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Strong stationary times for one-dimensional diffusions

Laurent Miclo

Institut de Mathématiques de Toulouse, UMR 5219
Université de Toulouse and CNRS, France

Abstract

A necessary and sufficient condition is obtained for the existence of strong stationary times
for ergodic one-dimensional diffusions, whatever the initial distribution. The strong stationary
times are constructed through intertwinings with dual processes, in the Diaconis-Fill sense, taking
values in the set of segments of the extended line R u {—00,4+o0}. They can be seen as natural
h-transforms of the extensions to the diffusion framework of the evolving sets of Morris-Peres.
Starting from a singleton set, the dual process begins by evolving into true segments in the same
way a Bessel process of dimension 3 escapes from 0. The strong stationary time corresponds to
the first time the full segment [—c0, +00] is reached. The benchmark Ornstein-Uhlenbeck process
cannot be treated in this way, it will nevertheless be seen how to use other strong times to recover
its optimal exponential rate of convergence in the total variation sense.

Keywords: Strong (stationary) time, ergodic one-dimensional diffusion, intertwining, dual
process, explosion time, Bessel process, Ornstein-Uhlenbeck process, spectral decomposition and
quasi-stationary measure.
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1 Introduction

A strong stationary time 7 is a stopping time relative to the filtration generated by an ergodic
Markov process (X;)i>o (and possibly some independent randomness) which is such that 7 and
X, are independent and X, is distributed according to the underlying invariant probability dis-
tribution. They were first introduced by Aldous and Diaconis [1] in the context of finite Markov
chains. Staying in the finite framework, Diaconis and Fill [10] developed the important tool of
intertwining with absorbed Markov chains to construct strong stationary times. Intertwining of
diffusions was also investigated by Rogers and Pitman [20] and Carmona, Petit and Yor [6], espe-
cially to deduce identities in law for particular processes. Recently, Pal and Shkolnikov [18] studied
some conditions insuring that there exists an intertwining between two Markov semi-groups and
their article also provides a welcome survey of applications of intertwining relations. Our goal here
is to come back to the investigation of strong stationary times through intertwining, but in the
context of diffusions. We will also point out a relation with an extension to this continuous setting
of the evolving sets of Morris and Peres [17]. More precisely, we are to be mainly concerned with
one-dimensional diffusions, the simplest continuous framework and nevertheless already displaying
some interesting features. Of course, extensions to multidimensional situations are more promising
and challenging, there are outside the scope of this paper, which can be seen as only working out
the preliminary steps in this direction that we hope to investigate in the future.

Consider the one-dimensional Markov generator given by
L = ad®>+0bd (1)

where a > 0 and b are two functions defined on R. We won’t be interested in regularity issues, so
we assume that they are smooth and L can be interpreted as an operator from C(R) to itself. It
is often convenient to extend it as a self-adjoint operator on a L2 space. Indeed, consider

vV zeR, clx) = f:%d

) = S2E) ®

We will denote by the same symbol i the measure admitting the function p as density with respect
to the Lebesgue measure. It is well-known (cf. for instance the chapter 15 of the book of Karlin
and Taylor [14]), and elementary to recover, that the operator L is symmetric in L?(y), so we can
consider the corresponding Freidrich’s extension.

Since we are only interested in positive recurrent diffusions, we begin by making the assumption
that p is a finite measure:

m = JMdm < 4o (3)
R a(z)

and we renormalize p into a probability distribution, replacing (2) by

exp(c(x)) "

() m (o)

Let X = (X;)i>0 be a diffusion process whose generator is L. The above finiteness assumption
does’t prevent X from exploding in finite time. Indeed the general criterion for X to be non-
explosive is that

0

0
| nmopespemdy =+ and | (s expl—c)dy =+



(see for instance Theorem 3.2 (3) of Chapter 6 of the book of Ikeda and Watanabe [13]). When p
is finite, as it is implicit throughout the paper except otherwise stated, this condition reduces to

o]

0
f_ exp(—c(y))dy = +o and fo exp(—c(y)) dy = +oo0 (5)

A diffusion X whose generator L satisfies (3) and (5) is said to be positive recurrent.

The process X is a priori defined on a probability space (€2, F,P) endowed with the filtration
(Ft)t=0 generated by X. For instance, {2 can be taken to be the set of continuous trajectories
C([0, +0),[—o0, +0]) endowed with the o-field and the filtration generated by the canonical co-
ordinate process. But to allow for extra randomness, it is useful to enlarge the initial setting
(Q, F, P, (Ft)i=0) into (Q, F, P, (F;)i=0), preserving the fact that X = (X;);=0 is a continuous pro-
cess starting from xg, Markovian with respect to the filtration (F;)¢>o and whose generator is L.
This is often done by considering the tensor product of (Q, F, P, (F;)i=0) with another probability
space.

A random time 7 taking values in [0,00] is said to be a stopping time, if it is defined on
a framework (Q,F,P, (F;)i=0) as above and if it a stopping time with respect to the filtration
(ﬁt)t>07 namely if

Vt}O, {Tét}E]?t

From a practical point of view, it means that 7 is constructed from X and from some independent
randomness Y in such a way that for any ¢ > 0 and in view of Y, to decide whether 7 < t or not,
it is sufficient to look at the trajectory Xjo = (Xs)se[o,-

The stopping time 7, taking values in [0, 00), is said to be strong, if 7 and X are independent.
It is said to be a strong stationary time, if furthermore X, is distributed according to u.

Our main goal in this paper is to investigate the existence of strong stationary times for X. To
state our first result, we need the following quantities

Lo [ ([ ewtctnay) wias)
I, = Lﬂo (f:exp(—C(y))dy> p(dx)
I = max(I_, 1)

Only the finiteness of I will be important for us and for that the role of 0 is irrelevant: it could
be replaced by any other point of R. But if we were looking for quantitative bounds, it should
be chosen more carefully, maybe replacing it by zg in the case where X starts from the initial
deterministic condition Xy = zy. For the next result, we allow any initial distribution for £(Xj).

Theorem 1 Assume that X is positive recurrent. There exists a strong stationary time for X,
whatever its initial distribution, if and only if I < +o0.

Remark 2 Despite we made in this paper the deliberate choice not to get involved in optimal
regularity questions, let us mention that the natural framework for the previous result is that of
general one-dimensional diffusions (see for instance Section 5.3 of the book of Revuz and Yor [19]):
the generator is no longer described by (1), but under the form L = %d%’ where m is the speed
measure and s is the scale function (in our regular setting, they admit densities with respect to
the Lebesgue measure respectively given by exp(c)/a and exp(—c)). In this context and up to a

constant factor, the quantity analogous to I writes down as max(I_, ), where

0 +00
I o= joos([x,()])m(dx) R f 5([0, 2]) m(dz)

0
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and we expect Theorem 1 to be still true. Remark that the positive recurrence of X can also be
expressed through m and s only: m(R) < 400 and s(R_) = s(R;) = +o0.

Remark 3 Instead of the whole line R, we could have considered the half-line R, with usual
reflection at 0. Similar notions can be introduced in this context and the arguments can be adapted
to show that the corresponding Theorem 1 is valid, where [ is replaced by I, . In a recent preprint,
Cheng and Mao [7] showed that the assumption I, < 40 is equivalent to several conditions,
among which the strong ergodicity of X and the fact that the essential spectrum of L is empty
and that the sum of the inverses of its non-zero eigenvalues is finite. This amounts to say that the
associated centered Green operator (which is the inverse of the generator on the space of functions
whose mean with respect to the invariant measure vanishes) has a finite trace. While this result
was only stated for half-space, we strongly believe it also holds for ergodic diffusion on R. Thus
the existence of strong stationary times of a recurrent positive one-dimensional diffusion, whatever
the initial condition, would be equivalent to its centered Green operator having a finite trace. At
least, this is coherent with the fact for finite birth and death chains starting from a boundary,
the optimal strong stationary time is distributed as a sum of independent exponential variables of
parameters the inverses of the absolute values of the non-zero eigenvalues of the generator (see Fill
[12]). This result has been recently extended by Cheng and Mao [8] to diffusions on a compact
segment of R with reflecting boundaries, when the process starts from one of those boundaries.

We believe that the finiteness of the trace of the centered Green operator is always a sufficient
condition for the existence of strong stationary times, but the necessity of this property cannot
be true in full generality: consider a probability p on a general measurable space and let L be
the generator acting on functions f € L2(u) by L[f] = p[f]1 — f. A strong stationary time,
whatever the initial distribution, is given by the first jump. The spectrum of L consists of 0 (with
multiplicity 1) and of 1 with multiplicity the dimension of {f € L2(u) : u[f] = 0}. So if the latter
dimension is infinite, we get a counter-example to the necessity condition outside the framework
of one-dimensional diffusions.

[m]

As announced at the beginning of this section, a strong stationary time will be constructed through
duality via intertwining relations. More precisely, let

E* {(.%',y) XY € [_007 +OO]7 T < y}\{(—OO, _00)7 (+OO, +OO)}

E* = {(z,y)eR?: z <y}
be the interior of E* and D* := {(x,z) : x € R} € E* be the diagonal of R%. Consider the Markov
kernel A from E* to R defined by

5. (A) Jify =z
V (z,y) € E*,V Ae B(R), A((z,y), A) =
( y) ( ) (( y) ) “(!Em[vi/]ﬁ;‘) , otherwise

where B(R) stands for the set of Borelian sets from R.

Transposing to the diffusion setting the program described by Diaconis and Fill [1] for finite
Markov chains, we are looking for a diffusion generator L* on E* satisfying the intertwining relation
AL = L*A, in the sense that at least on E*\(D* u {(—o0,+0)}),

VfieClR),  ALL[f]] = L*[A[f]] (6)
Here is one solution: on E*
(Va(y)dy —a(x)oz) )/2 = b())0z + (a'(y)/2 = b(y))dy (7)

+2 aw(u([;y]) ECCOLERNCELS




while on R x {400},

(Va(z)oy) 2)/2 — b(a))a, — 2 A@RE@) ))«/a(x)agg 8)

pu([z, +o0

and on {—o0} x R,

(Va@)y)? + (@ w)/2 — b)), + 22 o, ©)
(( 0, y])
Formally, (8) and (9) are obtained by respectively replacing y by +o0 and = by —oo in (7). Such
extensions of (7) will be called natural in the sequel.
We put a Dirichlet condition at (—oo, +00), insuring that it is an absorbing point.
It is not necessary to make precise the boundary condition on the diagonal D*, because it is
an entrance boundary:

Proposition 4 For any g € R, there is a continuous Markov process Z* = (Z} )1=0 starting from
(0, x0), whose generator is L* (in the sense of martingale problems) and satisfying for all t > 0,
5 € E*\D*. The law of this process is unique if we impose that after the possibly finite time

™ = inf{t>0: Z = (—w0,+0)} (10)
Z* stays at position (—o0,+0) (i.e. if we consider the minimal process).

The generator L* defined in (7) is not the unique one satisfying (6). This relation is also true
if L* is replaced by

(Va(y)dy ++/a(z)dz) 2)/2 = b(x))0 + (d'(y)/2 = b(y))2y (11)

2 meyn - “—_a+vﬁ_a

(on E* and its natural extensions on R x {+00} and {—o0} x R). For this operator, D* is not an
entrance boundary: an associated process starting on D* stays in D*, this is related to the fact
that the mapping E*\D* > (vay)u(y) —+/a(z)p(x))/u([z,y ) can be naturally extended
into a symmetric and smooth functlon on R

There are other generators satisfying (6), e.g. the elliptic operator

L = al)e +a@) + (@/(@)/2 - b(x))ds + (a'(5)/2 — b(y)3, (12)
2 (@) ()7, — ala)p(2)2)

(on E* and its natural extensions on R x {+c0} and {—o0} x R). One would have remarked that
L* = (L* + L*)/2 and more generally for any « € (0,1), the generator (1—a)L* + aL* satisfies (6)
and is elliptic. But as it will be seen in Remark 14 at the end of the next section, these generators
lead to strong stationary times which are larger than those obtained from L*.

The generator L* defined in (7) has another interest: it is related via a Doob transform to the
continuous equivalent of the evolving sets introduced by Morris and Peres [17] for denumerable
Markov chains. Consider the generator given by

(WVa(y)dy —/a(x)dy) z)/2 = b(x))dx + (a'(y)/2 — b(y))0, (13)

(on E* and its natural extensions on R x {+00} and {—0} x R). The diagonal is not an entrance
boundary for this generator and to associate a (minimal) Markov process Z = (Xt,Yi)t=0, we can
impose Neumann boundary condition on D*. It amounts to see Lasa generator on R? and for any



point (z,y) of the plane, to identify (z,y) with (y,). The segment valued process ([ Xy, Yy])i=o is
then a continuous evolving set in R. Next consider the mapping h defined on E* by

Vi=(ay)eE*,  h(z) = uley) (14)

It will be checked in Lemma 8 of next section that f/[h] — 0 on E£*. Then L* is the Doob transform
of L through h:
L[] = L]

~

[+ Tln(h), ]

NS -

where I' is the carré du champ associated to L: for any smooth functions f, g defined on E’*,
Ilf,9) = Llfg)— fLlgl - oLlf]

Let us now come back to a diffusion process X as in Theorem 1 and denote by mg its initial
distribution. Consider the probability mf defined on E* by mf = S(S(WC) mo(dx), so that m{A =
mg. In general it is not the only probability on E* satisfying this relation, for instance if mg =
A(z,-), with z € Eo?*, it seems more appropriate to choose m§ = 6,. The strong stationary time
constructed in Proposition 5 below does depend on the choice of mg, but in this paper we will not
consider the important question of finding the best possible choice for mf (next section will show
how to construct a process Z* starting from any initial distribution on E*, indeed Proposition
4 presented the most difficult cases). As it is explained by Diaconis and Fill [10] in the finite
setting, the relations m§A = mg and (6) should enable to couple X with the process Z*, defined
similarly as in Proposition 4 but with m{ as initial distribution, in such a way that for any ¢ > 0,
the conditional law of X; knowing the trajectory Z[”E],t] is given by A(Z},-). The extension to
the positive recurrent one-dimensional diffusion case turned out to be quite tricky and will be
developed in Section 4 (unfortunately the results of Pal and Shkolnikov [18] cannot be applied
straightforwardly). Let us admit this technical point for the time being. A convenient feature of
this coupling is that it can be obtained by starting with a trajectory X and by constructing Z*
from X and independent randomness. More precisely, for any ¢ > 0, the piece of trajectory Z["EL ]
is constructed from Xjg; and independent randomness. Thus any stopping time 7 with respect
to the filtration generated by the process Z* is also a stopping time for X. This is important,
because the previous conditional property extends to any finite stopping time 7 with respect to
the filtration generated by the process Z*:

L(X,|Z,0) = AZ20) (15)

where the Lh.s. is the conditional law of X, knowing the trajectory Z["E)J].

In particular if we consider the stopping time 7* defined in (10) and if we impose conditions such
that this Z*-stopping time is a.s. finite, then it is a strong stationary time for X. Indeed, the
above considerations show that 7* is a stopping time for X. Next note that X, is independent

from Zf, ., because according to (15), E(XT*\Z["E) T*]) = A((—00,40),-) = p does not depend on
Z[”a ] It follows that 7* is strong because it is measurable with respect to Z["E) iy Finally it is a

strong stationary time for X, since from the above identity, £(X,«) = u.

Up to the construction of the intertwining, these few standard arguments provide the direct
implication in Theorem 1:

Proposition 5 If I < +oo, then the random time 7* defined in (10) is a.s. finite and by conse-
quence it is a strong stationary time for the positive recurrent diffusion X.



Remark 6 In Cheng and Mao [8], a strong stationary time is also obtained duality, up to the
construction of the intertwining coupling. In the situation where the process starts from one of the
reflecting boundaries, the dual process is easier to deduce, because it is itself a one-dimensional
diffusion (see also [11], which deals with strong quasi-stationary times for finite birth and death
process, but whose formalism is adapted to treat diffusion processes starting from the boundary).

[m]

It opens the way to a quantitative study of the convergence to equilibrium for X in the separation
sense. Let us recall that the separation discrepancy s(v, ) between two probability measures v
and p defined on the same state space E is given by

dv
s(v, = supl— —(z
() = supl = )

where g—” is the Radon-Nikodym derivative of the absolutely continuous part of v with respect to

. Strictly speaking, the separation discrepancy is not a distance because it is not symmetric in
its arguments. The computations of Aldous and Diaconis [1] show that for any strong stationary
time 7 for X, we have

Vi=0, s(L(Xy),p) < Plr>t] (16)

Thus Proposition 5 enables to get upper bounds on the speed of convergence of X toward its
equilibrium g in the separation sense, by studying the speed of absorption at (—oo, +00) of Z*.
The inequalities (16) may be equalities for all times ¢ > 0 and such times 7 are then stochastically
minimal among all strong stationary times. They are called sharp stationary times in Diaconis
and Fill [10] (in the finite setting). The proof of the converse implication in Theorem 1 will rely on
the fact that for initial distributions of X of the form A((—o0,z),-) and A((x, 4+0),-), with z € R,
the random time 7* defined in (10) is indeed a sharp stationary time.

When is this technique working? It is convenient to consider the case of Langevin diffusions,
where a = 1 and b = —U’, where U : R — R is a smooth potential. In dimension 1 and up
to shrinking the state space R to an open interval (through a smooth transformation), it is not
really a restriction. The invariant measure p admits then a density proportional to exp(—U). An
application of Fubini’s formula shows that the condition I < +o0 writes down

max<f_ooo,u((oo,x))ﬁdx,fo+wu((x,+oo))$dx) < 4w (17)

Remark 7 The Lh.s. of (17) is bounded below by

max <sup fo L dzp((—,y)), sup f/ L dep((y, +o<>)))

y<0 Jy p(x) y=0Jo p(x)

and if 0 was chosen to be the median of & (up to a translation there is not lack of generality in
this choice), the previous quantity is the inverse of the spectral gap of L in IL?(x) up to a factor
4 (see e.g. Bobkov and Gotze [5]). So at least for Langevin diffusions, the existence of a strong
stationary time, whatever the initial distribution, implies a positive spectral gap. As it will appear
below and as it can be expected from Remark 3, this is far from being a sufficient condition.

[m]

For instance, if for |z| large enough we have U(z) = |z|%, with a > 0, then Condition (17) is
satisfied if and only if a > 2 (whereas the existence of a spectral gap is equivalent to a > 1). In
particular, the important case of the Ornstein-Uhlenbeck process is not covered. Does it mean that
the previous approach is useless in this situation? Indeed, it is possible to get around this difficulty
by considering strong times 7 where the distribution of X, is close to the invariant probability .

7



Put in practice in Section 5, this technique will enable us to recover good quantitative bounds on
the convergence of the Ornstein-Uhlenbeck process toward the Gaussian distribution in the total
variation sense.

Let us just give a glimpse of why it could interesting to investigate the multidimensional sit-
uation. Let X be a hypoelliptic diffusion taking values in a smooth manifold M of dimension
(strictly) larger than 1. Assume that it is possible to construct a process Z* taking values in the
set E* of singletons and non-empty open subsets of M and which is intertwined with X through
the Markov kernel A from E* to M given by

0:(-) ,if z={z}

A nz)
A(2)

V ze E¥, Az, ) =

, if z is a non-empty subset of M

where A is a nice o-finite measure on M giving positive weights to all non-empty open subsets
(for instance the invariant measure for X, but it could also be a more tractable measure). Then
we would have at our disposal the following representation of the time marginal laws of X for all
t=>0,

vreM, L£(X)(dx) - fA(z,dx)ﬁ(Zt*)(dz)

from which absolute continuity and regularity properties can be deduced.

It would be instructive to begin with a simple instance of X satisfying Hérmander’s conditions and
to see which features could be deduced for corresponding processes Z*, especially in small times.
Entrance boundary properties of singletons analogous to that presented in Proposition 4 would be
particularly desirable.

The paper is constructed on the following plan. In the next section we investigate the dual
process Z*, making a link with the square Bessel process of dimension 3 and we prove Proposition 4.
Explosion times and Proposition 5 are the subject of Section 3. Section 4 ends the proof of
Theorem 1, providing the missing details about the coupling of X with Z* and showing the
converse implication. The last section and an appendix are devoted to the counter-example of the
benchmark Ornstein-Uhlenbeck process, giving us the opportunity to see why it is interesting to
consider more general strong times than strong stationary times.

2 Description of the dual process

We study here the solutions of the stochastic differential equations associated with the generator

L* given by (7), (8) and (9).

We begin by verifying the assertion made in the introduction about the relation between L*

and L defined in (13).
Lemma 8 Let h be the function introduced in (14). On E* we have INL[h] = 0 and for any
FeC*(E*),

VzeB*,  L*[F)(z) - %z[hF](z)

These properties extend to R x {+0} and {—o0} x R, up to the natural modifications.

Proof
For (z,y) € E*, we have

Och(z,y) = —p(x) and  Jyh(r,y) = wuly)

8



so that

(Va(y)oy — v/ a(x)o:)*h(z,y) = v Y)0y — N a(x)0:)(\ aly)uly \/ u(x))
= “ay)dy(Waly)uly)) —+/a (%v (z))

Taking into account that

we get that

Vaina, - vae i) = (b6 - 22 i - (o) - ) i)

= —(d'(2)/2 = b(x))zh(z,y) — (a'(y)/2 = b(y)) oy (=, y)

namely L[h] = 0. R
In the same way one shows that L[h] =0 on (R x {+w0}) u ({—0} x R).
By definition of I, we observe that for any F' € COO(E*) and any z € E*,

—L[hF](2) (hL[F] + FL[R] + I'[h, F])

N0 > =

1~
—I'[h, F]

[F1+ 1

A direct computation shows that for any F, G € COO(E’*) and any z = (x,y) € E’*,

I[G.F] = 2 a(y)d, — va(2)d:)G(z,y)(Va(y)d, — /a(x)d)F(z,y)

Applying this formula with G = h, we obtain that L*[F] = 3+ L[hF], as announced.
Again these considerations extend without difficulty to (R x {+o0}) u ({—o0} x R).
|

Remark 9 Similar computations are valid for the generators given by (11) and (12). Indeed, they
are respectively the Doob transforms through h of the generators defined by

L = (Waly)d, + va(2)ds) 2)/2 — b(@))ds + (d'(y)/2 — b(y))2, (18)

and

v

L = a(y)@Z + a(x)az + (a(2)/2 = b(2))0x + (d'(y)/2 — b(y))dy (19)

(on E* and their natural extensions on R x {+0o0} and {—o0} x R). R
Essentially relying on the fact that d,0,h = 0, one deduces L[h] = 0 from L[h] = 0 and L[h] = 0

from L = (L + L)/2.

Note that the generator L* described in (7) expands into

L* = a(x)d?+a(y)d® — \Va(@)y/a(y)ded, + (' (x) — b(x))ox + (' (y) — b(y))d,

\/a(ﬂfﬂsC +\/ay/zy  Jala




It follows that on E*, the stochastic differential equation for Z* = (X* ,Y*) associated to (7)
writes down

dX}

'y . a(XF)(XF) + /a(Y) Yy . [—
<a’ (Xt ) - b(Xt ) -2 M([Xt*a th*]) a(Xt )> dt — 2a(Xt )dBt

a¥; = (“’m*)b(n*)w ARy aAOn) am*)) dt + y/2a(Yy") dB;

p(IXF YD)

where B = (By)i>0 is a standard (one dimensional) Brownian motion. Starting from an initial
condition in EO]*, the regularity of the coefficients and standard results (see for instance the book
of Ikeda and Watanabe [13]) show that there are existence and uniqueness of the solution Z* up
to the explosion time 71 (a.s. with respect to B). This stopping time for Z* is defined by

o= min(7y, 72, 73) (20)
where
7 = lim inf{t >0: X; < —r}
r—-+00
7 = lim inf{t >0:Y" >r}
r—+00
13 = lim inf{t >0: Y- X <1/r}

r—+00

Of course, we have 77 < 7%, where 7* is defined in (10). The next result shows that 73 plays no
role.

Lemma 10 Let Z* start from an initial condition in E*. Then a.s. h(Z}) converges as t goes
to 71 toward a positive quantity. In particular 77 = min(r, 7)) and Z* can exit E* only through

(R x {+00}) u ({—o0} x R).

Proof

According to Lemma 8, we have on E*, L*[1/h] = L(1)/h = 0, where 1 is the function always
taking the value 1 on E*. It follows that the process M = (My);>o defined by

1
h(Z* )

7T At

Vt)(), Mt =

is a local martingale. Since it is furthermore positive, it must converge as t goes to infinity. The
announced results follow.

We can now obtain the equivalent of Proposition 4 but for initial conditions in E*.

Proposition 11 For any 2y € EO]*, there is a continuous Markov process Z* = (Z})i=0 starting
from zy and whose generator is L*. The law of this process is unique if we impose that after the
possibly finite time 7, defined as in (10), Z* stays at position (—o0,+00) . Furthermore for all
t>0, Z; € EX\D*.

Proof

According to the previous arguments, we already have the existence and uniqueness of Z* up to the
time 71. If 7T = 400, the construction is over. If 7 < +00, we deduce from Lemma 10 that either
71 =77 < 400, or 79 = 77 < +00. We only consider the first case, the second can be treated in the
same way. By the required continuity of the trajectories, we must have Z* = (X7, 4+00), where
X} € [—o0,4+m,). We first consider the case where X* = —oo. By the assumption on the form of
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L* on R x {+00}, Z* must stay there after time 7. Let us denote for any ¢ > 0, X;r = X7 4 The
process X1 must be (and is constructed as) a solution of the one-dimensional stochastic differential
equation

dXtT _ (a/(XJ)—b(XI)—2M>dt_\/mdBt

u((X]. +0))

(where B = (Bj)i>0 is a standard Brownian motion), starting from X . Due to the regularity of
the coeflicients, there is no difficulty to get existence and uniqueness of the solution up to the time

7 o= lim inf{t>0: ’Xj‘ > 7}
r—+00

As in the proof of Lemma 10, the process MT = (Mg)tzo defined by

1

vt=0, M = ——
(XL g, +00))

is a positive local martingale. From its convergence we deduce that

lim X, = -

t—T—

and it follows that 77 + 7 = 7*. Note that this identity is trivial if X7 = —o0. The analogue result
is satisfied in the situation 75 = 77. Thus the law of Z[”E],T*) is uniquely determined and since we
impose that Z = (-0, +o) for t = 7* (by continuity for ¢ = 7*), the same is true for Z*. The
fact that Z; € E*\D* for all t > 0 is obvious from the previous martingale arguments.

For zg € Eo?*, designate by P, the law on the set of trajectories C(R;, E*) of Z* starting from
2o and constructed as above. One way to construct P,, for zp = (x,20) € D*, is to consider for
€,€ >0, Ppy_czote and to let €,€' go to zero. To make clearer the convergence, we will consider
a transformation of C(R4, E*) so that all the difficulties are encapsulated into a square Bessel
process of dimension 3.

Here is how it appears: under P, for some 2y € E’*, consider

¢ =2 fo (Va(XDu(X?) + ValY)u(¥)) ds e (0, +] (21)

(with the convention \/a(+00)u(+00) = 0), and the time change ()0 defined by

0
vielod, 2| (al¥ux:) + VaV ey )Rds — ¢ (22
0
We are interested in the process R := (R;):=0 given by
Vi>0, R = h(Z ) (23)

GtAq

Proposition 12 Under P,, with zy € E*, R has the law of a square Bessel process of dimension
3 starting from h(zg) € (0,1) and stopped at 1. In particular s is distributed as the first reaching
time of 1 for this process.

Proof

11



We begin by computing L*[h]: in view of Lemma 8 we have on E*,

L*[h] = %Z[iﬁ]

= %( hL[h] + I[h, h])
1~
- Er[h,h]

Taking into account the stochastic differential equations satisfied by the coordinates X* and Y*
of Z*, Itd’s formula give us
1

dh(Z;) = h(Zt*)f‘[h,h](Zf)dH( 2a(X7) (X)) +4/20(Y)u(Yy")) dB:

In Lemma 8 we have already seen that

Vo=(zy)e B, T[hhl(z) = 2/a(@)u@)++/aly)uy))?

Classical stochastic time change calculus (cf. for instance Chapter 5 of the book [19] of Revuz and
Yor) then shows that the process R satisfies for ¢ < ¢:

Code, 1 \ do; [ .
dr, = h(th)P[h,h](th)dt—i—q/dtq/P[h,h](Zet)th

where W = (Wy)i>0 is a standard Brownian motion. From the definition of the time change
(01)tef0,c), we have

de 1
vV tel0,9), =t -
dt L[k, n](Zg,)
so we end up with
dR; = 1 dt + dW,
t TR t

One recognizes the stochastic differential equation characterizing the square Bessel process of di-
mension 3 (see e.g. Chapter 11 of the book [19] of Revuz and Yor). Since Z* is stopped when it
reaches (—o0, +00), namely when h(Z*) hits 1, R is stopped when it reaches 1, which ends to show
the assertions of the proposition.

Here is a first consequence of the previous result:

Corollary 13 We have almost surely,

lim X = —oo
t—oT¥—
lim YV = +oo
t—>T*—

Proof
From (21) and (22), we get that as ¢ converges to ¢—, 6, converges to 7%—. It follows that

lim h(Zf) = tlim R =1
—g—

t—oT¥—

Recalling the definition of h given in (14), this is possible if and only if the limits described in the
above corollary take place.
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The idea behind the proof of Proposition 4 is that there is no difficulty to let a square Bessel
process of dimension 3 start from 0. But to proceed rigorously, we need to consider some transfor-
mations of the martingale problem associated to L*. First we remark that it is sufficient to show
that for any z¢ € R, there is a continuous Markov process (Z;")[o ,), Where 71 is defined as in
(20), starting from (zg,z¢), living in E*\D* for t € (0,771), and whose generator is L*. Further-
more, we will check that the law of this process is unique. Indeed, the proof of Proposition 11
could next be used again to uniquely extend (Z;"),c[o -1y into (Z{)i=o. This observation brings us
back to the martingale problem associated to the initial condition (x¢,zp) and to the restriction
of the generator L* to E*. But we begin by replacing (g, ) by (xo — €,x¢ + €), with €, > 0,
and we consider the time change described in (22). This amounts to replace the generator L* by
L= (1 /f‘(h, h))L*. Or equivalently to apply the following transformation to the trajectories

(Z)icporty = (Zodieto) = (Z3))iefo.0

where

f (ValXD(XE) + VaTu(Y))2 ds € (0, +oc]

and (01)e[o,) is defined as in (22). The reverse mapping is given by

~

(Z)iepoe) — (Z ieqo,rty = (Zoyiefo ety

where
o %f( AR (X)) + /e u(P) 2 ds e (0, +oo]
0
and
1 (% ~ ~ ~ ~
Vi) g | e nE) e Fas -

The stochastic differential equation for (Zt)te[o,g) = ()?t, ﬁ)te[o,g) associated to L on E* is given by

dXt = b(Xt,th)dt—f—O'l(Xt,Y;f)dBt
dy;, = bg( )dt—l—o‘g( )dBt

where for any (z,y) € E’*,

bi(z,y) = a'(z) — 2b(x) B a(x)
4(Vauly) +a@)u(@)?)  (Vay)uy) + a(@)u())u(z, y])
_ a'(y) —2b(y) a(y)
Y = ety A a@r@)) T (Vala) + yam@)a(le o)
oi(z,y) = — m
a(y)u(y) + v/ a(@)u(z)
_ a(y)
oa(z,y) =

Finally we consider the transformation W of the state space E* U D* given by
E* L D* 3 (x,y) — (h(z,y),s(z,y))

13



where s(x,y) is the middle point of [z,y] when R is endowed with the Riemannian structure for
which ad? is the Laplace-Beltrami operator. More prosaically, s(x,%) is defined as the unique point
n [z,y] such that

s(zy) 1 p fy 1 i
——du = —du
» Aalu) s(zy) vV a(u)

Its main interest is that

V (z,y) € B, Va(y)oys(z,y) —/a(x)dzs(x,y) = 0

because

O0z8(x,y) = % %x’)y)) and Oys(z,y) = % M (24)

It is not difficult to see that ¥ is a smooth diffeomorphism from E* U D* to its image. De-
note (R, St)tefo,c) = (¥(Zt))tefo)- From Proposition 12 and (24) we deduce that the stochastic

differential equation satisfied by Zic[o () is transformed into

dR; = g dt +dW;
2
vtello) { dS; = B(Ry,St)dt (25)
where W = (W})i=0 is a standard Brownian motion and where the mapping [ is defined on

U(E* U D*) by

v (.%',y) € E* o D*7 ﬁ(\I/(x,y)) = 1‘) (.%')

a(s(z,y))
8(\/—y (y) + Va(x)p(x)?\ @)
) — 2b(y) /a(S(:v,y))
a(y)

)+ A/a(z)p(x

e a(y
(

8(va(y)uly
It is clear that this function is smooth on its domain. So the resolution of (25) is quite obvious.
The initial condition is (Ro, So) = ¥((zo — €, 20 + €')). Then one solves the autonomous stochastic
differential equation satisfied by R := (Ry);>0. The solution R is defined for all ¢ > 0, and as it was
more precisely seen in Proposition 12, it is a square Bessel process of dimension 3 starting from
h(zg — €,x9 + €) > 0. The trajectory R being constructed, it remains to investigate the ordinary
differential equation % dst = B(Ry, St), starting from Sp. Since (3 is smooth, it gives us a solution, up
to the possible explos1on time ¢ when (R._, S._) reaches the boundary of \IJ(E* u D*). From the
form of W, the time ¢ is necessarily the first time when either X explodes to —o0 or Y explodes to
+o0, where (X;,Y;) = UL(R,, ;) for ¢ € [0,<), as wanted.

These observations are also valid if Ry = 0 and enable to construct P, ,) by reversing the
previous transformations, starting from the initial condition (Rg,Sy) = (0,zp). It is also seen to
be the limit of P, _¢ z01¢) as €, €’ > 0 converge to zero. In the last sentence, the weak convergence
of the probability measures is with respect to the uniform convergence of the trajectories over
compact time intervals, when the state space E* is endowed with a bounded distance compatible
with its natural topology (inherited from that of the compact set [—o0,4+00]?). This continuity
property and the requirements made on P(, .y in Proposition 4 enable us to be convinced of its
uniqueness. Indeed, consider P another probability on the trajectories C(R,, E*) satisfying the
same properties. On C(Ry, E*) consider the natural time-shift maps O, for ¢t > 0: if (ZF)s>0
stands for the canonical coordinate process, we have Z7(0;) = Z,, for all t,s > 0. Let F be a
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bounded and continuous functional on C(R;, E*). By the Markov property we must have that for
any t > 0,

E[F(0,)] — fIEZ[F] i (d=)

where my; is the law of Z} under P. By the requirements that Z;* belongs to E*\D* a.s. under P
and that P is a solution to the martingale problem associated to L*, the expectations E, in the
r.h.s. are relatively to the laws constructed in Proposition 11. By the continuity of the trajectories
and the assumption that Z§ = (xo, zo) under P, m; converges weakly to the Dirac mass at (xo, zo)
as t goes to 0. Thus limy o, §E.[F]m4(dz) = Ey 40 [F] by the continuity of z — P, at (xo, o).
On the other hand, by the dominated convergence theorem, lim; o, E[F(©;)] = E[F]. Thus
E[F] = E(z9,40)[F] for all bounded and continuous functional /' on C(R,, £*). This is sufficient
to insure that P = P and ends the proof of Proposition 4.

x0,20)
Remark 14 Proposition 11 and its proof are also valid for the generators defined in (11) and (12)
and more generally for the generators LY := (1—a)L* + aL*, where a € [0, 1]. But Proposition 4 is
not true for L*: as it was mentioned in the introduction, due to the regularity of the coefficients of
L*, the unique solutions P, for the corresponding martingale problem can be directly constructed
for all the initial conditions z € E* and the mapping z — P, is continuous. Unfortunately, starting
from z € D*, the process cannot escape from D*, except by possibly exploding at one of its two ends
(Lemma 10 is not helping to prevent this event: h(Z;) remains null). Indeed in this degenerate
situation one may have to add the two absorbing points (—o0, —00) and (400, +00) to the state
space E*.

This problem is not encountered by the generators L%, for a € [0,1), to which the above
considerations (corresponding to the case a = 0) can be extended. Let us put a corresponding
index « to all the objects we have considered so far when L* is replaced by L. For instance we
introduce the generator Za =(1- a)z + aL and we compute that its carré du champ f’a satisfies

Ve=(zy)e B Talhhlz) = 2(Vany) + Val@)u@))? - sav/a(z)aly)u)u(y)
Lh, h(2) — 8an/a(z)a(y)u(z)u(y) (26)
It leads us to replace (21), (22) and (23) respectively by

*

o = f To[h, B](Z%) ds € (0, +o0] (27)
0

ea,tN
v ie0,c], f o[ h](Z5)ds — ¢
0

and
Vit = 0, Ra,t = h(Zga,tAca)

The interest of the latter process is that under PP, ., it is again a square process of dimension 3
starting from h(zp) and stopped at 1. The proof is identical to that of Proposition 12.

But from (26), we get that for any z € E*\D*, the quantity I'4[h, h](z) is non-increasing in
a € [0,1) (it is decreasing when z € E*). It follows from (27), that for any fixed zy € E* L D*,
if a1 < ag € [0,1), then the law of 7* under P,, ., is strictly larger than the law of 7% under
Pe,.~, With respect to the usual stochastic ordering of laws on Ry u {+00}. Hence among all the
generators L} for a € [0,1), L* = L§ leads to the dual process Z* to be the fastestly absorbed at
(—00, +00) and thus is the most adequate for our purpose of constructing relatively small stationary
times for L. In words, the mirror-symmetry coupling of the Brownian motions at the boundary of
the evolving segment is optimal and the identical coupling is the worst (being utterly useless for
the evolving segments starting from a singleton).
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3 Explosion times

Our main objective here is to prove the finiteness assertion of Proposition 5. The arguments are
based on comparisons with some appropriate diffusions on half-lines.

Consider Z* = (X™*,Y*) the process described in Proposition 4 (for some fixed o € R) and
constructed in the previous section. We are interested in the (total) explosion time 7* defined in
(10) and our main task is to show that it is almost surely finite if I < 4+00. So let us consider the
(partial) explosion times

7= = inf{t

T = inf{t

For our purpose it is sufficient to show the following result (recall that I_ and I were defined just
above the statement of Theorem 1).

Proposition 15 If I, < +o, then 7" is a.s. finite.

Indeed, by symmetry it will follow that if I_ < +oo, then 77 is a.s. finite, so that 7¥ =77 v 77 <
+o0 a.s. if I < +o0.

The proof of Proposition 15 relies on the comparison of Y* with a diffusion U = (U)o
taking values in Ry 1y {+00}, reflected at 0, absorbed at +00 and whose generator on (0, +00) is
ad? — (b — a' + 2ak’)0, where k is the mapping R 3 z — In(u((—0,x])). More precisely, we take
for U the solution of the stochastic differential equation

dU, = (d/(Uy) — b(Us) + 2a(UK (U) dit + 1/2a(Y*) dB, + diy(U)

up to the explosion time 7(U) = inf{t > 0 : U; = +o}, where (I;(U))s=0 is the local time of U
at 0 and where B = (By);>0 is the same standard Brownian motion as the one driving the s.d.e.
satisfied by Y*

* )y * a(XF)p(XF) + /a7 )u(Y) . .
dyy = <a(Y;)—b(Y;)+2 ) Valy; )>dt+mdBt

for t < 71 (with the natural modification of the drift term if X = —o0). The interest is that the
quantity [\/a(XP)u(X) +/alV a0V )y /a(Ve)u(XE, YD) ~2a(Y;* K (V") is non-negative and
even positive for 0 <t < 77. Soif U and Y* started from the same initial condition ug € (0, +00),
then U stays below Y* up to the time

T = inf{t>0: U, =0}
and this is true whatever the behavior of X*:
Lemma 16 For allt € [0,T], we have Uy < Y/*.

As usual, this assertion has to be understood a.s., but not to burden the presentation, this is
assumed to be implicit from now on. Note also that after the time 7', the local time (I;(U))i=0
starts to play a role and U can end being above Y*.

Proof

This kind of comparison result is standard, see for instance Section 1 of Chapter 6 of the book of
Ikeda and Watanabe [13]. Nevertheless, we find more illuminating to present a simple and direct
proof than to check their assumptions via localizing arguments.

It is convenient to first transform R u {—o0, +00} via the mapping A given by

VueR, {40},

-— “ 1 v
A(u) = L7—2a(v)d
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Next we consider the processes U = (Uy)i=0 = (A(Up))1=0 and Y = (¥ )i=0 = (A(Y;*))s=0. Owing
to Ito’s formula, for ¢ € [0,T A 71), they satisfies respectively the s.d.e.

dU, = f(U)dt+ dB,

dY, = (f(Y:) + Sy dt + dB,
where
VueR,  fu) = (d'(u) - blu) — 2a(w)k () A'(w) + %A”(u)

and S = (S;)=>0 is the previsible process given by
Va(XF)pXE) + a7 u(Yy) /
> = —/ * *
Vt=0, S V2 MRl 2a (YK (V)
/ Y* Y* *

Z VLR (=0, V)
_ o Soa(y ey P ul(=o0, X))

= V) RE VA (o, YD)

> 0

As already mentioned, what is important is this non-negativity of .S. Consider
o = inf{te[0,T) : U, >V}

with the usual convention that ¢ := +o0 if the set in the r.h.s. is empty. We proceed by contradic-
tion: assume that ¢ < T (and in particular o is finite). Necessarily we also have o < 7, because
Y; = A(+0) = A(U;) = U, for all t > 7+, By continuity U, = Y, and we consider two cases:

o If 0 < 77, then S, > 0, thus there exists e > 0 such that for s € [0, 0+¢], f(Vs)+Ss— f(Us) >
0. From the above s.d.e. we deduce that for all € € (0, €],

o+¢€
YU+5’ - Ua+5’ = f f(Yts) + Ss — f(Us) ds > 0
ag
and this contradicts the definition of o. It follows that U, < Y; for all ¢ € [0,T") and by continuity
this is also true for ¢t = T
elfo>7r":fort>7",5 =0,so (ﬁt)ngth,\ﬁ and (ﬁ)ngthMJr follow the same s.d.e.
whose coefficients are regular. Since (70 = 17(,, the local uniqueness of the solution of their s.d.e.
implies that Uand Y keep on being equal for some time after ¢ and this is again contradictory
with the definition of o.
|

The advantage of the process U is that its explosion time 7(U) is well-understood, as we deduce
from Theorem 3.2 of Chapter 6 of the book of Ikeda and Watanabe [13] the following criterion:

Proposition 17 The explosion time 7(U) is finite almost surely if and only if I, < +00.

Proof

The most convenient way to exploit Section 3 of Chapter 6 of the book of Ikeda and Watanabe
[13] seems to symmetrize U: consider the functions a and b defined by

~ 3 a(z) ifz=0

a(z) = { a(—z) ,ifx<0
VEeR, 5 B a'(z) —b(x) + 2a(x)k () ,ifx >0
(z) = { “b(—z) itz <0

17



to which we associate the operator
L = ac*+0b0

Since @ is continuous and positive and b is measurable and locally bounded, we can use Theorem 3.3
of Chapter 4 of the book of Ikeda and Watanabe [13] and usual localization procedures to obtain,
for any given starting point v € R, the existence and uniqueness of the solution V = (W)OgtsT(V)

of the s.d.e. associated to v and L:

Vo = v
{ AV, = b(Vi)dt + +/2a(V;¥) dB,

up to the explosion time 7(V') := inf{t > 0 : lims; |Vi| = +o0}, and where B = (By)i>0 is a
standard Brownian motion.

Tanaka’s formula (e.g. Chapter 6 of the book [19] of Revuz and Yor) enables to see that (|Vi|)o<t<r(v)
coincides in law with the process (Up)o<¢<r(vy starting from |v]. Formally, if Theorem 3.2 (3) of
Chapter 6 of the book of Tkeda and Watanabe [13] is applied (take ¢ = 0 there), we get that the
a.s. finiteness of 7(U) = 7(V') (independently of the initial condition) is equivalent to

LJrooeXp (‘f:%dy> j:exp (J (—uu))du> e )dx < 4o (28)

Taking into account the expressions for @ and b, we compute that
i) a/(y) — b(y) + 2a(y)k’
VzeRy, f A(_y)dy _ f a'(y) — b(y) + 2a(y) (y)dy
0 a(y) 0 a(y)
a(x
n (a(O)) c(z) + 2(k(z) — k(0))

so that the L.h.s. of (28) is proportional to the quantity

o0 (JO ,y]))? exp(—c(y)) dy> m pu(da)

Since 0 < p((—00,0]) < p((—o0,z]) < 1 for z € Ry, the finiteness of the previous expression is
equivalent to that of I,. The only problem is that the coefficients @ and b were required to be of
class C! by Ikeda and Watanabe. But one can check directly in Section 3 of Chapter 6 of their
book [13] that the proof extends to the situation where the lack of regularity is restricted to 0,
where @ is assumed to be continuous and positive and b locally bounded. Alternatively, one can
come back to the smooth situation in the following way. Define

VzeRu{—ow,+o0}, T(V,z) = inf{t=>0: "V, =uz}

As a consequence of the Markov property and of the symmetry of V', the fact that 7(V') is finite
a.s., whatever the initial point, is equivalent to

{ P[r(V,=2) A 7(V,2) < +0|Vy = 0] = (29)

1
Plr(V,+0) <7(V,)[Vo=2] > 0

The Girsanov transformation enables to see that the first of these conditions is true as soon as
a is continuous and positive on [—2,2] and b is bounded on [-2,2]. The second condition is not
affected by modifications of @ and b in (—2,2). So we can first apply Theorem 3.2 (3) of Chapter 6
of the book of Tkeda and Watanabe [13] to symmetric smoothings of @ and b in (—2,2) (this does
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not change the condition Iy < 40 either) and next deduce the same conclusion for the original
process V' via (29).
|

Now we have at our disposal all the ingredients necessary to the proof of Proposition 15. So
let us assume that 7, < +oo.
We begin by defining the following stopping times.

oo = inf{t=0:Y*>1}
By Corollary 13 we already know that lim;_, o Y;* = 400 so that & is finite a.s. Next consider
oo = inf{t >0y : Y =+ or ¥;* =0}

Since I, < +0o0, we deduce from Lemma 16 and Proposition 17 that gy is finite a.s. and we have
either Ya”; = +o0 or YU”; = 0. Indeed knowing the trajectory Z["E) Fo]’ the conditional probability that

Y} = +o0 is bounded below by P[7(U) < 7(U,0)|Uy = Y5 |, where 7(U,0) = inf{t > 0 : U; = 0}.
Since the mapping R, 3z — P[7(U) < 7(U,0)|Up = z] is non-decreasing, we get that

P[YZ = +0|FL] = pe = P[r(U) <7(U,0)[Uy=1] > 0

where F will designate the o-field associated to the stopping time o in the filtration generated by
the process Z*: more explicitly F} is generated by the piece of trajectory Z[”E) o] (see e.g. Chapter
1 of the book [19] of Revuz and Yor). It follows that P[Y} = +o0] > ps. If Y = +o0, we set
N = 0 and otherwise the value of the random variable N will be defined later on in the procedure.
Indeed, if Yé’; = 0, we consider

5’1 = inf{t > 8'0 : th* = 1}

o1 = inf{t >0, : Y =+owor Y =0}
These stopping times are again a.s. finite (still conditionally on Y7 = 0). If Y} = 400, we set
N = 1. Note that as before,

P[YZ = +oo|FL, Y =0] > p,

3’0’ o

The construction goes on similarly: if for some n € N, 7, has been defined, we set N = n if
Y} = 4o and the procedure stops. Otherwise, namely if V' = 0, we consider the a.s. finite
random times

On+1 = inf{t >a, : V' =1}

Ont1 = inf{t > 0,41 ¢ ¥V = 400 or V" =0}
and we set N =n + 1 if Y;n+l = +00. The previous arguments show that
P[Y;nﬂ = +w‘f§n7 Y;n = 0] Z D«

The validity of this property for all n € Zar implies that NV is stochastically bounded below by a
geometric random variable of parameter 1 — p, < 1:

VneZt, P[N=n] < (1—p)"

In particular, N is a.s. finite as well as 7 = Gy. This ends the proof of Proposition 15 and the
finiteness assertion of Proposition 5. As explained in the introduction, this implies that 7 is a
strong stationary time for X, once X and Z* are intertwined through A.
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4 Intertwining

In the two previous sections, the process Z* has been studied in some details. It is time now to
check that it can be intertwined with the initial one-dimensional positive recurrent diffusion X.

We begin by verifying that the commutation relation (6) is satisfied with L* defined by (7), (8)
and (9).

Lemma 18 For any f € C%(R) such that f and L[f] belong to L' (1), we have
Vze E\(D* u{(-o,+0)}),  A[L[flI(z) = LF[A[f]I(2)

Proof

A priori there are three situations to be considered z € E*, z € {—0} xR and z € R x {+00}. We are
to deal only with the first case, the other ones being similar (and even easier). So let f € C?(R) be
given (the integrability assumptions are needed only for z € {—o0} x R and z € R x {+00} to insure
the integrability of f and L[f] with respect to y on semi-infinite intervals). For z := (z,y) € R?
with z < y, we have

ALf)(s) = ff<u>u<du>

h(z,y)

where h was defined in (14). Taking into account Lemma 8, we get that

where L was given in (13) and where F is the function defined on E* by

y/
Ve B FEhy) = [ s ud) (30)

For (z,y) € E*, 0,F(z,y) = —u(z) f(x) and oyF(x,y) = u(y)f(y), so that we get that

LIF)(z,y) = (Va(y)d, - Va(@)o,)(Valy)py)f(y) + Valz)u() f(2))
—(a'(x)/2 = b(@)) () £ (x) + (a'(y)/2 = b(y)) () f (%)

= V()2 (Val)uw)f(4)) — Va@)(a(@)u(@) f () (31)
—(a(2)/2 — b(@))ple) f (@) + (d'(0)/2 — b(y))u(y) F )

= a)pu(y)oyf(y) — a(x)u(x)d, f(x) — g(x)f(x) + 9(y) f(y)

where ¢ is the function defined by

VaeR, g(z) = +a(@)(al@)ux 2)/2 = b(z))p(x)

Recalling the definition of u given in (4), we compute that ¢ is vanishes identically, so that we
obtain

Vi(ry) e B, LA[f]l(y) = nwy) W) — al@)u()oy f(x))
We turn now to the computation of A[L[f]] on E*. Note that L can be factorized into

L- = aexp(—c)d(exp(c)d -) = %é’(a,u@ )
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It follows that for all f € C2(R) and (z,y) € E*,

f * L) p(du) fy o(apdf)(u) du
= ay)p)f'(y) — a@)p(@)f (z)

The wanted commutation relation follows at once, on E*.

Remark 19 If in the above proof Lis replaced by the generators L or L defined respectively
by (18) and (19) (on E* and their natural extensions on R x {+o0} and by {—w} x R), the same
computations are still valid. Indeed, remark that in (31) the cross differentiation 0,0, vanishes,
meaning that on E* and for the function F defined in (30),

L[F] = L[F] = L[F]

(simpler considerations are also valid on {—o0} x R R x {+00}).
The commutation relations AL = L*A and AL = L*A for the generators L* and L* (defined
respectively in (11) and (12)) are then also true, because these operators are the h-transforms of
L and L, as it was mentioned in Remark 9. This justifies the assertions made after Proposition 4
in the introduction.

Even if some of the subsequent developments could be extended to these generators, recall that
their interest is limited, due to the observations made in Remark 14.

We are now going to lift the commutation relation of Lemma 18 to the level of the corresponding
semi-groups. More precisely, let (P;);>0 be the semi-group associated to L. From a probabilistic
point of view, it is constructed in the following way. For any x € R, consider (X;),er the solution
starting from z of the s.d.e.

dXt = b(Xt)dt + 4/ 2(1(Xt)dBt (32)

where (By)¢>0 is a standard Brownian motion. Then for any ¢ > 0 and any bounded and continuous
mapping f on R, we have

Blfl(z) = E.[f(X)]

The semi-group (P/)¢>0 can be constructed similarly. For z € E* nR x R, consider the process
Z* starting from z defined in Proposition 4 or 11, depending if z € D* or not (if z = (—o0, + ),
Z* stays forever at (—o0, +00)). For z € {—o0} xR or z € R x {+0}, Z* is constructed as explained
in the proof of Proposition 11. Then for any ¢ > 0 and any bounded and continuous mapping f
on E*, we take

Prf(z) = E:[f(Z)]

Proposition 20 Assume that X is positive recurrent. Then for all T = 0 and all bounded and
continuous function f on R, we have

VzeE,  AlPr[fll(z) = Pr[A[f]](2)

Formally, writing P, = exp(tL) and P = exp(tL*), the deduction of these commutation relations
from their infinitesimal version given in Lemma 18 may seem clear. Nevertheless a direct rigorous
justification does not seem so obvious (see Remark 22 below). We found it preferable to follow a
recurrent idea in the study of semi-groups a la Bakry [3] and Ledoux [15].
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Proof

It consists in investigating the evolution of
[0,T]5t = PFA[Pr—e[f]]]

for given 7' > 0 and first for f € CP(R).

We begin by recalling how to exploit the martingale property of Z*. A function defined on E*
is said to be C2 if it is continuous on E* and if it is C2 on E*, on {—o0} U R and on R U {+00}.
Similarly, a continuous function defined on R, x E* is said to be C1'? if it is C! with respect with
the first variable in R, and C? with respect to the second variable in E*, the corresponding partial
derivatives being continuous on Ry x £*, on Ry x ({—o0} x R) and on R, x (R x {+0}). Denote by
Cé’Q(RJr x E*) the set of such functions F' which are furthermore bounded, as well as the mapping
Ry x (E*\(D* u {(—00,420)})) 3 (t,2) — G F(t,z) + L*[F(t,-)](2). Let us prove that for any
ze BX\D*, t > 0 and F e CL*(Ry x E*),

E.[F(t n 7%, 2% )] = F(0,2)+E, UW 0. F (s, Z5) + L*[F(s, )](Z*) ds (33)
0

First we treat the case where z = (z,y) € E* and we replace 7* by 71 which was defined in (20).
Indeed, for n € N large enough, say n > ng, where ng € N is such that y — z > 1/ng, consider

1]
o
jm]
-

~

(n) t
(n) : t
(n) = inf{t
(n) = min(m(n ) 72(n), 73(n))

where Z* = (X}, Y*);>0. The sequence (77(n)),=n, is a localizing sequence for Z* on the random
time interval [0,771), in the sense that

o= l
T e

and for any F' € Cé’Q(]RJr x E*), we can write

tart
Viz0,  F(tarlZ') = F(0,2)+ f 0uF (s, 25) + L*[F(s,)](Z*) ds + M,
0

where for any n > ng, the process (M, +1(,))t=0 is a martingale starting from 0.
So taking expectations, we end up with

ta7t(n)
E-[F(t A 71(n), 20 )] = F(0,2) +E- U 0sF (s, Z5) + L*[F (s, -)](Z;")dSI
0
Our boundedness and continuity assumptions on F' enable to use the bounded convergence theorem

to get

E.[F(tarl,Z5 )] = F(0,2) +E,
0

tart
f 0.F (s, Z%) + L*[F(s, )](Z*) ds] (34)

Recall from Lemma 10 that if 71 < 400, then Z¢ belongs to {(—00, +o0)} u ({—o} x R) L (R x
{+0}). Note also that if 71 < +00 and Z* = (=0, +), then 7* = 7T, s0

E[F(t AT Z5 )t 2% —(conoon]) = BelF(EAT* 2 ) s, 7% —(~o0,+0)}]

) TT
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Thus to prove (33), taking into account the strong Markov property at time ¢t A 71 (which is true
by construction of Z*), it is sufficient to see that for all z € ({—o0} x R) u (R x {4+w0}),

*

E.[F(t A 7%, Zf )] = F(0,2) +E. [ f 0.F (s, Z2) + L*[F (s, )](Z*) ds

tAT*
0

This is immediate, following a localization procedure similar to that leading to (34).
Since (—o0, 4+00) is absorbing, if 7* < t we can write for F € Cé’Z(RJr x E*),

F(t,zf) = F(t,(—0,+x))

= F(r*, (=00, 4+®©)) + jt* 0sF (s, (—00,+00))ds
= F(r%,Z%) + jt* 0sF (s, Z7)ds
so that, recalling the Dirichlet condition for L* at (—o0,+00), (34) can be transformed into
E.[F(t,Z)] = F(0,2)+E, {Lt 0sF(s,ZY) + L*[F(s,)|(Z¥) ds]
namely in semi-group notations,

FE[F(E,))(z) = F(0,2) + L PE0sF (s, ) + L*[F(s,)]](2) ds (35)

Let T'> 0 and f € CL(R) be fixed, we want to apply the previous considerations with the
function F' defined on [0,7] x E* by

V (t,z) € [0,T] x E*, F(t,z) = A[Pr—f]]1(z)

Since Ry x R 3 (t,z) — P[f](x) is well-known to be smooth, it is clear that F is C%2.
Furthermore, recall that the semi-group (P;):>o can be extended into a self-adjoint continuous
semi-group on L2(p1), whose generator is the Friedrich extension of L on L2(u). It follows that the
relation d; P,[f] = LP;[f] is satisfied in the usual sense and in L?() and we get

Vtel0,T],V z€ E*, OF(t,z) = —A[L[Pr_f]]](2) (36)
Since the mapping R 3 = — Pr_[f](x) is C? and

)
pllPr—[ 1] < pllfl]
pllLIPr— [l = wlPr—[LUA] < wllLLA]
we are in position to apply Lemma 18 (with f replaced by Pr_.[f]) to get that in the r.h.s. of (36),

we can replace A[L[Pr—[f]]](z) by L*[A[Pr—:[f]]](2), at least for z € E*\(D* u {(—o0, +0)}).
Thus we get that

Vtel[0,T],V 2 e E¥\(D* U {(~o0,+0)}),  &F(t,2) + L*[F(t,)](z) = 0

This relation is also true for z = (—00, +0). Indeed, due to the fact that X is positive recurrent,
we get

Vi=0,  F(t (0, 4+o) = p[P[f]] = ulf]
so that

O F(t, (—0, +3)) = 0 (37)
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In particular it is licit to apply (35) (for ¢ € [0,T]) to get
VzeE*,  Pr[F(T,)](z) = F(0,2)

which is just the conclusion stated in the proposition, at least for f € C(R). To extend it to any
bounded and continuous function f, note that for any fixed 7" > 0 and z € F*, the mappings

R5Aw A[Pr[14]](z) and R 35 A— PEA[LA]](2)

(R stands for the o-algebra of Borelian subsets of R) define two probability measures. Because
they coincide on every f € CX(R), they must be equal.
[

Remark 21 The assumption that X is positive recurrent is really necessary for the previous
result. Indeed, there exists generators L satisfying (3) but not (5). For the associated semi-group
(P})i=0, for any time 7' > 0 and any point € R we have Pr[1](z) < 1. As a consequence, for any
T >0 and z € E*, A[Pr[1]](2) < 1, while by construction Pj:[A[1]](z) = Pj[1](z) = 1.

In the above proof, the positive recurrence of X is encapsulated in (37).

Remark 22 When F doesn’t depend on the time variable, (35) writes down under the familiar
form

AP [F] = LY[P[F]]

But from an analytical point of view, it is not clear a priori in which Banach space one should
interpret this evolution equation to deduce the semi-group (P/)i>o from L*. If we were to work
with the elliptic generator L* defined in (12), there is a natural L2 Hilbert setting. Indeed, let
7 be the o-finite measure on R whose density with respect to the Lebesgue measure is exp(—c).
The generator L given in (19) is then symmetric with respect to the measure n which coincides
on E* with the restriction of (7j + d_o + 6400)®2. Since L* corresponds to the h-transform of
L, it is symmetric relatively to the measure v admitting h? as density with respect to 1. Thus
the relations 15t* = exp(tf/*), for t > 0, could be given a meaning in L2(v). Heuristically, the
intertwining between L and L* can be seen as “weak conjugation relation” between them, so we
can expect that L* is equally reversible with respect to some o-finite measure on E*. Unfortunately
we have not been able to find it and in addition we have no idea about possible quasi-invariant
measures of L*. Nevertheless, we believe that this subject really deserves to be investigated further,
especially from a quantitative point of view. An initiation of this program in a very particular case
is presented in the next section.

Proposition 20 is the main technical point to get the intertwined coupling of X with Z*. Indeed,
we can follow the construction of Diaconis and Fill [10] by applying it to skeletons of X with Z*.
Passing to the limit in the latter approximations will enable us to justify the arguments given

before the statement of Proposition 5 in the introduction.

Let be given mg and mf; two probability measures respectively on R and E* such that mjA =
mp. We want to construct an intertwining of X with Z* whose initial distribution is described by
no(dx,dz*) = mf(dz*)A(z*, dz) (in particular the laws of X and Z; are respectively mg and m).
For fixed N € N, define a discrete time Markov chain (X'r(g,) N nglw)nez ., intertwined through A,
in the following way: its initial distribution is 7y and its transition kernel Q) is given by

g~
QM ((w,2%),d(F,7)) = Pyn(a,d) ;Mf,d%*)%
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(from (x, 2*) € Ry x E* to the infinitesimal neighborhood d(Z, Z*) of (Z,2*) € Ry x E*), where the
last ratio is the Radon-Nikodym derivative of the measure A(Z*, dZ) with respect to Ag—n (2%, dT) =
(PynA)(2*,dT) = (APy-~)(2*,dT). One would have remarked that due to Propositions 4 and 11,
for any z* € E*, Ay n(2*, -) is equivalent to the Lebesgue measure. So except if Z* corresponds
to a singleton, we have A(2*, -) « Ay~ (2%, -). But Py y(2%,dZ*)-a.s. Z* does not correspond to
a singleton, so @9~ is indeed a transition kernel (not only a sub-Markovian kernel).

The computations of Diaconis and Fill [10] can then be adapted to this setting, because of
the structure of the initial distribution and of Proposition 20, to show that the Markov chain

(X'T(L]QV_) N ng 2)%2 . thus constructed satisfies the following properties:

(Xflgfw)nez+ and (Xy(f;[,)]\,)nez+ have the same law (38)

(Z,(gj\a)neZJr and (Zr(gj\?)nem have the same law (39)

(N) (N,%)

VY m € Z, the conditional law of sz_N knowing Z; '/, 7§]_V]§;’<), oo Zﬁg’_*])v is A(Zr(n]\;f])\,, ) (40)

VY m € Z, the conditional law of (Z(N ) Z2(NN*), . Z(]\; ])V) knowing (X(]QV)N)%ZJr
depends only on X(N) X(N) . X'(A;) (41)

Next we embed the Markov chain (X'r(g,) N nglw)nez . into the (time-inhomogeneous) Markov

process (X(N), Z(N#)y .= (X't(N), Zt(N’*))teR+, by taking

=(N) 5(N, . N N,
Vit=>0, (Xt( )aZt( *)) (X[(t21)\’J2 N’Z[(tz;J)2 ~)

where |-| stands for the integer part.

Proposition 23 The sequence of the laws of (X'(N), Z(N’*)), for N € N, on the Skorokhod space
DR+, R x E*), is the relatively compact. We can thus extract a subsequence converging to a
probability measure P which is necessarily supported by the set of continuous trajectories. The
canonical coordinate process (Xy, Z;")teRJr is a coupling of X with Z* satisfying for all t € R,

the conditional law of X; knowing Z[”E) ;s AZF, ) (42)

the conditional law on /mowmg X depends only on X[O ] (43)

Proof

Using traditional properties of the Skorokhod topology on the Polish space D(R,,R x E*) (see
for instance the book [4] of Billingsley), we deduce from (38) and (39) that the laws of X(™) and
ZWV#) converge respectively toward those of X and Z*. This observation implies without difficulty

the first three assertions of the above proposition. For the last two ones, note that as consequences
of (40) and (41), we have

V t > 0, the conditional law of Xt( ) knowing Z[( ’]*) is A(Z; ZN *) -)
¥V t = 0, the conditional law of Z[( 1 *) knowing X ) depends only on X [( )]

The deduction of (42) and (43) is then a standard exercise on conditional expectations: use on one
hand that the o-algebra generated by §[o s, where ¢ > 0 and  is either X or Z*, is the same as
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that generated by mappings of the form F(&,...,&;, ), where r € N, ¢1,...,t, are dyadic numbers
satisfying 0 < t; < --- <t, <t and F is a bounded and continuous function on either R" or (E*)",
and on the other hand that such mappings are P-a.s. continuous.

|

Remark 24 Pal and Shkolnikov [18] investigated the existence of intertwinings between diffusion
semi-groups whose generators are appropriately linked by a Markov kernel. Unfortunately the
assumptions of their Theorem 3 do not cover our situation, essentially due the lack of ellipticity
of Z*. The intertwining of L with L* (defined in (12)) is more amenable to their conditions, after
looking at X through the chart R 3 s — Sg a~Y2(u) du (and correspondingly for Z*). Nevertheless
it would still remain to check their boundary conditions. In the approach presented above, we
escaped the corresponding delicate description of what happens to the intertwined process (X, Z*)
when X enters in contact with one of the boundaries of Z* by resorting to the computations of
Diaconis and Fill [10] applied to the skeleton chains.

Remark 25 The previous intertwinings of the skeleton chains are in general not compatible: it

is not true that for all N € N, (XT(L;V_JFA}), Zflgfjvl’*))neN has the same law as (XT(L];[_)N, Zr(g_’ﬂ;\?)neN.

Proposition 23 enables to prove the direct part of Theorem 1 along the arguments given before
Proposition 4. To end this section, we show the converse implication, by considering the diffusion
X whose initial distribution is p conditioned to be on R_ (namely A((—c0,0),-), the cases where
the initial distribution is A((—o0,z),-) or A((z, +0), ), for some = € R, can be treated similarly).

In this situation the process Z* has the form (—oo, Y™*), where Y* is the solution starting from
0 of the s.d.e.

. Iy * a(Yy ) u(Yy) . .
dyy = (a (Y) = b(Y7) + QW\/G(Yt )) dt +4/2a(Y}") dBy

From Corollary 13, we know a priori that lim;_,;, Y,* = +00. From Section 3, the boundary +oo
will be reached in finite time (a.s.) if and only if I < +0o. The reaching time of +oo by Y* is
indeed the random time 7* defined in (10). If we assume that X admits a strong stationary time
and if we show that such a strong stationary time is stochastically larger than 7*, we would then
get that I, < 400. Symmetrically we would prove that the existence of a strong stationary time
for X starting from A((0,+o0),-) implies that I < 400 and the converse part of Theorem 1 will
be shown. Thus according to (16), it remains to check that

Lemma 26 Under the previous assumption on X, we have
V=0, s(L(Xy),u) = P[>t

The following arguments are an adaptation to our setting of Remark 2.39 of Diaconis and Fill [10].

Proof

Consider the intertwining of X and Z* = (—o0,Y ™) obtained in Proposition 23. It follows that for
all ¢t = 0,

L(X:) = E[A((=o0,Y), -]
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In particular, we get that

e = supe|1- BELI D )

zeR d:u'
— * .
zeR d,u

The above Radon-Nikodym derivative is easy to compute: for all x € R,

dA((_OO7Y;€*)7 ) _ 1
7 2 R

Note that the r.h.s. is non-increasing as a function of = € R, so the same is true of the expression
—0.VH). .
E [%ﬂyﬁ))(x)] and we get

SCCp) = 1t [ AEEED ) )

= 1By = o]
P[Y;* < +0]
= P[r* <]

5 On the Ornstein-Uhlenbeck counter-example

In the study of convergence to equilibrium for diffusions, the Ornstein-Uhlenbeck process is a
benchmark, in particular due to its Gaussian feature which enables explicit computations. Unfor-
tunately, it is in some sense at the “outside boundary” of the domain of application of the approach
presented before. We will see here how the method can nevertheless be adapted to recover sharp
informations.

The Ornstein-Uhlenbeck process corresponds to the choice in (1) of a = 1 and b(z) = —=z, for
all x € R. The associated reversible measure is the centered and standard Gaussian distribution ~
whose density is given by y(x) = exp(—x2/2)/4/2m, for all z € R. A traditional integration by part
leads to

()

v([z, +00)) ~ 7

as x goes to +00, so we get that the second integral of the Lh.s. of (17) is infinite. Theorem 1
then asserts that there exists initial distributions for which it is not possible to construct strong
stationary times for the associated process X. Indeed, this is true as soon as the initial distribution
mg has a compact support. To see it, let us recall how the law L£(X}) is easily computed in this
situation: since X satisfies the s.d.e.

V>0, dX; = —Xidt++/2dB;

(where B = (By)¢>0 is a standard Brownian motion), the variation of parameters method gives us:

t
X = exp(—t)Xo+ \/Ej exp(s — t) dBs
0
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It follows that m; = L(X;) is the convolution of L(exp(—t)Xo) with vi_cxp(—or), the centered

Gaussian distribution of variance 1 — exp(—2t) = 2% exp(2(s — t))ds. Thus if my has compact
support, we get that for any fixed ¢ > 0, the separation discrepancy of m; with - is one:

d
s(my,y) = lim 1fﬂ(az) =1

|| =00 dry
(a similar reasoning, considering only the limit at —oo0 or +c0, would lead to the same conclusion
if the support of mg is bounded below or above: this enables to include the initial distributions
considered for the reverse part of Theorem 1). The bound (16) then implies that there is no strong
stationary time for X.

To simplify the presentation, we will assume that the initial distribution is the Dirac mass
at 0. We deduce from the above considerations that for any ¢t > 0, L(X;) = Vi_exp(—2t)- In
particular £(X;) converges toward ~ in total variation. Let us check that the exponential rate for
this convergence is 2:

Lemma 27 We have

. 1
Jim SIn(jmy =) = -2

Proof

By one of the characterization of the total variation norm, we have for all ¢ > 0,

e =2l = [ (=D dy (44)

where f; is the Radon-Nikodym derivative of m; with respect to v. We compute that
—2t,.2

VieR,  filz) = <1—e‘”>‘”2€xp<‘2<f_7f—zt>>

and we deduce that

filr) =1 = |z| <z = /(€2 —1)In(1 — e2t)

The quantity z; converges toward 1 when ¢ goes to infinity. A simple expansion of the expression
fi(x) — 1 then leads to

e — Ay = 2]0 ' file) — 1(da)

1
~ e2tf 1 — 2% y(dx)
0

for large ¢ > 0. The announced result follows at once.
[

Remark 28 The logarithmic Sobolev constant associated to L is 4, so starting from any initial
distribution mg such that the relative entropy of m; with respect to -~y is finite for some ¢ > 0, we
get that the exponential rate of converge in the relative entropy sense is at least 4. Using next
Pinsker’s inequality, we recover that the above exponential rate of convergence in total variation
is at least 2. For this traditional approach, see for instance the book [2] of Ané, Blachere, Chafai,
Fougeres, Gentil, Malrieu, Roberto and Scheffer. The Ornstein-Uhlenbeck process is also critical
for the use of the logarithmic Sobolev inequalities method, but it is in the “interior boundary” of
the domain of application.
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Let us show how to recover this exponential rate 2 for the convergence in total variation by
using strong (non-stationary) times. So the emphasis is in testing the method, not in the result
itself. It will also enable us to illustrate on this example the directions suggested by Remark 22.

We begin by noting that the construction of the process Z* = (X*,Y™*) made in Section 2 is
still valid. By symmetry and since we are considering Z5 = (0,0), we have that X* = —Y™*. It
comes from the fact that Z* and (—Y™,Y™) satisfy the same well-posed martingale problem. The
diffusion Y* is given as the solution starting from 0 (which is an entrance boundary for Y*) of the

s.d.e.
Vi>0, dYy = (Y7 +g(Y))dt +2dB; (45)

where as usual B := (By);>0 is a standard Brownian motion, and where ¢ is the mapping defined

by

- ()

The coupling of X and Y™* constructed in Section 4 is equally valid. We deduce that any stopping
time for Y* is a strong time for X. For any M > 0, we are particularly interested in the following
stopping time

T = inf{t=>0:Y" =M}
It has the property that 7y, and XT?CI are independent and that XT?CI is distributed according to

Y[- M, the conditioning of v on the interval [-M, M]. The interest of the independence of the
time and the position appears in the proof of

Lemma 29 For allt =0 and M > 0, we have

b=l < Pl = 1+ boasan =l

Proof
An equivalent formulation to (44) of the total variation is given by
1
[me =lew = 5 T ELf(Xo)] —~Lf] (47)

where the supremum is taken over all measurable functions f taking values in [—1,1].
Let ‘FTX} be the o-field generated by the piece of trajectory of the intertwined process (X,Y™) up
to time 7j,. It is in fact generated by X [0,7%] and some randomness independent from the whole
trajectory X. Using the strong Markov property, we get for any function f as above,

E[f(X0) =v(NDIFrx] = Porr ol F1(Xz 1) = (f)
where (P;)i>0 is the semi-group generated by L. Taking into account that o(7};), the o-field
generated by 7y, is included into ‘FT?CI and that XT?CI is independent from 75, and distributed
according to Y[_ps,a], We get on the event {7}, < t},

E[f(Xe) = v(Hlo(ar)] E[ELf(X:) = (N Frx llo(7hr)]

M

— A [f](Xeg) — 1(Plolrin)]
_ U 1) 2-aean(@) = 11t

< 2 Hyt—TJ’CI -

tv
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where for any s € [0,t], v4—s = Y[_p,m) Pi—s is the law of X; s, when X is started from the initial
distribution y[_pz,ps- As a consequence of the Jensen inequality (relatively to the absolute value),
it is well-known that the mapping

Riss = Jus =9l
is non-increasing, so we have proved that
E[f(Xe) = v(Dlo(mi) < < 2|v-aan =7,
The announced result is a consequence of this bound, by writing
E[F(X) —7(D] = EI(F(X) = 1)Lz o] + BIF(Xe) = 1(F) Lt <]
2P[r3; > 1] + B[ELF(X;) — 1(/)lo(ri)]Lrs 4]
2P[rfy > ]+ 2| v-aan =y,

N

A

and of (47), by taking the supremum over all measurable functions f taking values in [—1,1].

|
The last term of the previous bound is immediate to evaluate:
Lemma 30 For all M > 0, we have
2 2
Proof
One sees that
dy[-nm,M) 1
VreR, —(z) = T ()
dy 7 ([, M) M
so coming back to (44), it appears that
M
Iv-aran =l = f e~ 1y
v —m V([=M, M])
= 1=7([-M, M])
= 29((M, +0))
V2 2
< —M=/2
Jere(-2)
|

In view of Lemma 29, it remains to study the queues of the distribution of 7;. The first idea
is to use a probabilistic approach via natural comparisons of Y* with simpler processes. This is
presented in the appendix, where the weakness of this method is also explained. Indeed the efficient
approach is via spectral considerations in the direction suggested by Remark 22.

In the above computations, only Y* was needed, so X (starting from 0) was in fact intertwined
with Y*. It is convenient to adopt the corresponding notations. Let LT be the generator of Y*: it
acts on functions f € CL((0,+0)) via

VyeRy,  Lfly) = f')+V'wf k)

where

2
VyeRy, V() = T +2(([0,9])
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So LT factorizes under the form exp(—V)dexp(V)d, making it apparent that L' is symmetric in
IL2(v), where v is the o-finite measure on R whose density is exp(V). Thus L' can be extended into
its Freidrich extension in L2(v). We will denote (P )0 the associated semi-group. At least on
functions of I.2(v) which are non-negative, it coincides with its probabilistic representation given
on measurable and non-negative functions f by

VyeRy,  Plfly) = EJ[f(¥")]

where the y in index of the expectation indicates that Y™* starts from .
Besides, we designate by A the Markov kernel from R, to R inherited from A:

VyeR,,V Ae B(R,), Ay, A
" () ( ) A’(y[([y_z]y?;‘) , otherwise
From the previous considerations, we deduce the intertwining relation
LTAT = A'L (48)

This weak conjugacy relation suggests that the spectral decomposition of LT should be related to
that of L. So let us recall the latter. Consider (Hy)nez, the Hermite polynomials defined by

VneZy, Vel H,(z) = (=1)"exp(z?/2)d" exp(—z?/2)
They form a orthogonal basis of I.?(v) and diagonalize L:
VneZy, L[H,] = —nH,

Note that H, is even (respectively odd) if n is even (resp. odd). It follows that AT[H,] = 0 if n is
even. Since Hy = 1, we get that AT[Hy] = 1 and this function does not belong to L?(v) because
v has an infinite mass. For the remaining Hermite polynomials, we have:

Lemma 31 For all n € N, denote Hgn = A'[Hy,]. This function belongs to L2(v), satisfies
LTHgn = *Qann and is given by

Vy>0, Hl(y) = —————Hy, 1(y)exp(—y>/2)

Proof
Indeed, we compute that for any n € N and y > 0,

AMH2)(y) = —m=————| Halo)exp(—2?/2)de
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Thus recalling that for y > 0, v(y) = (v([0,¥]))? exp(y?/2), we get that

1 +0o0

AT = 5o | B ew(-y*/2)dy
= \/LQ—WW[HZQn—l]
= (2n-1)

(taking into account that for any n € Z,, y[H?] = v/27n!). In particular, Hgn belongs to L2(v)
for n e N.
The fact that H;n is an eigenfunction associated to the eigenvalue —2n is a consequence of (48)
applied to Hay,.
[

Let 1 be the positive measure on R, whose density is given by

Vy>0, ny) = yv([0,y])

It has an infinite weight, but it should nevertheless be seen as a quasi-invariant measure:

Lemma 32 For all t = 0 and all measurable and non-negative function f : Ry — Ry, we have
(ZTL R-i' U {+OO})7

[Pl = exp(=2t)n[f]

Proof
Consider H;, from Lemma 31 we have for all ¢ > 0, PI;r [H;] = exp(—2t)H;r. So for any f e L%(v),

v[HP[f]] = v[P[H]]f]
= exp(—2t)v[H] f]

This is the identity announced in the lemma, at least for f € L?(v), as a consequence of the
proportionality of the densities 1 and I/Hg :

—(v([0,y]))? exp(—y*/2) —=—=———Hi(y) exp(—y>/2)

Vy>0, v(y)Hy) \/%71[0 yl)

- 5 (D HW

1

mn(y)

The extension to all measurable and non-negative functions f comes from the representation of PtT
as a probability kernel and from a usual application of the monotone class theorem.

This result readily shows that the queues of 7§, admits the exponential rate 2, at least for
convenient initial distributions of Y{':

Lemma 33 Assume that the law mg of Xo has a bounded density with respect to n. Then there
exists C' > 0 depending on mgy such that

Vt=0VM>0, Poo[mi; > 1] < CM?exp(—2t)
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Proof

Denote f the Radon-Nikodym derivate of mg with respect to n and let C' > 0 be an upper bound
of f. We have

Pro[mhr > t] < P [Y7* € [0, M]]
77[fPtT []l[O,M]]]
< Cn[PtT[]l[o,M]]]
< Cexp(—2t)n([0, M])
M
< Cexp(Qt)fo yy([0,y]) dy

M
< Cexp(—2t)f ydy
0

C'M? exp(—2t)

A

We want to extend the previous bound to the case where mg is the Dirac mass at 0. To do
so, first remark that we can restrict ourselves to M > 1, because 7}, is increasing in M. Next fix
o > 0 small enough such that P[7]" < o] < 1/2 and denote £ the sub-probability which is the image
by Y* of the restriction of Py on {r;* > o}. Its interest is:

Lemma 34 We have for allt > 0 and for all M > 1,

Po[ryr > o +t] < 2P¢[ry; > t]

Proof
This is a consequence of the strong Markov property applied to the stopping time o A 7
Po[ray > o +1] = Eolf(o A, Y] )]
where
Vsel0,0],Vy=0, f(s,y) = Pylry >t+o0—s]

Note that the quantity f(s,y) is non-decreasing in s and non-increasing in y. We deduce that
Eo[lirs <oy flo 71, Y )] = Eolls oy £, 1)]
flo, DFo[m" < o]
Since Po[r] < 0] < 1/2 and f(0,1) < f(o,y) for all y € [0, 1], we get
f(o, )Po[r" < o] Eo[ll {720y f (0, Y5)]
EO[]I{Tl*ZO'}f(U A Tl*7 YU*/\TI* )]

N

<
<

It follows that

Po[riy > o +1t] < 2Eo[lx55f(0,Y)]
= 2[@5[7';\1‘/[ > t]

Thus to prove that there exists a constant C' > 0 such that
Vizo, VM>1, Po[ri; > 1] < CM?*exp(—2t) (49)

it remains to show that £ admits a density with respect to 17 which is bounded above. This is not
a priori obvious, because 7(y) is of order y? for small y > 0. But it is true, essentially due to the
behavior of the function g defined in (46) near 0.
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Lemma 35 There exists a constant C > 0 such that

dn
Proof

Consider the process Y = (Y};);>0 starting from 0 and solution of the s.d.e.
2
Vt=0, dY; = ?dt+\/§dBt (50)
t

where B = (B;)>0 is a standard Brownian motion. Up to the change of time Ry 3¢ +—¢/2, Y is a
Bessel process of dimension 3. It follows (see the Section 1 of Chapter 11 of Revuz and Yor [19]),
that there exists a constant K > 0 (depending on o) such that the density x of Y, has the form
Ky? exp(—y?/(40)). In particular, we can find another constant K’ > 0 such that

Vy>0, @) < K (51)
n
To compare with the law of Y_*, we use the Girsanov’s formula. More precisely, define the function
@ on R, by
1Y ~(u) 2
Yy>0, ply) = —fu—l—Qi——du
RN T X T

Elementary computations show that these integrals are well-defined, because the integrand is equiv-
alent to u/3 for u > 0 small. It also appears that ||, |¢'| and |¢"], as well u — |¢’(u)/u| are bounded
n (0,0]. Since the s.d.e. satisfied by Y* can be written

2
V=0, ayy = (F + cp'(Y;*)> dt ++/2dB;
t
Girsanov’s formula (e.g. Chapter 8 of Revuz and Yor [19]) gives us
£y

Yy >0, —)) = E, [exp (\ff %) dB, f ) 1 (v)>o

where Y is the solution of (50) starting from 0 and 71 (Y") is its reaching time of 1. To evaluate the
latter conditional expectation, we write that

Yazyj|

V2 fo TS dB, = (Ys) fﬁ@'m) F (V) ds

which enables to see that

o [ex (V2 [ v am, — (00745 1

0

Yozy:|

— exp(e(y)Eo [exp (— [ e ds) TR y]
where
Vy>0, oy = 2@’(y)+w”(y)+(<ﬁ’(y))2

From our previous observations, [¢(y)| and |¢(y)| are bounded for y € (0,0]. It follows that the
function £/x is bounded on (0, ]. This also true on (o, +00), since ¢ vanishes there. In conjunction
with (51), it ends the proof of the lemma.
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Note that there is no difficulty in transforming (49) into
Vt=0,YVM=>0, Po[ri; >t] < C(1v M)?exp(—2t)

up to a change of the constant C' > 0. Thus putting together all the previous results, we have
proven that there exists a constant C' > 0 such that for all £ > 0 and all M > 0, we have

Ime —~ll,, < C(1v M)%exp(—2t) + exp(—M?2/2)

V2
TM
One could try to minimize the r.h.s. in M > 0 for fixed ¢ = 0, but it is sufficient to take M = /2t
to see that ||m; — |, converges exponentially fast to zero and that

1
limsup — In(|m; —7v,) < -2
t—>+too T

Lemma 27 shows that we have recovered the optimal rate, so that the approach via strong times
is quite sharp.

Remark 36 Denote by H the Hilbert space generated by the Ha, with n € N. The operator Af
is compact from H to L?(v) and one to one. Indeed, this is an immediate consequence of

1
24/2mn

which is shown as in the proof of Lemma 31. This leads to introduce G := AT(#) and to check that
G is dense in L2(v). It is sufficient to see that any smooth mapping F' : R, — R with compact

support belongs to AT(#), i.e. that we can find a measurable function f : (0,4+0) — R with
Joofd’y:& Saroof2d’y< +00 and

Vn,meN, I/[H;nH;m] =

'Y[HZnHZm]

§o fdy
([0, y])

(we will then have F' = AT [f] where f is the symmetrization of f, which belongs to ). So just
take

Yy>0,

F(y)

Va>0,  f(z) = oF(x)y([0,z]))

It follows that (Hgn)neN is an orthogonal Hilbertian basis of I.?() consisting of eigenvectors of
LT. Thus the spectrum of LT is —2N. By self-adjointness, we deduce that

V=0,V fel’(w),  |Plflle) < exp(=2t) [ flra)

This could also have been used to recover the exponential rate 2 in (49), nevertheless we find it
more instructive to work with the quasi-stationary measure 7.

In the same spirit as Remark 3, taking into account Theorem 3.3 of the recent preprint of
Cheng and Mao [7], we could also have deduced that Y* is non-explosive from the fact that sum
of the inverse of the eigenvalues of —LT in L?(v) is infinite, namely, according to the previous
considerations, from ) 1/(2n) = oo. For more informations on the eigentime identity, which
states that certain reversible Markov processes are explosive if and only if the sum of the inverse
of its eigenvalues is finite, we refer to the paper of Mao [16].
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A A probabilistic estimate on queues of 7},

In the previous section we have seen that is important to upper bound quantities like P[7}, > t]
and we obtained nice estimates via spectral considerations. We were lucky because the spectral
decomposition of L is explicit in the Ornstein-Uhlenbeck example. In general a probabilistic
approach is more flexible, even if in the example at hand we did not succeed in recovering the
optimal rate using this method. Let us nevertheless present this approach. At the end we will see
another interplay between probability and spectral theories.

The basic idea is to compare Y* with the simpler process Y = (Y;);>0 starting from 0 and
solution of the s.d.e.

Vi=0, dY, = Ydt++/2dB, (52)
where B = (By)i>0 is a Brownian motion. We then define for all M > 0,
v = inf{t=0: |V =M}

Lemma 37 The law of Ty, is stochastically dominated by that of Tar.

Proof

Recall the following behaviors of the mapping g defined in (46): as y goes to 04, g(y) ~ 2/y and
as y goes to +o0, g(y) < 1/y. So we can define

a = inf{y>0: g(y) =1/y}

We first compare Y* and Y up to the time 7. Let Y be an independent copy of Y: it starts from
0 and is solution of the s.d.e.

Vt=0, dY, = Y,dt+2dB,

~

where B = (ét)t>0 is a Brownian motion independent from B. Consider the process Y = (Yy)e=0

Vi=0, Y, = AJY2+4Y?

Simple It6’s computations lead to the fact that Y is the solution starting from 0 of the s.d.e.

given by

~ ~ 1
Vi=0, dY, = <Yt+?>dt+\/§th
t

where W = (W})¢>0 is the Brownian motion defined by

t
1
W, = J7~(
0'/Y32+YSQ

Comparing with (45), where we replace B with W, it appears that |Y;| < Y, < Y,*, at least for
t < 7. In particular, for any M € (0, a], the law of 7ps is stochastically dominated by that of 75;.
Using the strong Markov property at 75, to prove the same domination for M > a, it is sufficient
to deal with the following situation. Assume that Y* is the solution of (45) starting from a and
that Y is solution of (52) with an initial distribution supported by [0,a]. Let B be the same in
(45) and in (52), then a.s., for all ¢ > 0, |Y;| < Y;*.

Viz0, Y, dB, + Y, dB,)
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Indeed, using Tanaka’s formula (see for instance Chapter 6 of the book of Revuz and Yor [19]), we
have

Vi=0, d|Yy| = |Y|dt+V2dB, +dl,
where (I;)i=0 is the local time at 0 of Y. Consider
o = inf{t >0 : |V} >Y*}

If o0 < 400, then we have Y, = Y *. Recall from Section 2 that necessarily Y, > 0 and since [; is
only increasing when Y; = 0, there exists a random interval of the form [o,0 + €) on which this
local time remains constant. But we have

VEz0,  dYF -l = (Y- Yi)de+ g(v)de - diy

which, via the parameter variation method, leads to

¢
Vi=0, Y — Yot = etf e (g(YF)ds — dly)
0
If t € [0,¢€), the r.h.s. is non-negative, which in contradiction with the definition of o.
|
In particular, we get that
VM>0,Vt=0, Plry >t] < Plry >t] (53)

The advantage is that the r.h.s. is simpler to evaluate:

Lemma 38 We have for any M > 0 and any t = 0,

Plry >t] < 4|———s—e"tM

Proof

Using once again the parameter variation method, we get that
¢
Vit=0, Y, = ﬁf exp(t — s) dBs
0

in particular, Y; is a centered Gaussian random variable of variance e — 1. Besides, by definition,
we have

Plryy >t] = P[Vsel0,t], |Vs| < M]
[

< Pvi| < M]
JM ( y? ) dy
= exp | —
M P 2(e? — 1) 2(e?t — 1)
2M
< —
2m(e?t — 1)

These computations leads to the bound

Vi>0,¥YM>0, Plry >t] <
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which asymptotically for ¢ > 0 large, has not the optimal exponential rate (1 instead of 2).

So where is the weak link in the above arguments? It is the stochastic dominance (53), because
the exponential rate of P[ry; > t] for large ¢ > 0 is almost 1 (for large M > 0), as it will be shown
below. So the strong repulsion of Y* in 0 is the reason for the exponential rate 2 for 73,. The
process Y (or |Y]) has more freedom to wander around 0, which is the best place to “stay” to avoid
the points —M and M, and this accounts for their exit rate 1.

Since the generator of Y is L = exp(fNTN/)ﬁ exp(TN/)ﬁ, where V : R3y — y%/2, it appears that
the measure v admitting the density exp(V) with respect to the Lebesgue measure is “reversible”:
L can be extended into its self-adjoint Friedrich extension on L2(?). From the general Markovian
theory of absorption (see e.g. the book [9] of Collet, Martinez and San Martin), we have

1
lim n In(P[rar > t]) = —Xo(M)

t—+00

where
M / 2 ~
d
Mo(M) = inf S—M]V[(f#
feC®([-M,M]): f(—=M)=f(M)=0 S_M f2dv

Lemma 38 implies that A\g(M) = 1 for all M > 0 and this bound is asymptotically optimal as M
goes to infinity:

Lemma 39 We have

Iim MNM) = 1
Mi +00 o(M)
Proof

Let fas be the function defined on [—M, M| by
Vyel[-M,M],  fuly) = exp(~y*/2) —exp(-M?/2)

Elementary computations show that

M / 2 ~

dv

liminf Ag(M) > a7
M—+4o0 M —+0o0 SfM f]%4 dy

=1
|

The functions fas, for M > 0, were suggested by the spectral decomposition of L on L? (),
which can be obtained by a method somewhat dual to the one presented in the previous section.
Consider, on the appropriate domain of L2(7), the linear mapping K : f + exp(—V)df € L2(D).
Since L = exp(—V)dexp(V) and L = exp(V)d exp(—V)d, we get at once the intertwining relation
LK =KL (with a non-Markovian link K, but its inverse is a positive kernel quite close to At). So
a priori the H, = K[H,], for n € N, are good candidates to be the eigenvectors of f/, associated
respectively to the eigenvalues —n. Indeed, we compute that

VneN,VyeR,  Hu(y) = nexp(—y*/2)Hn 1(y)
so that (fNIn)nNEN is an orthogonal Hilbertian basis of L2(9), so the spectrum of L is —N. The

measure 1) := Hiv = exp(—?) is quasi-stationary for L and its adaptation to the Dirichlet boundary
conditions on [—M, M] furnishes fys, for M > 0. One can also deduce the spectral decomposition
of the generator of |Y|: restrict everything to Ry, but just keep the H,, with n odd. In particular

its spectrum is {—1,—3,—5,...}.
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