesser than
+oo .
Cue =Y (a/C10)" = O(ay/log(A)) (49)
=1
for ay/log(A) sufficiently small.
Notation 17. Let us define for 1 <p=14¢ < 2:
Ya,A(p) = Y(p) < C'(I‘p,)67 (50)

which is an upper bound of the L(&,)-norm of Q ~ |Do|™"/*R(T[Q])|Do|~"/*?: ¢f
Lemma [Blin Appendix [A 1]
We have thus proved:

RQllQuw
{ IT@la, <Crq.lQla, = 149,

(51)
I7elle, < Cuell@llQu-
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4.2 Proof of Theorem [1

)=

First we recursively define the function A} as follows:
AT Q(p,q) = Q(p— 1,4 — 1) = 5,Q(p — 1,4 — 1)sy, (52)
ATHQ(p,q) = AT (A51Q)(p,q) with J € N°,¢; € R®,

These functions appear in the Fourier transform of Q?f)[Q] (see Appendix[C).

Proof: It is based on the following fact:

Lemma 9. The trace Trea of the product of an odd number of Dirac matrices (that is
a1, a2, az, B) vanishes.

Writing (a1, ...,anm) the algebra spanned by the a;’s, we define:
Ap = (a1, oz, a3, ),
AL = (1d, (1 - §1) ey o, Bers) (53)
Ap = an AL+ ac AL + as AL + BASL
1t is clear that Ap = .AJE, + Ap and Lemma [l just says that
VM € Ap : Trea(M) = 0.
Remark 4] and Appendix [C] implies that for almost all (p,q) € R® x R?:
o FP3(Qoa(p)ip.q) € Ap,
o if Q(p,q) € A5 then so is f;f?é(Qm q).
Now let us study Qo,2(p):

Q__i/“" dp 1 1
2T o DO+ DO tin "D g’
where Qgly>“* is defined in Notation [IT] (as Qi}éas%m% and so on). By the residuum
formula in the case €1 = €2 = e3 the term vanishes. We deal with Qar’;* and QO*;+
together, like Qoﬁ;* and QO*;*, on;r and Q(}L’;r*. We compute the first couple with
A=Qf; and B=Qy3™":

oo 0 0 0
] M G
. h ?mg (p) + E (p1) Eégﬁ E/\(q) 1+ spig(zzp:)pl)fl - SPI)U(I:Q(_;)(I —8q),
=5 z)laln/p1 dlplmv(p—pl)m” 1 Q)m
- —/m N FO I To T Pl — )1 +s.)
However

5((148p)0(p — p1)(1 —8p,)0(p1 — @) (1 — 8¢) — (1 — 8)0(p — 1) (1 + 8p,)0(p1 — ¢) (1 + s¢))

= 8p0(p — P1)sp, V(P1 — q)Sq + SpU(p — p1)0(p1 — @) — V(p — p1)V(P1 — @)sq — V(P — P1)8p, V(p1 — q).
(54)
In (54) there only remains matrices in A5. Symmetrically, the other two couples give:

o 5 (1 +sp)0(p—p1)(1 = 8p,)0(p1 — @) (1 +8¢) — (1 —5)0(p — p1)(1 + 8p,)0(p1 — @) (1 — 84))
= —s,0(p — P1)8p, V(P1 — q)8q + 5p0(p — P1)U(p1 — q) + V(p — p1)V(P1 — q@)Sq — V(P — P1)Sp, V(P1 — @),
o 3 ((1=sp)0(p—p1)(1 =8, )0(p1 — @) (1 +8¢) — (1 +8,)0(p — p1)(1 + 8p,)0(p1 — @) (1 —84))

= 8p0(p — P1)Sp, V(P1 — q)Sq — $p0(Pp — P1)V(P1 — q) + D(p — p1)V(p1 — q)Sq — V(P — p1)sSp, V(p1 — q).
(55)
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Therefore for almost all (p, q): Q\o’z(p; p,q) € Ap :its trace Trea vanishes. Furthermore
for all J > 1:

P Qo) = s ff - [y AL Goa(p)(ut b u— §)
PR TR [1 (E(u+k/2—L;)+E(u—k/2— L))

(56)
where for almost all (p,q,¥¢;): Tr@4{A( 3= 1Qo,z(p;p7 q)} = 0 because these matrices are

in Ap. Thus p(FY{(Qo2(p)); k) = 0 for almost all k € R* and so To,2(p; k) = 0 for almost
all kK € R2. In other words 7o 2(p)=0.

There remains to prove that 71,1 (aT(Qo 1(po)), p ) = 0: it suffices to show that for
all J,J" > 0: p{FﬁO [Ql’l (aFf’O [Qo,1(po)], pl)]} vanishes. As before we treat together

o QT (FRL (Qour(p0)), p1) and QT (FYL (Qo1(po)), p1),
o then QY (Frd (Qo.1(po)), p1) and Q; v (FEE (Qo.1(po)). p1), and so on.

As Ff"é’(Qo 1(po)'p, q) € A}, for almost all p, g, then Q*R = (F f"é/(Qoyl(pO);p, qQ),p1) +

R+“+(F (Qo 1(po)), p1;p,q) € Ay for almost all p,q thanks to (54) and (BI). So
its trace Trca vanishes. The same result holds for the other cases: Q+” B Q11 VRt
QT T+Qi{ and Q1"+ Q7. Finally as in (56) we have:

PR (Qu1(FE3 (po), pr)); k) = 0 for almost all k.

o
5 The fixed point method
We prove here Lemmas [2] [Bland @] and start with some inequalities.
5.1 Tools
o We recall the following Sobolev inequalities in R3: for suitable f —say H'— we have
Ifllize SUV ALz, Wfla S UV Fllezs 1 llee S VY2 F e (57)

We use them to prove the following inequalities: for p € C, v, 1= p* and ¢ HY?%:

lopdlize < lvollzsligllzs < lollellVI/ @l - (58)

lox &llss < IIVT/ 0 e </ [ 128 Ik < (int {ome 213 + = 21002))

|[5/2
(59)
With v, := p* = Eq (B9) is used in:
1/4
||’D++invp||64’ || \’D0+17]\1/2 Up "D0+$77‘1/2 HGAL < E(’I]Q)l/4 ||p * ﬁHL4 (60)

e We recall Kato’s and Hardy’s inequalities for ¢ € L*(R?):

[ < 29ip, 0,
ws |7 9 (61)

/ |s0|(~%|“3| do < A4((-AN)p, @),
R3 |T
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and the Kato-Seiler-Simon’s inequality (KSS) for compact operators in B(L?(R?)):

V2<p < toot [If(=iV)g(@)lls, < (2m) 77| fllLellgllze- (62)

e We recall that for any p,q € B(0,A) we have (see [23].)

— = - =5 |P—Q|
PY(p) = PL(a)| = [PL(p) ~ PLUQ)| S ——=—F=——. v
PL) = P20 = [PL() ~ PR S s o

By Ineq. ([@63]) we get the following.

Lemma 10. Let p € C, then there exists K > 0 such that for any a > 1/2 and e € {+,—}
we have:

K
P, P2 | Dol ey < ———|pllc-
” e Up 5| 0| ”627 m”P”C

Proof: It is obvious once we have seen that the norm of the integral kernel of its Fourier
transform is lesser than:

|p(p — q)l 1
Ip—ql E(q)* max(E(q), E(p))’

5.2 Estimate on ),

We estimate ||Qo,1]/q,, as in [8]. We have

/ du E(u+k/2) + E (u—k/2) <47T/A du
E(u+ek/2)? (E(u+k/2)+Em—k/2)2 ~— Jo VI+r2 (64)

B(0,A)
< dr(1+ log(A)) < log(A),

leading to:
[ we = a)(E ) + E @)Qoa (pip, @) dpda < (1 +log(A)|pllz,,  (65)

where we have used (G3)).

5.3 Proof of Lemma
We recall that for J > 1:

1 [t d 1
(@) ::%/,w i 11 <(””_RQ)W>

1<5<J

We write R
a(Q) :=F(IQ]) and a(p) :=.F (|-

It is clear that |Qk.¢(p, q)| is lesser than the integral kernel of the Fourier transform of

+oo

We write a(v,) = va(p) and a(Rq) := Rq(g) and dy, := /|D°|2 + n2. We have:

lla(vp) Lo < [IVavy| < llalo)lle = llplle,
lla(vp)llza < NIVP2a()lle < lla(e)lze= + la(p)lle = 2]l + llplle,
Imza(Re)le. < la(Re)llmx < a@lr = [I1Qfr-
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By the KSS inequality, there exist Cg, C4 > 0 such that:

ldy**vpds ey < CoB ()™ lple, (66)
a5 2 vpdy ™ e, < CaB(n)~ o] s
As w satisfies (§)), we have:
w(p — Q)a(Qs(Q, p)ip.q) < JK(Jwﬁ(QJ (7w — QW ), F(p)];p, q)-
It suffices to check that for po = p,ps+1 = q and p1,--- ,ps € R® we have:
J+1 J+1
w(p—q) <> Klywp-1 —p;) < KLy [ wpi-1 —p)-
j=1 Jj=1
In the definition of ||-||q.,, there remains to multiply by E D V2L R q 12 We use the
Q

first or the last d;l to get:
Em'? 1
JE re B+

For the terms Qs (Q, p) with J > 3 we get that:

with r € {p, q}.

il S
10Q(Q, P)llQu < —5 <||HWR[G(Q)]H62 +C6||P||C) [w B

For J = 2, we treat Qo,2(p) in another way because the product of two operators in &g is
not necessarily Hilbert-Schmidt. By the Cauchy expansion we have [§]

So it suffices to treat QG'3°>'°® with (e1,e2,e3) # (++ +),(— — —). In particular there is
a change of sign +— or —+. By Holder inequality and Lemma [I0] we have for ¢ € {4, —}:

_ e - dq 1/2
I, 05 7d e < olle{ [ gz} < ol

Hence using the above inequality and (G6]) we get:
+oo d
< 2 n )
Q00w < loll [~ s

By (29), there exists K > 0 such that

1Q4(Q. p)llqu < J* (K x Ky (1Qllq, + llplle,))”-

To deal with ps, we use the same method as in [8] and estimate ||ps||c by duality. We
take a Schwartz function ¢ € S(R?®) and prove that for any k,£ > 0 with k 4 £ > 2 we
have:

pPL@E
We emphasize that by Furry’s Theorem [5] [8] we have pg,2; = 0 for any J € N*.
First we must prove that Q¢ is trace-class. We use the same method as in [§]:

0,2 2
1@k.cClle, < 11Qk.elD°Flle.llpoz¢lles < EA) 1@k ellesll¢l 2

It is clear that [Qk «(p.p)| < |a(Qx.e)Cl-
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Writing d,, (p) := \/ E + 72, po=pand m = (m,--- ,mys) € {v,, Rg}’ we have:
J
2n[a(QE) / /&

R (B(0,A)) ’

;5 (pj, pi—1)|dn (p5) S (P — P)]

We replace |E(pJ —p)| by:

-~ J J
|<(pJ—p>|prJ—§<JKJ)%H w(ps—ps1) = K& (ps—p)] [] wlps—pi-1)-
1 1

w(ps —p
(67)
We write R’ := R[.Z~(w(p — 9)|Q(p,q)|)] and V' := v [F "} (w(p)|p(p)])]-
For (k, () different from (0, 3), (1,1), (0,2J) we have:
(k+ 0K
ITr(@QueC)] < —— (") / dnlldy ¢ dy 2 e |y P R dy 8, lldy 2V dy 2,
(k+ 0Kkt

(W) (k+0\ prk+e dn k 0
S o ( k )K /E(n)(1+j+f)/2HQ”Q”’HPHQ‘J'
R

To deal with pi1,1, po,3 we use the same method as the one used for |Qo2||Q, . We treat
the case of p[Q*R “~] as an example and the other cases are similar and left to the reader.

U(p1 — p2)
(p2)

= / / dndp1dpz|Rq (po, p1)|

[Tres (@1 (00, p2)Clp2p0)| < el [ o)l

R (B(0,A))3
Using Lemma [I0 and ([67) we get that:

QT < IQllQu lIplle, Ks/all¢ler, -

5.4 Estimates for F'®

We consider 4" = v+ N a minimizer of E5pp(M) and define the function F® @2). Two
Banach spaces will be considered: first C and then C N L'. We recall that for n € R we

write d,, = 1/|D°|2 4 n2.
5.4.1 Estimates on the C-norm

Thanks to previous estimates (Lemmas [l [ a priori estimates (B8]) and estimates in
the ||'||¢, -norm), in the regime M, ||v|lc < log(A) there hold the following non-sharp
estimates:

Ihalle s eIl [N + (ke + 1)) + 11
< a? x log(A) = La (68)
Ihslle < (Y llr + 11651e)* < (La)*/2.

Then FQ(Z)(p”) and F{? (p") are at most cubic in p”:

IF2 ()l < (1 e + 11e” le) o112

1752 (0)lle < o (lp"lle + [17'1I) 10”112 (69)
IdFE2 (Dl < (1 llelle”lle + 11p”112)
I4FS? (Plluey < U llelle”lle + 1127112)-



5.4.2 Estimates on the L'-norm

Our aim in this part is to prove Lemma [Tl below which states that F® is a well-defined
" function of CN L' (differentiable with a continuous differential).

e We first prove that hs,hs € L' (we recall they are defined in (BI))). In fact they are
densities of trace-class operators: to see this we use the methods of the proof of Lemma

L N =3 [¥;){(¥;| € &1 50 T[N] € &1 and
[vllr < [[T[N][le; < CrelNlle,- (70)
2. Q2,0(7") € &1 : We have:
1Q2.0(7)lsy S 17l K2 (71)

3. Qo,e(py) with £ > 4. As Q&é"* =Q,; = 0 there is at least one change of sign +—
or —+. Then with the help of Lemma [I0] and Estimates (66) we have

1Qoe(e)lles < Mol a1

the product of £ — 1 operators in G and one in G, is trace-class.
4. Similarly Qg.e(7',p5) € 61 withk>2ork>1and £>3:

! U k—’_e ! i
Qke(7 ) ey < < © >(K||7 )" (K llp5lle) K1+ (kv 2- (72)

5. Thanks to Furry’s Theorem and Theorem [T}
m{Qoz2(py)} = T {T[Qu1(p7)], 5} = 0. (73)

6. By the same methods as before we have Qo,3(p5), Q1,2(7', py) € Gg/5 with:

1Qos(P) 65 < IPIEKas1/a and 1Q12(v, i) llsg s S IV IllPFIIE K142
Furthermore the following inequalities hold (we recall that Y is defined in (B0)):

2 v,dy*"% g < E(n)?llpllc and ||d;, " *R(T[Q])dy " *[leg,5 < Y (2)Qllsq)s-
Thus
IT1,1{TQo3(p%), Py }Hle, < 2CT.eKs/allpllec(Y(E)PIEKar1/4),
IT11{TQ12(+,p5), ”}||61 < 2Ct,6 Ks/allpflle (BY (D)1 (o]l o5 12 K145/2)
)

[T {TN,p e, <2CreKsulpyllcY (2)M.
(74)

7. We apply T, ha (resp. hs) is the density of Q(h2) (resp. Q(hs)) with
Q(ha) = a*{TQL, 1[TN + *T(Qz0(v) + Qs(v', )i ] + TQa0(') }
Qhs) =a {TQs o) + TQz21(v, p5) + a@(v’m%’)}
The previous estimates lead to a sequence of numbers (bg)e>2 with the following
asymptotic behaviour:

= O (02 (75)
and a constant Co > 0 such that:

+a?

?Q20(7) + ®[Qs,0 + Q2.11(7, p2) + & Qu(v, p11)

Sy

< Zbe (@Co)* (5 lle + 1 lIm)" =: Ans.
Se/5 1=2

‘Qos(p’y’) +Q12(7, p5)
(76)
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‘We have:
1Q(h2)lls, < 0’Cr.e(2Ks5/4Y (£)(M + Ane) + 1V 11G.) (77)

and write Bp,,s this upper bound. Similarly:

+oo
1Q(h3)lls, < Cre Y be(aCo) (A5 llc + 17 lI1)* =: Bhy.e,- (78)
=3

Remark 18. The introduced numbers Aj e, Bn,.s,,Bhs,e are not constants: they all
depend on « and the minimizer 7'. As a priori estimates hold(Lemma [l), these upper
bounds are small provided that we are in the regime of Remark [[0l Indeed we have

@

Sl + 0,

aTm 12 Qo2
1- 27 a <
(1= %) + 102 <

so a(lY|IT + Ilp4lle) < allvllc + VaM = O((La)'/*). In particular those upper bounds
are o(1).

e Let us estimate the L'-norm of F{* (") and F\* (p") with p” € CN L". To this end we
use (60) and (B9) at level € = 1 for instance: there exists K 2“4) > 0 such that:

lopr s < K206 o + 110" lle - (79)
We use the second inequality of (66) and Lemma [I0] with a = 7/12. Using the method of
the proof of Lemma [2] we obtain the following.

Lemma 11. Let p” be in CN L' and o' a minimizer for Epp(M) with density pl,. We
have:

ITQos(p") s, < 6K O s{lle” o + 110" le}?le” lle
ITQ12(v,p") e, < VKOsV e el + 1o [l }?
1Q0.2(p") s, /4 < 4Kl e s + 107 e}
Q11 (v, "6 < 2Kl e {lle” Nl + 110" llc}
ITQ11{TQo2(p"), 0" e, < 2Ki312Y(5)CrellQo2(p")lles{lle” Il + 10" llc}
ITQ1A{TQi1(v.p").p" e, < 2Kiz2Y (2)CrellQua(y 0 ey KAl e + 1" llc}
(80)
Similarly we can estimate ||dFj(2)||L(cmL1)- As ||V |lr < /log(A) we have:
152 (") lenr < oMo N2 {V108(A) + 0" llenzr }
152 enrr S @l10" lzne {v/108R) + 16" et } (81)
1dFS® (0 lenrry S @ l0”12ap {v/108(A) + 10" lenrs }
1dFS® (0 lenrry S @®llo” 2p {v/108() + 1o llenr }-

5.5 Application of the Banach fixed point theorem
5.5.1 F1)

With ezactly the same method of [§] let us apply the Banach fixed point theorem to FO
with the help of estimates of the previous subsections. We recall the different steps.
We define (where K(,,) > 0 is defined in () and Co > 0 is the constant of Lemma [2)

Xy = Qu X &y,  with [[(Q, p)[lx, = Kw)Co(llQllq + lIolle.,)- (82)

Thanks to the previous estimates we can say that the function F*) is well defined in a
ball Bx, (0, R) with R = O(y/log(A)), say R = Ko+/log(A). Indeed:

+oo
1@ ")l < N, 0") |2 + ama (M@ 0" |2 + D @ kel (@, 0"k, (83)
£=2
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where

{m(A) = Oa—+o0(y/log(A)) (84)

Ky = Oe*)+oo(él/2).

In particular the radius of convergence of the power series f(z) = Zz:; ke’ is 1 and:

[AF(Q", 0"y < ari(A) + af (@ll(Q, p")l|x.)- (85)
For||(N, n"")||x, # (0,0) it is clear that F()(0,0) = (N,f}fl(—mﬁ”)) # 0. So
sup [AF(Q", p")l|nx,) < k1 (A) + af (aR) =: v(R). (86)

(@) B, (0.F)
For (Q',p") € Bx, (0, R) we have

IF(Q o)l IF(Q', p") = FU(0,0) ], + [ ED(0,0)]x,,

<
< vBQ, ") lxw + 1FD(0,0)]|, -

Thus Bx, (0, R) is invariant under F") provided that:
1F9(0,0)|lx, < (1 - v(R)E. (87)
As FM(0,0) # 0 this gives v(R) < 1.
Let us say that ||[(N,n")||x, = coR = c0Ko+/log(A), g0 < 1. We have:
I1F9(0,0)]|x, < eoR, (88)

it suffices to take a > 0 such that vVLaKy < 1 and then take R accordingly. The
constant Ko depends on the constants in the conditions M, ||v|c < /log(A): we get

R = Ko+/log(A) and for sufficiently small o the Theorem can be applied on that ball.

5.5.2 F®

We work with (C, [|-[lc) and (C N LY, max(||||c, ||][1))- In Appendix [T it is proved that
Ifallzr < KaBa(0) where we can choose K = 2 for alog(A) sufficiently small. Thus:

“+ o0

971(}7 ): y\fl{ fA }: (_1)Z+1f-’*f c Ll
A 1+fA ez:; A

and its L'-norm is lesser than %ﬁf\%) < 4aB(0) as soon as aBa(0) < 47'. Moreover
we can write

1 _q_ a )
1+ fa 14 fa’
therefore if p € L' then .F '{ 1+1fA py~t e L and its L'-norm is lesser than

(1+4aBa(0)llpllLr < 2lpllzs-

In particular:

17~ () ey < 2(M + 2).

So we have:

{ IF@ (0" lenrr < 2(M + Z) + ||h2 + hallenrr + Ka® (/og(A) + [0 llenz) 1o 13a e
14FD (0 leenrsy < Kallo”llenz (24/1080A) + 316" lens)-

(89)
where the constants K can be chosen indepently of o < ap and alog(A) < Lo for ao, Lo
sufficiently small. The term 1/log(A) is due to ||7||r < /log(A) (see Lemma [5 and the
regime of Remark [I0). We get similar estimates for F® defined in C. So it suffices to
take R > 2 sufficiently large so that Be~p1(0, R) is invariant under F® | This function is
a contraction and we can apply the fixed point theorem. To end the proof we remark:
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e There is only one fixed point of F® in Be (0, R) by the Banach-Picard Theorem and
py +n — v is a fixed point. Indeed by Section B2 (v + N, py + n — v) has norm
Q1 x C bounded by K+/log(A) in the regime of Remark [I0] and is a fixed point of
F®M_ So it is a fixed point of F(.

e There is only one fixed point of F® in BCQLl_(07§) by the same theorem. In
particular it is also a fixed point of F® in B¢ (0, R) as Beny1(0, R) C Be(0, R). By
unicity p, € L'

6 Proofs of Theorems 2 and

6.1 Proof of Theorem

Proof: The fact that p, € L' is a result of Section We recall that if Q € &1, then

[ p@ = TH(Q) = Trpo (Q). Writing
A = aT[Qo,1(p7)]
B = a’T(Qoalp})

it has been shown in Section Bl that S € &1. Theorem [l says ps = pc = 0.
Let us show that BY*T, B~ , CT",C~~ are trace-class. First for any Q in &2, we have

P2Q10(Q)P2 = PLQ10(Q)PI =0.
It follows that B¥* = erQO,z(p;')lLlL and Tt = a?’Ql,l(TQo,l(pi;)mi;)ii_ And as
(3T =Qo; =QiTT=Qi =0

there only remain Qgﬁ;r, Qg;f, Qf’;*, Q;}f. Using Lemma [IQ] with a = % and Cauchy-
Schwartz inequality we have

C = a*T{Qui[TQoa (s, ] } (90)
S =~y (A+B+0C)

0 0
| e PP} kel < lole < lelle (1)

We recall that ||m+/2RQHG2 < ||Qllex: these two estimates enables us to prove the
following;:
+F £
Q57 * (PNl < Kspallpf g,
T F+
1QTF (s p)ller < Kryally lexllpylle.
As shown in Sections [f and [ we have Q7 = Qg7 =0 and pa = —fax (o) € L.

/Pw = /(P—y++ +py-)+ [{patr- +pa—+ +ppt- t P+ +pot- +pc—+}
=Trpo () — afa(0) [ {py+n—v}— /{pB++ +pp-— +pc—— +pc+}
=0—- afA(O){ /p'y + M — Z} — TrPE(B) — TrPE(C)'

To end the proof we have to show that Tr(B*T + B~~) = Tr(C™t + C~~) = 0: this is
straightforward when written in Fourier space (see [8] for formulae). O

6.2 Proof of Theorem [3

We follow the method of [I0]. We apply a Lemma of Borwein and Preiss |10, Theorem 4]
and consider an approximate minimizer vy{ = vo0 + No of E”(M).

Indeed, we can extend E4pp to A=N{Q € G2 : Q* = Q, 0 < Q+ P2 < 1} by setting
Eipr(Q) := +oo whenever @ ¢ K. This extension is lower semi-continuous and bounded
from below in the Ga-topology and the set

M:={Qe & (Q+P°)=Q+P° Tr(Q) = M}
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is closed in the same topology. Its convex closure in &3 is
A(M) ={Q € &, Tro(Q) = M}.

Applying the lemma, for each € > 0 there exists a projector P and A € K(M) such
that ) := P — P2 minimizes the functional £4pp + eTr((A — -)?) on M and

Ekpr(10) < Eipr(M) + €2, 7o — Alls, < Ve
As in [I0], v satisfies the self-consistent equation

Y+ P° = X(—oou0] (D, + 2e(sgn(Do) — A))

2 (92)
= X(=o00,u0] (D + OéB,Y[/) — QEA)

where 1o € R and D := D° + DO%A We choose £ = A\™" small e.g. ¢ = I'(2)~". Using
the proof of Lemma [5] we show that the following a priori estimate holds for ~ :

Te(|V[(70)*) + allpf, IE < allvlle + vaM + VaM|v|c.

Using the Cauchy expansion, we can write
Za 05 (P55, 70) + /\WA(A aB(15));

where the O;’s are defined as the @;’s with D replacing D° (see (20)). By the same
method as in Section [§] we have:

1D * Walle, + llpWallle < l[Allss (1 + alllpf, lle + 1V *70lls,]).-

Indeed it suffices to replace one R[] in the O;’s by A and remark that A € G2. Replacing
D° by D is harmless; as before, by defining some function FM we can show that
Tro(0) = 0 (but with an alternative Ba cf Section [C]).

In particular we can write

pro = —F H(Ea) # ) + (80 — FH(Fn)) # Trem € C

where ||Trem|lc < [{No]llc + 2| 72llc + ||All, /A and Fj is defined in Section [0l We write
fa = ffl(FA) for short. As in Section B we get:

[volles < alllpylle + lIvollT)
970 + Fa % ng — (60 — fa) * {No]lle < a*([[v0llT + [lp5,lle)?- (93)
[=Fa % ng + (o — fa) * t{No]||Lr < L(Z + M).

Let (1j)1<;j<m be an orthonormal family of eigenvectors of 5+QB% +2/e(1—-P°% — A)
spanning Ran(No) (with eigenvalues (;)).
We then scale ~) by ™! (this procedure is emphasized by an underline) as in [10] we
get:
—iaV)B  igi(—iaV 2 i
(08I0 C0T) o) kol -~ Rl g (3P -]y = . 04

a? a? 2\

3
Remark 19. We have Uat)(z) = a2¢(ax) = 1(x) and for an operator S we define:

S :=U;SU,.
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This mean-field operator H,-1 is decomposed as follows: H,-1 = HLIJI + hrem wWhere

o=l

0 ~ ~
1, = B (00— ) vl — RINGL, w(0) = 0”0 (o /), Ea(h) = Fa(ah).

As in the Lemma 13 and 14 of [10] we can show that there exists € > 0 such that

limsup,_,o(a"2(u; — 1)) < —e < 0 for all 1 < j < M and that (3;); is bounded in
H'(R3,C*")M (as a tends to 0). Lemma 13 is based on a min-max description of eigenvalues
in the gap of the mean-field operator H,-1. We refer to this paper for the proofs. The
only difference lies in the presence of —fa * (ng”) * ﬁ and (do — fa) * tn,: we deal with
these terms in the following lemma, proved below.

Lemma 12. Let x be a Schwartz function and for R > 0: xr(z) := R~/ ?x(x/R). Then
there holds:

[(fa % (n0") * frxe = ZEa(0) 32 , xn)| < IV

IV (b vtz [ awla),

lyl>3 yl>g

and / ) fa(y)|dy < La/?. Moreover for ro > 0 we have
lyl>5

o F(IxI% k i
R‘(((;O_f_,\)*t&* ﬁXmXR)’S HtNROHLl/| (||>Z|| )|dk+/ Im(y>|dy/|x|(z|)| da

ly|=ro
12
o Il / KL g,

ro

Remark 20. This is because of the last term that the bound on L depends on M. If we
could prove that f\z\>ro [tng (y)|dy tends to 0 as ro — 400 uniformly in & (the parameter

of Borwein and Preiss’s Lemma), then we could take L < Lo instead of L < 1/(KoM) in
Theorem [Bl

To prove (¥;); is H'-bounded we show that:

M, Tr(-ANy) _ (D" No) _ M

< o H KO {Tr(-AN) +

IVNollez} (g5

at o? - ot

The lower bound is clear and the upper bound follows from Eq. (@4), Lemma [l and
Proposition B (for estimations of g.(ap)?, x € {0,1}). We get:

[ olo) + plia 16 — (80— Fa) * two |, < @*/2(Uo%le + bl 19124l
< KM )|V ]2

Moreover:

IRMo]#sllze < Ihollss V4sllre < oK (M, v) V9]l 12
[v[fa * 6 — (80 — fa) * tne [ i 172 < 4IIVs1IZ2llplia * n6 — (G0 — fa) * txo ]l 7a

< LHZ + M)?| V7 (96)
[(wlfa * 18 — (80 = fa) * two | ¥, ¥5)] < [D(p[fa *nE = (80 — fa) * txo ], [¢51°)]

< L(Z + M)(IVI4; , ¢5)-

Summing over 1 < j < M the inequalities ([@8) we get ([@5]) because

M
> IVYllze, Tr(|V[No) < VMy/Tr(—ANo).

=1

We conclude as in [I0] (the proof uses [20]) provided that there hold binding inequalities
for the non-relativistic limit: this is the result of Proposition Blin Appendix [Bl
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In particular there holds

lima 2 (E%pp(M) — M + %D(F“A x1,0)) = Enp(M), (97)

a—0

where E,, is the non-relativistic energy cf Appengixlﬂ
Proof of LemmaWith f(z) = |xr|* * F 1 (Fa), we first estimate
| [f f(z)v(y)(1/|z — ay| — 1/|z])dzdy|: it is lesser than

dxd,
JJir@hlay =

Splitting at level ! for y, we use Hardy’s and Kato’s inequalities:

7 (@)lde
Jer ot | o2
dx
d - -
AD%”@>y/“Wmmx_amV@”

We estimate Z| [[ |xr(x)[*fa(y)(1/|z — ay| — 1/|z|)dzdy| analogously, with the help of
Lemma [I5l To treat the terms with tn, we use the fact that:

HVX”Lz

IN

(4Z)| Fallp)

27/ , V(y)dyllFAnLl%.
ly|>=

o

IN

|@mmmmmsmmm/%=/m:a

The first term in the upper bound corresponds to the error term that we get when we
replace Z 1 (Fy) * ﬁ by Fa(0). To see this, we write a := @ and b := |x|?: we have

a* (L ~ « ~
TR 7 (ot~ Fro) = [ U 5 (%) Ry,

N

|
alltngllr [ ]b
o [ e

Let o be in L'. Thanks to Newton’s Theorem (for radial functions) we have

Rx D(lxnl*,0) = /AK@/]\|<WM+[ muu|)

T
‘/%(E\(ak) - ﬁA(O))‘

R >R ||
- (- )da s (R
= [ @ Gigpar [ (] e
snwwamt/m@m+mm/‘mwwﬁ
lyl>ro sIs®

A Estimates and inequalities

Notation 21. In Section [Al and [C] e refers to any unitary vector in R® and for p € R®, we
write wp := ‘%‘.
We recall that s, = .Z (sign(D); p). There exists Cs > 0 such that:
Id — spsq = sp(sp — 8q) = (Sp — Sq)Sq

— |po 0 lp—al
[d — spsq| < |sp —sq| = |P2(p) = P2(q)| < Osm-

25
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A.1 Proof of Lemma [§
We have [16] %(m — 1) = Cst/|z — y|*>. By Cauchy-Schwartz inequality there holds:

* —1 7y) CSt Q(Z :C)
TV Re) = [ff e P Jy=aP |z —a "
dxdydz
< [[f 10 )' PECHEERE
< [ 1Qtewl |m_ — Te(RLQ).

We write m(|p + ¢g|) the multiplication in Fourier space by |p + ¢|: the operators R. and
\V\+/2 commute with the multiplication in Fourier space by w(p — q) (written m(w)). By

Kato’s inequality we have
Im(w) - etz RlQllls, = Iz Rim(w) - Qllle, < lIm(lp+ alym(w) - Qle,.

is a convolution operator associated to a positive
—wlz—y|

Similarly for a > 0 the operator |Dg

|*ll
function ¢,. Indeed there holds [16]: —'x(z —y) = c
0 < e <1 (see [I7, footnote p. 87]):

. 400 _
T sin(em) / e 1-A di.
| Do |?* ™ 0 t+1-—A

—— w > 0 and for any
drlz — y|

Thus for a =1+ ¢ > 1 we have by Cauchy-Schwarz inequality:

Tr(Rypipe Re) < [[1Q@.y) s * 62 — y)dady,
sﬂw 2,y %wzanm

I1QIE,
< jle(x7y)| dmdy/ |p|E(p)2a S 2((1 _Gl)

Let us consider a finite rank operator Q(x,y). As @ = Q+TQ* + Q;Q* one may suppose
it is self-adjoint, writing Q = @+ — Q- one may suppose it is nonnegative: then so is Rg
and | Do|~*/? Rg|Do|~*/2. We have

Trea(R(p,p) , dp
/ EpE P T = ] i g R —Lr—0) o

~ 1
52 | @) [ i 5
_ IQls,
T 2a—-27

In Fourier space we have: §(|D0|71/2) s f(p) — XWKA%. Thus writing 114 the
projection onto {f € L?, suppfc B(0,A)} we get

[1D°1"% Rolls, < || [D°]"/*aa RoTlsal|s, -

1 1
As |D°|7Y/21I55 < e|Do| 27 2108 for A > e we finally have:

(&
5 Rallsa) < Tr(Ro-——5———Raq) < log(A)[|Q]fx-

Tr(H;;ARQ*
|DO| 2+2log(A)

D0
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B The non relativistic limit

We fix the value Fj(0) = a. For any trace-class operator 0 < I" < 1 with density pr the
non-relativistic energy is
EL(L) = 3Tr(=AT) = Z(1 — a)Tr(T)

+3(D(pr, pr) — Ex[I']) = $D(pr, pr).

If we drop the last term, this is exactly the Hartree-Fock energy &ur with a nucleus of
charge Zp := Z(1 — a) and if we drop Tr(ﬁQ) we get the Pekar-Tomasevitch energy
Enr = Epr[5,U = 3] (cf HI).

Remark 22. We can easily show stability of matter of the second kind for a < ap by
splitting the energy in two: a Hartree-Fock one and a Pekar-Tomasevitch one,

(99)

2 2
E5(D) = S Te(=AL) + % (D(pr, pr) — Ex[I']) = Z(1 — a)Tr (1)
+122 Te(—AT) + 252 (D(pr, pr) — Ex([T]) — 2D(pr, pr) with 0 < z,y < 1.

Optimizing in = and y we get a lower bound O(K (a)M) for M > 2Zy + 1.
We define

Gz)={ €& :IT"=T, 0<T'<1,V-AT € &3 and Tr(T') = z} with z € R}.

E,-(M) corresponds to the infimum over G(M). We want to prove:
Proposition 2. For any M < Z+1, the variational problem EfT(M) admits a minimizer.

By Lieb’s method in [I5], it is easy to see that there is a minimizer for EZ, (1).To prove
binding for 2 < M < Z(1 — a) we can follow Lieb’s and Simon’s method [19] 20]. We will
however prove it with the method of concentration-compactness. We prove the problem
EfT(M) admits a minimizer by induction over M by using:

Proposition 3. For each ¢ > 0 the following assertions are equivalent

e VO<k<l: EZ(l) < EZ.(L—k)+ ES, (k).

o Each minimizing sequence for EZ,.(€) is precompact in H'(R® x R?).
In the case £ € N*, it suffices to prove binding inequalities for K € (0,£) N N.

This proposition is standard and we will not give the proof here but refer to |14} 13}, 20].
In [] Frank et al. prove that ES.(Mo) = MoE>,.(1) for My € N* provided that a is
sufficiently small. Thus we just have to show

To this end, we exhibit a test function Q whose energy is lesser than EZ. (M —1) +E2,.(1).
Lieb’s variational principle still holds (¢f [I0} Proposition 3]). In fact for any orthonor-
mal family (¢1, ¢2) , with Py := |¢)(4| and 0 < t < 1, we have

ELr (D4 t(Pys, = Poy)) = E5.(0) = 5(IIVer72 — [V2ll72 +2(1 — a)D(pr, [¢1[* — |¢2[*))

—tR[T(TR[Py, — Py,])] = t*{D(161*,|¢2]*) = D(¢1¢2, ¢162) + §lllén[* - |¢2|2H%}(. |
100
This shows that EZ, (m) is also the infimum of £7Z. over

{L €G(m): I' =P+ (m—[m])|¢)(¢|, P> = P =P* ¢ c Ker(P)}.

Taking ¢2 = 0 in (I00) shows that EZ.(-) is concave in [My, Mo + 1] with My € N. Tt is
also clear that EZ. is decreasing since large binding inequalities hold.

We consider a minimizer of EZ.(M — 1) of the form T' = 3> |1;){(1);], each v;
1<j<M -1
satisfying
—A Z 1 .
i — =i + (1= a)p[l] * — 95 — R[TJ; + 545 = 0, with ; > 0.

2 |- -1

27



In particular we can easily show the v;’s are in H*(R®) and fast decaying.

We also consider a minimizer for Egr(l): this is a minimizer ¢cp of Epr(1) scaled by
a: ¢o(z) = a®?pcep(azx), we chose it to be radial [I5]. Following [I3], we take a Schwartz
function 0 < x < 1 that satisfies x(z) = 1 for |z| < 1 and x(z) = 0 for |z] > 2 and
Xr(z) = x(z/R) with R > 0 to be chosen.

We define the trial state as follows: for some e € S? we write

T := xr['XR + T—5Re|XRP0) (XRPO|T5 RRe

where 75,9 (z) = ¥ (z — z0). We have 0 < TV <1 and Tr(I") < M, so
Enr(T") > Enr(M). As the wave functions (¢0;)’s and ¢ are fast decaying, the following
holds:

- (z) - @)|T5Re¢o(x)|2d:c

ELI) = E4.T) + &% (00) + [ (pIT) @
—aD(p[T), [7sredol?) + o(R ).
As R tends to infinity we get:
M-1)(1-a)—Zo
5R

EZ (Y < EE (M —1)+E2.(1)+ ( +0(R™") < Ene(M —1)+ ES, (1).

C Proof of Proposition 1]

Notation 23. We write:

E(u,k/2) = max (E(u+ k/2), E(u—k/2)) > \/1+ |u]? + L2,

E (u,k/2) := max (E (u+k/2) , E (u — k/2) ) > E(u,k/2).

Our aim is to prove Proposition M below.

Proposition 4. Let po € C. Then we have:

ap(T[Qo,1(po)]) = —fa * po

where fa € L' is a radial function. Moreover

+o0 too
fa= a'fas, fao=aBa and gai=) a’fa,
J=0 J=1

with
lfaller S L and ||gallr < Lo

In particular En = F 1 ( 1];’}/\) e L.

We also study an alternative function Fj, needed for the proof of Theorem [3] at the
end of this section.
We need the following proposition.

Proposition 5. The function DO . B(0,A) — R? is infinitely differentiable. In particular
so is E () and there exists Lo > 0 such that if L := alog(A) < Lo then for any J > 1
there exists Cy > 0 such that:

d’ goll < aCy and ||d’g1 |1 < xs=1+ LC}.

Proof: In the spirit of [23], we can prove it by induction over J: in [II] Hainzl et al.
proved that DO is infinitely differentiable. Thus the function

ID°(p)| = Voo (p)? + &1(p) - 81 (p),
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is infinitely differentiable and does not vanish on B(0,A). Thanks to the self-consistent
equation one has:

ADO(p) = d” Do(p) + -2 s d"<D—)(p)«

Ar? |- ]2 DO
O
Proof of Proposition [4t Throughout this proof we write k := re.
1. Let us first prove the following:
T0(p) = —fa()p("),
We recall that for any Q € G2(Ha) we have [{@I):
~ 1 1 al ,~ ~
Q1,0(Q,p,q) = —ﬁ/— Qlp—4,q—10) —spQ(p—{,q—{)sy),
( ) 47T2E(p)+E(q) Z|g|2( ( ) pQ( )q)
and (cf [8])
~ 41 o(p — 1
Qoalpip.a) e —a) (505~ 1) (101)

2P p—al E(p) + E(q)

Y
The functions AF;”FI are defined recursively in (B2). We have for instance:
ALQ,q) = AT (Qlp —Larg = £2) = 5,Q(p — L2, — L2)s.,) (P, )

= {@(p— b —lo,q— b — ) —8p_0,Qp— s — o, q — 1 — fz)sqfh}
_SP{Q(P — 4l — Ly, q— 1 — 02) — 51)751@(]) — b1 —lo,q— b1 — 42)Sqfl1}sq-

Writing Ly := Z‘j]:l £; with Lo :=0 € R? we have:

J ()] A
— o de A;777Q(p,q
FPi(Qsp,q) = ﬁ/ TAE = (7, 9) - (102)
@r2)? Sy S, TGP T (E(p—Ly)+ E(g—Ly))
1<i<J 0<5<J—1
In particular the Fourier transform of the density p(Flo é(Q)) is
FFHQER) = oo [ Trea FEf(Qsu+ 5 u— )du
s ’ (271')3/2 w C 1,0 ’ 29 2
)~
s I e A Qut b b
— " — =
@np/2(47)7 J) “TLGE [ (Butk-L)+B(u-%-1,)
Wi ey 1<5<J 0<j<J—1
_ DI Gy oy —
= — aJ jj . / dude TrC4{(1 Su7%Su+%)AJ Q(u + 27“ 2)}
@np2(ax?)7 J) TGP ] (Butk-—L)+ Bk L))
Wi ey1<i<y 0<j<J—1

(103)
Above the domain of ¢; is:

Bj(r) == {¢;, |lu—L; £ Le| < A},
and the domain of u is Bo(r) := {u, |u+ %e| < A}. In particular

supp p(F3(Q)) € B(0,2A).

Remark 24. We would like to apply ([I03) to the operator Qo,1(p). From (I0I]) we realize
that @0,1(107 q) is not a scalar matrix because of the term spsq —Id. Yet it is in the algebra
spanned by the Dirac matrices a1, a2, a3, 8 as a sum of even products of Dirac matrices.
The form of @1’0 (Q) is similar to @071: it only adds an even number of Dirac matrices to
@. This is an important remark to be done to prove Theorem [Il
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For any J > 1 and p € C, the density p(FY{(Qo,1[p]); k) is equal to:

(ej)J 2 _
4o’ p(k) / aude  Tellos, ks 1)AZYTs, ks k — 1)}
1 k|? A E E_ILVY+E(u—t—_1L,
(5n0)z 2mpraanryy (S R TL MR T (B (g = L) + B (u =5~ Lg)
0<j<T
— 5(k) / dudt Sy(u—Lj + 5)Ty(u— Ly + &)
I1 Bj(r)
0<j<J
(104)
where S;(u— L; & %) is a scalar which is a function of |u — L; + £| while Ty (u — L; + &)
is the trace Trca of a sum of products of s k-
—L;-%

We have to deal with MQ and we must show that this integral is well defined. The
first problem is easy, the quantlty

1 (Su—ry+k/28u—L,—ky2 — 1) (1 = Sy_j/2Sutk/2)
W(Su—L,7+k/25u—L‘]—k/2_1)(1_Su7k/25u+k/2) = e bath/ |1;<5| Ik “ |k/| utk/

defines a smooth function by Taylor’s formula (for |k| or for k in R3\{0}). Moreover from
([@]), we get the estimates:

Su—Ly+k/2Su—Ly;—k/2 — 11— Su_k/28utk/2 4C?
|K| || T E(u— Ly, k/2)
< 4ac
— |u—Lj|E(u,k/2)"
For any U, we have:
e 1 _fde 1
CHPNU—EW —t,k/2) T Jo EPIU =2
o f__dt
=L 1Rl — 02

Integrating over the ¢;11’s one after the other from from ¢ = J—1 down to j = 1 as above
with U = U; = u — Lj, there remains but the integral over u:

2C%du /
E (u,k/2) \U\E(u k/2) |22 |e—€|2

u€Bg (k) ,
2C5du
{ /Iél Ie—él2} [ 2 E (u, k/2)

u€Bg(r)

= (K1og(A)) x (Cho)

At last we have:

J
~r0J . o+l 9J+1 2 ar du |5
< u
a|p(F1,O(QO’1(p))7 k)' — (27\.)3/2(47\.2)J C {/ |£| |e _ £|2 } / \u\zE(u) |p(k)|
uEBg(r)
’ J ~
< Cro(aCo) alog(A)[5(k)]
(105)

As a consequence there holds ap(FY{(Qo,1(p)); k) = —ga,s(k)p(k), and 357 fa,s is well
defined (at least in L°° N L?) as soon as « is sufficiently small. We have

ato1(p, k) = — <aBA +ZQAJ ) k) =: —fa(k)p(k), (106)

with
|fa(k)| < aBa(k) + o’ log(A)K = O(alog(A)). (107)
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2. Let us prove this function is radial. Let e; and ez in S? and r > 0. We must show
that fa(rei) = fa(rez). There exists R € SO3(R) such that e2 = Re;. In (I04) for
k = rez, we change variables in the integrals: v = R 'u and m; = R~ *¢;. Writing
M; =mi+---+my, we get: Sy(R(v— M+ 35er)) =57(v—M;+5er). We must show
the same holds for T';. Let b = (b1, bz, b3) be the canonical base of R3. We define

a;- = o - Rb;.
These new matrices satisfy the same relation as the a’s:
{aj, )} = 265 and {o}, 8} = 0.

Thus we have T;(R(v — My £ %el)) =Ty(v—M;=+ %el) and fa is radial.
From now on we change variables:

up:=wand for 1 <j < J, uj:=u—Lj, l; =u; —uj_1, 108

u; € B(|k|) := {v € B(0,A), ‘vi‘—g‘e‘ < A} (108)

3. Our purpose is to show that fa is in . (L') with a (rather) precise bound on || fal|r:.
We already know: fa(k) = aBa (k) + Ore(a?log(A)) = O(alog(A)).

As fa is radial we take a fixed vector e € S? and study fa (k) = fa(|k|) with the help
of the integral formulae where k is replaced by |k|e.

The strategy is to differentiate fa and prove that its Sobolev norms ||[—Afal|z2 and
|[—Afallz» are "small" where p < 2 is some constant to be chosen later. By Cauchy-
Schwartz inequality in Direct space, we obtain an upper bound of HfAHLL We will use
the co-area formula [3].

We show that fy € L! with L'-norm lesser than 1 in order to give a meaning to
oo

IR
(=1
Remark 25. 1. As fa is radial we have:
(=D)fa = (=A)fa =—(02+28:) fa. (109)

2. For any u € R® and r > 0 Taylor’s formula gives:

(1 - Su+2*1resu72*1re) = T{S“fml(_%) - ml(%)s’“}
1 e 110
with ml(%) = /t:O dSu+tze/2 . (§)dt ( )
We write g(p) := (Z?((I;))) € R* and o(p) := %.
As we have (o(u), do(u)) = 0, Taylor’s Formula at order 2 gives
Lot 18, 00 =T o), afu) + (o), ma(r) + ma(—1)
+r{a(u), ma(r) — ma(=r)) +r*(ma(r), ma(-1)),
a(u) :=do(u) - § and ma(5) := jj d’ou + stre/2- (£, $)tdsdt.
" (111)
3 Forany—%gccg%:
E (u+ ze) > E(u+ ve) > E(u) (112)

2

In particular if one takes the modulus of the derivative over r in (II0) or (III)) for
0 <r <1, we get the following upper bounds:

(a) K/E (u) for the first derivative,
(b) K/E (u)? for the second.
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Lemma 13. The functions O, fa and 82 fa are well defined in R® with support in B(0,2A).
Furthermore for J € N we have:

J+ll A KJ+1
|Or fa,(p)| SJ%X\M<2A |Or fa(p)] SﬁX\psz

J+1 J+1 2 (113)
|07 fa,s(p)| < J%X\pkm 107ga] < aElff)g\) Xr<2A-
As a consequence:
Lemma 14. For o sufficiently small, ga € L' and
lgallzr < (alog(A))®. (114)

Remark 26. At the very end of the proof of Lemma [I3] we refer the reader to the thesis

of the author for a (last) technical assumption: proving that lim 82 fa(z) = 0.
|z|—2A—

Proof of Lemma [14]
We assume Lemma [[3l As (—A,) = —(87 + 29,) we have fa € H*(R®) with:

|AfA(p)| < ‘p‘é(p)- (115)

Proof of fB(O 1 |fa(z)|dz < L: The function —Af has a singularity at r = 0

due to the term w. We split —Afa w.rt. Xjzj<1 + Xjz|>1- We have
3
I = —Afaxpei<1 € IP'NLY, and B = —Afax|as1 € LY>NL"2, |po| > 3 1<p <3,
(116)

The corresponding norms are respectively O(LK (p1)) and O(LK (p2)). We use the Hausdorff-
Young inequality and the generalized Young inequality |21} Vol. II]. The decomposition
(II6) implies the decomposition fa = I/(XO) + EI(\O) by multiplication by —L:.

q

Forp:17a:%7q:2and q':ﬁ we have

) wd 170, 1y \1—1/a / dx \1/a
/ Iy (z)]dz < (/|13| Ty ()] d:c) ( wl<1 |:L-|a,q) J

lz|<1

a 7(0 2
S NVIIP e < ke + 120 Lo,

0 1
SNl s S L
| ' | Llta
Similarly let 0 < € < 1 to be chosen: we have |V|27€E§\O) = ‘,}‘{3(5)5 * Ej(\z). This last

_6_
function is in L? provided that E/(\z) € L3-2s. We choose ¢ = 3/4 for instance: this gives

0 5 0 dx 2 1
[ EP@ < | [P E @i [ < 18 ||

||5
B(0,1) B(0,1)

<
L3~

Proof of f\m\>1 |fa(z)|dz < L: Then it is clear that

/ @) < —Afalze

|z|=1
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Proof of Lemma [I3] The idea of the proof is that each time we differentiate with
respect with the radius r > 0, it leads to an additional term ﬁ in the integrand or a
change of the domains and so a better upper bound of the integral.

We will often use the following inequality:

dv /
— < (117)
5 P k 20 — a2’
B(O,A)'u_v| (E(w+%5)+E@—5))lu+ek] ~ lutes| ) [vPlv—el
and for convenience we write:
u® ::u—&—fs; e e {1,—-1} (118)

That the function (and its derivatives) has an extension in 0 is clear from (II0) and (I12]):
differentiating under the integral sign of the Taylor’s formula, we get:
1
J+1 J

d” " Suttre/2 - ((te/2 ‘ <K By 0<rt<l, (119)

thus the problem of singularity at r = 0 drops thanks to (I12).
More generally the variable r appears

(T)J+1

1. either in the domains B ,

2. or in a function of v; = rz.

One may write:

fa,a(r)=: / Grluo£rg, -, u; £ 7§)du,
B(r)7+1 (120)

1
GJZIGOJ(UOZET%7"'7UJ:|:Tg) I -
1§j§J|uJ uj-1]

It is easy to see that G : (R*)>/72 — R is a differentiable function and that each time
we take 0 e —0 e we get a term K(r71—|—E(ui§)71) for r > 1 or KE (u)™"

uj+ry u;—Ty )
for r < 1 (see Remark 25]). This enables us to get upper bounds of the terms of 7 fa s
corresponding to derivatives of G%. Indeed for the first derivative: for €,¢’ € {4+, —} one
has for 1 < |k| < 2A:

duj 1 de
luj — uj—1|2E (uj +ek/2)?  ~  luj-1 +ek/2| ' uj[?u; — e[’
dus; 1 1 1
= ~ < o=l + o
lui — wim1 |2|ui + ek/2|E (ui, k/2) E (ui + €'k/2) lkl(‘“z w7 + )

/ du;
fu; — el

(121)
For the term (0yy+x/2 — Ouy—1k/2)Go we have:
dug ( 1 e 1 )< 2 _ du;) < log(A)
|u0 —ek/2|E (u+¢ck/2) E (u+ek/2)? E(u—ck/2) | IB(O ZA)E(uo) |uol |k|
(122)

If r < 1, Remark 28] enables us to say that

|0-GY (u; ire/2)| oIty / og(A)
u; — uj_1]2 s ul?|u — el? ’
By 1§j<J| J J— 1| | | |
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Figure 1: Level sets of the z function

— In the case of the terms corresponding to 8y, dv, GY with v, = Ui(a) + s(a)g, the above
upper bounds enable us to say that if (1) # ¢(2) then it suffices to apply twice (IZ1I]),([I22])
and we get an upper bound of the form:

2 Xi<|k|<2A\  J+1 du J
KJ (X\k\§1+7|k|2 )a (K/7|U|2|U—e|2) lOg(A)7

If i(1) = i(2), then as:

du 1 1 1
/ fu = o?fulE (u, §) (E(u+ W2E B(u- k:/2)2) S U2

we obtain an upper bound of the form

Xi<lkl<2hy s41 __du y
KJ(X\k\gl"’ |]€|2 )a (K/|u|2|u_e|2) log(A).

If (1) = 4(2) = 0, we integrate first over uo, then over ui, usz, - ,us and use ([I23)) with
u = up, v = up: this gives

for 1 <r < 2A, |07

_ ~ < 2/
o H 1 o) B (0. 5)
If r <1 we use Remark as before.

— There remains to deal with the terms corresponding to differentiation over r in the
domain B(r)’™!. We rewrite (I20) using the co-area formula. Indeed, let us write for
e € {1,—1} and r € [0, 2A]:

B.(r) :=={p, [p+ Se|l <A, (p, ce) >0} and B(r) := Bi(r) UB_1(r) C B(0, A).
In particular B(A) = {p € B(0,A), (p, e) # 0}. We define the level function:
B(A) —  [0,2A]
ree

p € B.(A) +— r such that ‘u—i—T =A.

We apply the co-area formula with respect to z. If p € Be,,, we write €(p) := o and

_ p+e@z@s o
n(p) : P+ ()= () 2] A (p+e(p)z(p)3)-
For 0 < r < 2A we write S(r) := {p € B, z(p) = r} and S:(r) := SN Be; each S:(r) is a
spherical cap of S(—%52%,A). The measure of B(0,A)\B(A) is zero and the function z is
differentiable with
—2¢(p)

V) = Ty, o

n(p).
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Thus for any integrable function F : B(0,A) - R and 0 < r < 2A we have:

/ p)|Vz(p)|dp = / dt / p)dHa(p (124)

B(r) S(t)

where dH2(p) is the Hausdorff measure on S(r). If we take spherical coordinates with
axis Re in S.(r) there holds dH2(p) = A”sin(6)dfdé in the domain:

Mi(r) = {(0,6) € (5.5 F5) x (-m,m), cos(0) = 77}

Notation 27. For convenience we write du for both dH2(u) (integration over a spherical
cap) or dH1(u) (integration over a curve).
— For each u; we rewrite the integration over u; € B(r). For each 0 < j < J we need to
estimate -

duo e de e dquHQ(Uj)

IT luj — w1

|G (ui £ ).

B(r)i=1xS(r)xB(r)J—J 1<j<J
In S.(r) we take spherical coordinates and write v = u;_1 + Se, if j = 0 we replace u;_1
by u2 and integrate over ui,uz,---uy. Using (IZI) we have:
/ A?sin(6)d0do 1 o [sin(0)dode
lv—An|?  |An|(E (An) + E (An—k)) J, lv — An|?

M ()

Then writing v := u;—1 + Eg we have:

duy; A+\ui+s§\ 1 du; At|ug)
£ los ( E)= = =—log (1)
|ui —ui,1|2|ui+55| A—|u;+e35| E(uhk/2) |’UJ1 —U|2|U¢|E (uz) ‘
po B B
/ du _ log(1+|u|)§27r/ /}dr log(1+ ) ‘ 1|fu|-¢-7“
st lu — vA=1|2|u|E (Au) 1 — [ul r=o |v|E (Ar) 1- Aol =7
1
<om [ AT (log? (110) hog? |3 ) < o,
o |v|E (Ar) L—r A=t

Finally for sufficiently small o, we have
10: Fas ()] < KL(QK)? (xrey + Xi=z=20)
So by dominated convergence, as 7 tends to (2A)7, O, fa,s tends to 0 and ga € H'(R?).
— Let us deal with the second derivative. There remains the three cases:
1. One derivative in B(r) and one derivative in the integrand.
2. Two derivatives in two different B(r).
3. Two derivatives in the same B(r).

In fact, we have to deal with the last two cases together because each term alone is not
well defined but the sum gives a finite term. Seeing the second derivative as the coefficient
of the second term in the Taylor series of ga,s(r + 0r), each term is s @) O(—ér log(ér)) but

r—

the sum is O(ér) due to some cancellation.

1.

1.1. One derivative in u;, £ %e and one in the domain of u;, with i; # i2. Up to integrating
over u; from j = 0 to j = J, we can suppose that i1 < i2. We split S(r) between Sy (r)
and S_(r). In S-(r), we use (II7) (and (@8] at the beginning), this gives:

dulz </ dulQ
ss(r)luiz’l i PE (uiy + %) Jus, + 5|~ J g2l 12 g, 2
[ufy 1l
1 2
< 1 o ( +
A|u22 1| |u22 1|
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We take spherical coordinates with respect to —6%: for any v € B = B1 U B_ we have

[v°]

du log(l_‘_\ui%\fl\) - i/ldzlog(1+z)10g( i —|—Z)
tig—1 — v%|2|tiy—1|E (wiy—1) 1——‘“"5\’1‘ ol I-= ‘st‘—z

/ 1—|—z
Jo<] -2/

1 z
|wig—1] A
du T+ —5— dz 142
lo A < lo A
[wiy— 1|E( u? ) g(l_%) o E(2) g( %)
< 1+A7h

B(0,A)

N

B(0,A)

Then we use the same method as for the first derivative: when integrating over wu;,, we use
(E (ui, + %) + E (ui, —£))7' < E (5)71. In this first subcase, we get an upper bound
of the form:
J*(Ka) ™ log(A)
AE(k)
1.2. One derivative in u; & e and one in the domain of u;. Splitting the integration over
S4(r) and S—_(r), and using ([II7)), we have to estimate

< — = .
[u; — v|?|us + 5k|E (ui, k/2) E (ul +e'k) T & )|ui —v2u; +e5|E (ui, k/2) E (ui — %)
e(r
(125)
Above v is either w;1 or u;—1 depending on the order of integration (from wujs to uo or
from wo to wy if the derivatives act on uo + £). Moreover ¢,&’ € {1,—1} and the term
with ¢’ comes from the derivative in the integrand. By using (7)) several times (starting
with (@8)) we get the term |u; + | = |uf| in (I25).
In ([I28)), we use spherical coordinates to obtain the following upper bound:

2
/A Zl“ ! <2 du . (126)
/s A% |Au — v¢|2E (Au — re) /, |Au — |vele| E(u — re)

Se(r)

Let us assume for the moment that this integral is lesser than:

K [v°]
A2[vf] (1 — Xpe|>(2-vaa log (1 — T)) (127)

In the process of integrating over the u;’s, we have to integrate over v with this upper

bound. Taking spherical coordinates with respect to —<re, we have:

L[ dv
lv/=v2E@)lv] ~ |o/| | |v]2|v — el?

B(0,A)
dv
bz S log(d).
B(0,A)

Moreover, writing Ax := A(0, (2 — v/3)A, A) the annulus, we have:

[v']
l;g(l—‘[\ﬂ)d: _ < —log(1l — 2)dz log T, + z’
[v/—v|2|v|E(v)(A2+|v|?) A2|v’| 2(1+ 22) i
A
<
~ A2|v’|
log(lf%)dv . L b —log(l — 2)dz
[PIE(@)2(A2+[v]2) ~ A2 2 V3 23 ’
A
Proof of (126)<(IZ7) We write
A2 2 L L 21}A L 2A7‘
:|’UE|7 A—A +x , B— \/1+A2+T27 a.—m andb.— m
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The upper bound ([I26)) is equal to

2b
1 V1+b+V1-b
4 dy 4 dz

AB |, (1 —ay)y/T—by ABa 2+ 2:/1 b+ b2 —1)
0

- . 1 [ dy 1
If a < %7 then this integral is O <E /;1 ﬁ) =0 <W> .

Similarly, if b < %, we get: O ! / L dy =0 1
v =2 Ve AB | (1—ay) AN2E(we) )
If 3 <a,b <1, we consider formula ([I28).

Wehavez222z\/1—bforz22\/1—band2\/1—b<ﬁiﬁb>%

(128)

For 1 5 <b < z,a > 5 we get the upper bound:

wr 1 dy 1
AB | 1—ay ~ A?ve|’

For b > ;, a> 3 5, we have the upper bound

2b
2/1-b V1+b++/1-b

47 / dz n / dz (129)
AsB |/ 22v/T—b+b(L —1) 224+b(2—1)

2V/1-b

The first integral of (I29) gives (without 47/(AB))

1 A(1 — b) ) 1 ( 1— b>
L ee(1s < log (14+5-—2).
2av/T—b g( b(I-1n) Vi ° 1—a
—_ _ 3 : _p\—1/2 log(l—a)
If 1 —b<1-—a, then this gives O((1 — b) ), else this gives O( \g/fb ).
The second integral of ([29)) gives (without 47/(AaB) and writing X := (¢~ " —1)7"):

/ \/7+\/7 dz < /2 X2? dz
2+1 ~ 2\/ﬂ1+X2222
< 1 1+A2+r2
Vi-b V1+

/A2 422 »E
log(l —a) log {%| < 1+ log(1l — %)
ABV1—b (A2 +22)/1+ (A —x)2 ~ (A2 + |[v¢]?) 1+(A—|v5|)2'

Let us emphasize that the condition ¢ > 27! is equivalent to h;‘ >2—4/3.

Bringing all those estimates together ends the proof of (126]) <([I2T1).

We have:

2.

2.1. One derivative in the domain of u; and one in the domain of u; with ¢ —j > 2. We
integrate over u; from j' = 0 to j' = j and from j' = J to j' = ¢ using the method for the
first derivative. The integration over u with u either u; or u; (resp. with v either u;11 or
Ui—1) gives:

du 1 1
> /|u—v|2 k o~ ) SR Z/ A2+|vs|2—2A|vs|y

el gl Ju+eglE (u+s—
1 A+ |v®|
< 1 .
~Z€ Ao Og<A—|vs|

(130)
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If 7 + 2 <4, then by integrating over u;41 we have

dujt1

1
|u3+1 ~ ujp2f? |u3+1|( (u +1) +E( J+1))

A / AT | (

N

(1l
T 8\ [u|
B(0,1)
1 ‘“§+2‘

d 1 r+ == 1
/ sr 10g< +T)10g W < ,
0 |uj+2| 1—r r— 3 |Uj+2|
as before. Else j +1 =i and we have

1
us, (> E
B('r)| ]+1|

e (Abal)” 1
( J+1) +E( J+1) A- |uj+1|

14 2\?
——— log ( + A) (1-
AJ.—o E(2) 1-
<(1-
let us treat for instance

x
28
2.2. One derivative in the domain of u; and one in the domain of uj;4+1. We only look at

log (2 as lqu')

|uj+1|

l

and we conclude

duji1

)(log(A) +1)

the corresponding coefficient in the Taylor series of ga,s(r + dr) with ' = r 4 dr. Indeed

dujdujyy |< (UJ+1
luj—ujy1l?
(uj,ujp1)EB(r')xS(r)

4] e
-

e
B('r) J—1
dujdujii |<n(u3+1)
(uj,ujt1)EB(r")xS(r)

— Uat1|?

>|GJ i(Uj, Ujt1)

[y —uji1]? 2 AV ER
We substract the integral of the same function but over (uj,uj+1,
B(r) x S(r) x B(r)’~
This gives

(r)’~! where u

i1, 0’ in
= (w0, Ty, Wy, -
/T dt/ / dujduji1 [(n(u;), e)| [(n(u;+1)
r+ér |uj - uj+1|2 2
S(t)S(r)

2
for any (ujt1,t) € S(r)

) and use the co-area formula

il Gj(uz,ujp1)

(131)
We deal with G,;(uj,u;+1) as in the case 2.1. Let us say for instance 0 < r < 1, then
(r,7") we have:

diSt(uJ;H,S( >A‘\/1+ (nu,e)5r+((t 'r) _1|

By the Theorem of projection onto a closed convex R”, we have

O (At =7)(nu, e))

i1 — usl* > |ujpn — Meyuiia]? + Msuipr —
quantity in (I31) is

67“%0

If »* < r, then we consider instead the projection of u; € S(r) onto B(t)

r+or
/ dt/da|a e|log( 0

) - (ak)’
—rl?l{a, )2/
3. Let us write the expansion of

Anyway the
e or(1 — log(dr))
The corresponding term is not Lipschitz because of the term —d; log(dr)

1

(., . @)ldu

5 / dug - - - duy -
B(r')

. du(]GJ(Ue +
B(r)’

-

G 1.5 (u;)du,
B(r')

(132)
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We substract / G (u;)du; in [I32) and get

B(r)

[ T oa / du; G j(uj). (133)

+6T
S(t)

We split (I33)) between integration over S (t) and S_(t). For any t € (r,7'], we write
s:=1t—r and:

Sit) — S(r)

: uw€S:(t) — v(u):=u+ z(u)ny € Se(r) where |z(u)| = (ST(ZO((ST) ’

(134)

From now on we assume v € S(r) and u € S(t) and write 7, instead of n, to emphasize
this is a function of w € S(t) and not of v € S(r). The function z; : S(t) — R satisfies the
equation

—_ r |2 2 . Zt es(My, , €) 55<ﬁu ; e> S
‘u—‘—zt(u)nu—keie‘ = A7 that is zt(1+ﬁ— uaC) = 5 T (135)
Changing variables in the integration over S(¢) we have:
/dujéj,j(uj) = / dvG (7 (0))I(De; By (v) .
S(t) @4 (S(t))
— We need to compute ®;*(v) and J(®;; ;" (v)). First we have:
_ _v—ztﬁu—&—srgrse_ n s 2t _
My = —————— =Ny tegre— T,
thus 1
and . s
o= (147, - —e. 1
ny = (1+ A)n SAC (137)

Using the formula (I3€]) in (I35]), we obtain the following equation satisfied by z::

2
2t €s €s €s €s s
1+= - —————((ny, —)) = —— (N0, — ) = —. 1
a(1+ 3 TG o) 21+ 2) (oo @)+ 55) —5x- (139)
In particular there holds:

Es
oAl

ze(u) = Ny, €) + s O ((67r)%). (139)

r—0

We differentiate z; in (I35) and get:

T.S:(t) — R
dzt(u) : h s <h, e) (1 + %) (140)
M1+ 3 — 2 (Tu, )
Thus differentiating in (I34) and using ([I306) in (I40) give

TuS-(t) — TuSe(r)

(h,e)(1+ %) Ny + 55 €
((nv,e)+33) 1+3%
(141)

d®;(u) : 2 €s
h — (14+3)h+—
( A) 2A1 ZAt_

ES
zZ
201+ )
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Let (a,b) be an orthonormal basis of T, S<(t) with b X 7, = a, then we have:
J(@y;u) = (dPe(u)a x dPi(u)b, ny)
([1+ %]a+nudzi(u)a) x ([14 2]b+Tudze(u)b) X , ny)
(14 2)* (7w, no) — (14 28)[(a, no)dzi(u)a + (b, no)dze(u)b]
= (1+3)Q+ (e
(

+ %(1 +2) ((a, e)dz(u)a+ (b, e)dz(u)b)

&

|cr,

)
1+%)O+§%mme»+§%0—£@%§%%%L)x

1+%
1+%—ﬁ%(<nv7e>+%)
(<nu,e>+%)2

= 1+E[1_ (1+3)2 +(no, o) (3 + )]+ 0, ((6r)°).

2A
—Asu=v— 2z =0+ F(n, en,; + O ((67)%), we get:
sr—0

or—0

/dujéj,j(uj)r = / dv; G (v + 5w, e)ne, + O ((61)%))x
o q)((fims—s [1 Ul 30" L ey (L 1)] + 0 ((6r)2))dv
2A (1+35)2 RS 570

(142)
We have ®.(S:(t)) # S( ). In spherical coordinates (r, 0, ¢) with respect to —eZe and
positive vertical half-line R3.ce we have

u(S:() = {(,6,0).

rs

T8 32
QA\/I—W“FW

and cos(0:) = 55 — %s + 5r(30((5r)2)'

= cos(0:) < cos(0) < 1}7 (143)

At this point, we need to differentiate é(]’j: we have
— GY(ue+ £
/ dUO"'de"'dUJLQ)z.
[T |uwi—uial

B(r)J 1<i<J

~ N, , €

Gui(ug) = l{£a , el
2

We change variables as follows: v; := u; — uj, this enables us to remove u; from the term

|uj—uje1| "% Writing Be(r,u;) := {v : |[v+u;+e&| < A}, B(ryu;) = By (r;u;)UB_ (r;u5)

and Se(r,u;) := 0B:(r,u;), we have

~ [(n. , €)] — GY(ve+u; £ %)
Gii(u) = —322 71 dvo - -dvi---dvj——m— 7 27 144
7.5 (us) B) Vo Uj vJ T i —via? (144)
B(rju;)’ 1<i<J

with the convention v; = 0. We differentiate the formula (I44)): u; appears in the inte-
grand and in the domains B(r;u;). We deal with the terms corresponding to differenti-
ation of the integrand as before. Then we have for any integrable function F and small
displacement du € R3:

F(v)dv— / F(v)dv = / F(v)((n(v—uy), 5u)+600(|5u|2))dv, (145)
u—r
Bs(""vuj+5u) BE(T';uj) Ss(”"iuj)

where n(v — ;) is the outward normal of Se(r,u;) at v. Substituting in ([I42]), as in the

case 2.2. we get terms which are s @) O<|(5u|(1 —log |6u|)) Writing u; = u we have
u—
Gslv = %<nu ce)no +,0 ((0r)) = O (=(9r)*1og(r))
r—0 Sr—0 dusdv’
es(ny , e iaV; r
+Grj(v elng.o)y / G (v £ Se) (n(vi — uy) , 1)

IT |ve—wvesf?
7 v; € S(ryv) =Y

vi € B(r,v)’
(146)
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We write C(r) := Sy (r) N S_(r) (this is a curve): the integration of G ;(v;) over
Se(r)A®s,(S:(d7)) gives rise to a term:

22 "
~2n2 Hduo~--du1GJ(uzi §)+6TQO((57“)2)'
uj €C(r),(us)ix; €B(r)

Thus we get a term of order

22 r o (aK)J+1
-2 / Tyl - dusGylur £ §) *O(T)'

uF€C(r),(us)ix; €B(r)

By integrating the term G;(v) X (J(®4;u;)~" — 1), we get a well defined number in the
limit ér — 0. Furthermore this term is

uj €S(r)(ug, -+ ,uj, uy)EB(r)’

~ To conclude, we consider G 7;(®; ' (v)) — G.y;(v) to deal with the problem of case 2.2.

Up to a term —62log(dr) = 5.2 (6r), we can take S(r) instead of ®;(S:(t)) and 1

r—0

instead of the full jacobian J(®¢;u). We have e(n, , €) = [(n,, €)|. In (I46) we take back
the previous variables u; = v 4 v;, this gives

or > / dug - -~du‘f|<m27 o (_ = e)lém, ”w)) Glue+ %)

vESe(r) 79 (uj,u’)ES(r)x B(r)J—1

When we sum this term with that of (I31]), for each ¢ # j we have

o) (s @) = () (o s €) x (@)e(us) (nu , )|,
min(v/2|nu; — 14|, 2).

1+ €)1 = e, @), )

IN

Thus there is no more logarithmic divergence: for v = u; and v = uj—1 or v = ujy1,
we use the same method as that for (I31)) and get

[nw — nol[{(nw , €)|dudv 1

lu—v]? E(A)? A2

S(r)xS(r)

We split the domain in 4: S.(r) x S./(r): the case ¢ = ¢’ gives finite number. Indeed if
52_7"

du 1
o — | =0(—= ).

[ra)=o (&)

S2
The integration over Sy (r) x S_(r) is also finite. To see this we proceed as follows.
For convenience we write z := 55,607 = arccos(z),0°, = arccos(—z) and s(-) (resp.
c(+)) for sin (resp. cos). We take spherical coordinates with respect to —eze for any S (r)
and obtain:

we use spherical coordinates with respect to —=e, we have |n, — n,| < W/\;v‘7 and the

integral is

2_71' / 8(91)8(971)d91d971d¢
A2 (c(01) = c(0-1) — 22)% + 5(0-1)%s3 + (5(61) — 5(0-1)cp)?
(61,60_1,9)€(0,69)x (—,00 ) x(—m,m)
1 5(91)8(971)d91d971d¢ . i
S A /// (e(61) —c(0-1) — 202 T (622 A2

(01,6-1,6)€(0,69)x (=m,6° ) x (—m,m)
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We write 0. = 92 — e¢.: there holds

ec(f.) —x = w(c(ge) — 1) + VI —a2s(¢:),
Ple(6) ~ )+ VI=s(ge) > ge(2vT—a7 —2 %),
> 2t (T2 — Toarccos(@) = 21T (o
> BOEE(1-) YRR

Thus we have

A < jj sin(01)dgrdo_1
$1,6-1€(0,69) VI—22,/¢2 + ¢,

dor arccos(z)
< g (1. Bl
V1 —z? 1
$1€(0,69)
< log(1 4 ¢~ ")d¢.
#€(0,1)

Conclusion We obtain at last the following upper bound for the terms of cases 2.
and 3.:
2 (aK)7 1 log(A)
A2 '
It is possible to show that the function 97 fa(z) tends to zero as |z| tends to 2A, this is
proved in the thesis of the author (to appear in 2014).

J

]

Alternative I’y In the proof of Theorem [3], one is lead to consider a pertubative self-
consistent equation with D° replaced by D° + %%. In particular we need Lemma
below for the proof of Lemma [I21 We can write
2 D° _ —iV
DO _——_— = — v . —_— — V .
+ 3] Pwo(—iV) + |_N|w1( iV)
The formulae are the same with go, g1 replaced by o, w1, estimates of the same kind hold.
The alternative functions are marked WitNh a tilde: B and ga. _
We can easily estimate f‘ F7H(Fa)(z)|dx for R > 1: writing fa := F 1 (Fa) we
have the following Lemma;:

Lemma 15. For A\, A > 1 we have:

Ny

/ fa(z)|dz < || —~AFa|| 2 VATR-1 = O(LR™/?). (147)
le|>R
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