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Strong stationary times for one-dimensional diffusions

Laurent Miclo

Institut de Mathématiques de Toulouse, UMR 5219

Université de Toulouse and CNRS, France

Abstract

A necessary and sufficient condition is obtained for the existence of strong stationary times
for ergodic one-dimensional diffusions, whatever the initial distribution. The strong stationary
times are constructed through intertwinings with dual processes, in the Diaconis-Fill sense, taking
values in the set of segments of the extended line R \ t´8,`8u. They can be seen as natural
h-transforms of the extensions to the diffusion framework of the evolving sets of Morris-Peres.
Starting from a singleton set, the dual process begins by evolving into true segments in the same
way a Bessel process of dimension 3 escapes from 0. The strong stationary time corresponds to
the first time the full segment r´8,`8s is reached. The benchmark Ornstein-Uhlenbeck process
cannot be treated in this way, it will nevertheless be seen how to use other strong times to recover
its optimal exponential rate of convergence in the total variation sense.

Keywords: Strong (stationary) time, ergodic one-dimensional diffusion, intertwining, dual
process, explosion time, Bessel process, Ornstein-Uhlenbeck process, spectral decomposition and
quasi-stationary measure.
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1 Introduction

A strong stationary time τ is a stopping time relative to the filtration generated by an ergodic
Markov process pXtqtě0 (and possibly some independent randomness) which is such that τ and
Xτ are independent and Xτ is distributed according to the underlying invariant probability dis-
tribution. They were first introduced by Aldous and Diaconis [1] in the context of finite Markov
chains. Staying in the finite framework, Diaconis and Fill [10] developed the important tool of
intertwining with absorbed Markov chains to construct strong stationary times. Intertwining of
diffusions was also investigated by Rogers and Pitman [20] and Carmona, Petit and Yor [6], espe-
cially to deduce identities in law for particular processes. Recently, Pal and Shkolnikov [18] studied
some conditions insuring that there exists an intertwining between two Markov semi-groups and
their article also provides a welcome survey of applications of intertwining relations. Our goal here
is to come back to the investigation of strong stationary times through intertwining, but in the
context of diffusions. We will also point out a relation with an extension to this continuous setting
of the evolving sets of Morris and Peres [17]. More precisely, we are to be mainly concerned with
one-dimensional diffusions, the simplest continuous framework and nevertheless already displaying
some interesting features. Of course, extensions to multidimensional situations are more promising
and challenging, there are outside the scope of this paper, which can be seen as only working out
the preliminary steps in this direction that we hope to investigate in the future.

Consider the one-dimensional Markov generator given by

L ≔ aB2 ` bB (1)

where a ą 0 and b are two functions defined on R. We won’t be interested in regularity issues, so
we assume that they are smooth and L can be interpreted as an operator from C8

c pRq to itself. It
is often convenient to extend it as a self-adjoint operator on a L

2 space. Indeed, consider

@ x P R, cpxq ≔
ż x

0

bpyq
apyq dy

µpxq ≔ exppcpxqq
apxq (2)

We will denote by the same symbol µ the measure admitting the function µ as density with respect
to the Lebesgue measure. It is well-known (cf. for instance the chapter 15 of the book of Karlin
and Taylor [14]), and elementary to recover, that the operator L is symmetric in L

2pµq, so we can
consider the corresponding Freidrich’s extension.

Since we are only interested in positive recurrent diffusions, we begin by making the assumption
that µ is a finite measure:

m ≔

ż

R

exppcpxqq
apxq dx ă `8 (3)

and we renormalize µ into a probability distribution, replacing (2) by

µpxq ≔ exppcpxqq
mapxq (4)

Let X ≔ pXtqtě0 be a diffusion process whose generator is L. The above finiteness assumption
does’t prevent X from exploding in finite time. Indeed the general criterion for X to be non-
explosive is that

ż 0

´8
µpry, 0sq expp´cpyqq dy “ `8 and

ż 8

0

µpr0, ysq expp´cpyqq dy “ `8
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(see for instance Theorem 3.2 (3) of Chapter 6 of the book of Ikeda and Watanabe [13]). When µ
is finite, as it is implicit throughout the paper except otherwise stated, this condition reduces to

ż 0

´8
expp´cpyqq dy “ `8 and

ż 8

0

expp´cpyqq dy “ `8 (5)

A diffusion X whose generator L satisfies (3) and (5) is said to be positive recurrent.

The process X is a priori defined on a probability space pΩ,F ,Pq endowed with the filtration
pFtqtě0 generated by X. For instance, Ω can be taken to be the set of continuous trajectories
Cpr0,`8q, r´8,`8sq endowed with the σ-field and the filtration generated by the canonical co-
ordinate process. But to allow for extra randomness, it is useful to enlarge the initial setting
pΩ,F ,P, pFtqtě0q into pΩ̄, F̄ , P̄, pF̄tqtě0q, preserving the fact that X ≔ pXtqtě0 is a continuous pro-
cess starting from x0, Markovian with respect to the filtration pF̄tqtě0 and whose generator is L.
This is often done by considering the tensor product of pΩ,F ,P, pFtqtě0q with another probability
space.

A random time τ taking values in r0,8s is said to be a stopping time, if it is defined on
a framework pΩ̄, F̄ , P̄, pF̄tqtě0q as above and if it a stopping time with respect to the filtration
pF̄tqtě0, namely if

@ t ě 0, tτ ď tu P F̄t

From a practical point of view, it means that τ is constructed from X and from some independent
randomness Y in such a way that for any t ě 0 and in view of Y , to decide whether τ ď t or not,
it is sufficient to look at the trajectory Xr0,ts ≔ pXsqsPr0,ts.

The stopping time τ , taking values in r0,8q, is said to be strong, if τ and Xτ are independent.
It is said to be a strong stationary time, if furthermore Xτ is distributed according to µ.

Our main goal in this paper is to investigate the existence of strong stationary times for X. To
state our first result, we need the following quantities

I´ ≔

ż 0

´8

ˆż 0

x

expp´cpyqq dy
˙
µpdxq

I` ≔

ż `8

0

ˆż x

0

expp´cpyqq dy
˙
µpdxq

I ≔ maxpI´, I`q

Only the finiteness of I will be important for us and for that the role of 0 is irrelevant: it could
be replaced by any other point of R. But if we were looking for quantitative bounds, it should
be chosen more carefully, maybe replacing it by x0 in the case where X starts from the initial
deterministic condition X0 “ x0. For the next result, we allow any initial distribution for LpX0q.

Theorem 1 Assume that X is positive recurrent. There exists a strong stationary time for X,
whatever its initial distribution, if and only if I ă `8.

Remark 2 Despite we made in this paper the deliberate choice not to get involved in optimal
regularity questions, let us mention that the natural framework for the previous result is that of
general one-dimensional diffusions (see for instance Section 5.3 of the book of Revuz and Yor [19]):
the generator is no longer described by (1), but under the form L “ d

dm
d
ds
, where m is the speed

measure and s is the scale function (in our regular setting, they admit densities with respect to
the Lebesgue measure respectively given by exppcq{a and expp´cq). In this context and up to a
constant factor, the quantity analogous to I writes down as maxpĪ´, Ī`q, where

Ī´ ≔

ż 0

´8
sprx, 0sqmpdxq , Ī` ≔

ż `8

0

spr0, xsqmpdxq
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and we expect Theorem 1 to be still true. Remark that the positive recurrence of X can also be
expressed through m and s only: mpRq ă `8 and spR´q “ spR`q “ `8.

˝

Remark 3 Instead of the whole line R, we could have considered the half-line R` with usual
reflection at 0. Similar notions can be introduced in this context and the arguments can be adapted
to show that the corresponding Theorem 1 is valid, where I is replaced by I`. In a recent preprint,
Cheng and Mao [7] showed that the assumption I` ă `8 is equivalent to several conditions,
among which the strong ergodicity of X and the fact that the essential spectrum of L is empty
and that the sum of the inverses of its non-zero eigenvalues is finite. This amounts to say that the
associated centered Green operator (which is the inverse of the generator on the space of functions
whose mean with respect to the invariant measure vanishes) has a finite trace. While this result
was only stated for half-space, we strongly believe it also holds for ergodic diffusion on R. Thus
the existence of strong stationary times of a recurrent positive one-dimensional diffusion, whatever
the initial condition, would be equivalent to its centered Green operator having a finite trace. At
least, this is coherent with the fact for finite birth and death chains starting from a boundary,
the optimal strong stationary time is distributed as a sum of independent exponential variables of
parameters the inverses of the absolute values of the non-zero eigenvalues of the generator (see Fill
[12]). This result has been recently extended by Cheng and Mao [8] to diffusions on a compact
segment of R with reflecting boundaries, when the process starts from one of those boundaries.

We believe that the finiteness of the trace of the centered Green operator is always a sufficient
condition for the existence of strong stationary times, but the necessity of this property cannot
be true in full generality: consider a probability µ on a general measurable space and let L be
the generator acting on functions f P L

2pµq by Lrf s ≔ µrf s1 ´ f . A strong stationary time,
whatever the initial distribution, is given by the first jump. The spectrum of L consists of 0 (with
multiplicity 1) and of 1 with multiplicity the dimension of tf P L

2pµq : µrf s “ 0u. So if the latter
dimension is infinite, we get a counter-example to the necessity condition outside the framework
of one-dimensional diffusions.

˝

As announced at the beginning of this section, a strong stationary time will be constructed through
duality via intertwining relations. More precisely, let

E˚
≔ tpx, yq : x, y P r´8,`8s, x ď yuztp´8,´8q, p`8,`8qu

E̊˚
≔ tpx, yq P R

2 : x ă yu
be the interior of E˚ and D˚

≔ tpx, xq : x P Ru Ă E˚ be the diagonal of R2. Consider the Markov
kernel Λ from E˚ to R defined by

@ px, yq P E˚, @ A P BpRq, Λppx, yq, Aq ≔

$
&
%

δxpAq , if y “ x

µprx,ysXAq
µprx,ysq , otherwise

where BpRq stands for the set of Borelian sets from R.
Transposing to the diffusion setting the program described by Diaconis and Fill [1] for finite

Markov chains, we are looking for a diffusion generator L˚ on E˚ satisfying the intertwining relation
ΛL “ L˚Λ, in the sense that at least on E˚zpD˚ \ tp´8,`8quq,

@ f P C
8
c pRq, ΛrLrf ss “ L˚rΛrf ss (6)

Here is one solution: on E̊˚,

L˚
≔ p

a
apyqBy ´

a
apxqBxq2 ` pa1pxq{2 ´ bpxqqBx ` pa1pyq{2 ´ bpyqqBy (7)

`2

a
apxqµpxq `

a
apyqµpyq

µprx, ysq p
a
apyqBy ´

a
apxqBxq
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while on R ˆ t`8u,

L˚
≔ p

a
apxqBxq2 ` pa1pxq{2 ´ bpxqqBx ´ 2

a
apxqµpxq

µprx,`8qq
a
apxqBx (8)

and on t´8u ˆ R,

L˚
≔ p

a
apyqByq2 ` pa1pyq{2 ´ bpyqqBy ` 2

a
apyqµpyq

µpp´8, ysq
a
apyqBy (9)

Formally, (8) and (9) are obtained by respectively replacing y by `8 and x by ´8 in (7). Such
extensions of (7) will be called natural in the sequel.

We put a Dirichlet condition at p´8,`8q, insuring that it is an absorbing point.
It is not necessary to make precise the boundary condition on the diagonal D˚, because it is

an entrance boundary:

Proposition 4 For any x0 P R, there is a continuous Markov process Z˚
≔ pZ˚

t qtě0 starting from
px0, x0q, whose generator is L˚ (in the sense of martingale problems) and satisfying for all t ą 0,
Z˚
t P E˚zD˚. The law of this process is unique if we impose that after the possibly finite time

τ˚
≔ inftt ě 0 : Z˚

t “ p´8,`8qu (10)

Z˚ stays at position p´8,`8q (i.e. if we consider the minimal process).

The generator L˚ defined in (7) is not the unique one satisfying (6). This relation is also true
if L˚ is replaced by

Ľ˚
≔ p

a
apyqBy `

a
apxqBxq2 ` pa1pxq{2 ´ bpxqqBx ` pa1pyq{2 ´ bpyqqBy (11)

`2

a
apyqµpyq ´

a
apxqµpxq

µprx, ysq p
a
apyqBy `

a
apxqBxq

(on E̊˚ and its natural extensions on R ˆ t`8u and t´8u ˆ R). For this operator, D˚ is not an
entrance boundary: an associated process starting on D˚ stays in D˚, this is related to the fact
that the mapping E˚zD˚ Q px, yq ÞÑ p

a
apyqµpyq´

a
apxqµpxqq{µprx, ysq can be naturally extended

into a symmetric and smooth function on R
2.

There are other generators satisfying (6), e.g. the elliptic operator

L̆˚
≔ apyqB2y ` apxqB2y ` pa1pxq{2 ´ bpxqqBx ` pa1pyq{2 ´ bpyqqBy (12)

`2
1

µprx, ysq papyqµpyqBy ´ apxqµpxqBxq

(on E̊˚ and its natural extensions on R ˆ t`8u and t´8u ˆ R). One would have remarked that
L̆˚ “ pL˚ ` Ľ˚q{2 and more generally for any α P p0, 1q, the generator p1´αqL˚ `αĽ˚ satisfies (6)
and is elliptic. But as it will be seen in Remark 14 at the end of the next section, these generators
lead to strong stationary times which are larger than those obtained from L˚.

The generator L˚ defined in (7) has another interest: it is related via a Doob transform to the
continuous equivalent of the evolving sets introduced by Morris and Peres [17] for denumerable
Markov chains. Consider the generator given by

rL ≔ p
a
apyqBy ´

a
apxqBxq2 ` pa1pxq{2 ´ bpxqqBx ` pa1pyq{2 ´ bpyqqBy (13)

(on E̊˚ and its natural extensions on R ˆ t`8u and t´8u ˆ R). The diagonal is not an entrance
boundary for this generator and to associate a (minimal) Markov process rZ ≔ p rXt, rYtqtě0, we can
impose Neumann boundary condition on D˚. It amounts to see rL as a generator on R

2 and for any
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point px, yq of the plane, to identify px, yq with py, xq. The segment valued process pr rXt, rYtsqtě0 is
then a continuous evolving set in R. Next consider the mapping h defined on E˚ by

@ z “ px, yq P E˚, hpzq ≔ µprx, ysq (14)

It will be checked in Lemma 8 of next section that rLrhs “ 0 on E̊˚. Then L˚ is the Doob transform
of rL through h:

L˚r¨s “ 1

h
rLrh ¨ s

“ rLr¨s ` rΓrlnphq, ¨s

where rΓ is the carré du champ associated to rL: for any smooth functions f, g defined on E̊˚,

rΓrf, gs ≔ rLrfgs ´ f rLrgs ´ grLrf s

Let us now come back to a diffusion process X as in Theorem 1 and denote by m0 its initial
distribution. Consider the probability m˚

0 defined on E˚ by m˚
0 ≔

ş
δpx,xqm0pdxq, so that m˚

0Λ “
m0. In general it is not the only probability on E˚ satisfying this relation, for instance if m0 “
Λpz, ¨q, with z P E̊˚, it seems more appropriate to choose m˚

0 ≔ δz . The strong stationary time
constructed in Proposition 5 below does depend on the choice of m˚

0 , but in this paper we will not
consider the important question of finding the best possible choice for m˚

0 (next section will show
how to construct a process Z˚ starting from any initial distribution on E˚, indeed Proposition
4 presented the most difficult cases). As it is explained by Diaconis and Fill [10] in the finite
setting, the relations m˚

0Λ “ m0 and (6) should enable to couple X with the process Z˚, defined
similarly as in Proposition 4 but with m˚

0 as initial distribution, in such a way that for any t ě 0,
the conditional law of Xt knowing the trajectory Z˚

r0,ts is given by ΛpZ˚
t , ¨q. The extension to

the positive recurrent one-dimensional diffusion case turned out to be quite tricky and will be
developed in Section 4 (unfortunately the results of Pal and Shkolnikov [18] cannot be applied
straightforwardly). Let us admit this technical point for the time being. A convenient feature of
this coupling is that it can be obtained by starting with a trajectory X and by constructing Z˚

from X and independent randomness. More precisely, for any t ě 0, the piece of trajectory Z˚
r0,ts

is constructed from Xr0,ts and independent randomness. Thus any stopping time τ with respect
to the filtration generated by the process Z˚ is also a stopping time for X. This is important,
because the previous conditional property extends to any finite stopping time τ with respect to
the filtration generated by the process Z˚:

LpXτ |Z˚
r0,τ sq “ ΛpZ˚

τ , ¨q (15)

where the l.h.s. is the conditional law of Xτ knowing the trajectory Z˚
r0,τ s.

In particular if we consider the stopping time τ˚ defined in (10) and if we impose conditions such
that this Z˚-stopping time is a.s. finite, then it is a strong stationary time for X. Indeed, the
above considerations show that τ˚ is a stopping time for X. Next note that Xτ˚ is independent
from Z˚

r0,τ˚s, because according to (15), LpXτ˚ |Z˚
r0,τ˚sq “ Λpp´8,`8q, ¨q “ µ does not depend on

Z˚
r0,τ˚s. It follows that τ

˚ is strong because it is measurable with respect to Z˚
r0,τ˚s. Finally it is a

strong stationary time for X, since from the above identity, LpXτ˚ q “ µ.

Up to the construction of the intertwining, these few standard arguments provide the direct
implication in Theorem 1:

Proposition 5 If I ă `8, then the random time τ˚ defined in (10) is a.s. finite and by conse-
quence it is a strong stationary time for the positive recurrent diffusion X.
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Remark 6 In Cheng and Mao [8], a strong stationary time is also obtained duality, up to the
construction of the intertwining coupling. In the situation where the process starts from one of the
reflecting boundaries, the dual process is easier to deduce, because it is itself a one-dimensional
diffusion (see also [11], which deals with strong quasi-stationary times for finite birth and death
process, but whose formalism is adapted to treat diffusion processes starting from the boundary).

˝

It opens the way to a quantitative study of the convergence to equilibrium for X in the separation
sense. Let us recall that the separation discrepancy spν, µq between two probability measures ν
and µ defined on the same state space E is given by

spν, µq ≔ sup
xPE

1 ´ dν

dµ
pxq

where dν
dµ

is the Radon-Nikodym derivative of the absolutely continuous part of ν with respect to
µ. Strictly speaking, the separation discrepancy is not a distance because it is not symmetric in
its arguments. The computations of Aldous and Diaconis [1] show that for any strong stationary
time τ for X, we have

@ t ě 0, spLpXtq, µq ď Prτ ą ts (16)

Thus Proposition 5 enables to get upper bounds on the speed of convergence of X toward its
equilibrium µ in the separation sense, by studying the speed of absorption at p´8,`8q of Z˚.
The inequalities (16) may be equalities for all times t ě 0 and such times τ are then stochastically
minimal among all strong stationary times. They are called sharp stationary times in Diaconis
and Fill [10] (in the finite setting). The proof of the converse implication in Theorem 1 will rely on
the fact that for initial distributions of X of the form Λpp´8, xq, ¨q and Λppx,`8q, ¨q, with x P R,
the random time τ˚ defined in (10) is indeed a sharp stationary time.

When is this technique working? It is convenient to consider the case of Langevin diffusions,
where a ” 1 and b “ ´U 1, where U : R Ñ R is a smooth potential. In dimension 1 and up
to shrinking the state space R to an open interval (through a smooth transformation), it is not
really a restriction. The invariant measure µ admits then a density proportional to expp´Uq. An
application of Fubini’s formula shows that the condition I ă `8 writes down

max

ˆż 0

´8
µpp´8, xqq 1

µpxq dx,
ż `8

0

µppx,`8qq 1

µpxq dx
˙

ă `8 (17)

Remark 7 The l.h.s. of (17) is bounded below by

max

ˆ
sup
yď0

ż 0

y

1

µpxq dxµpp´8, yqq, sup
yě0

ż y

0

1

µpxq dxµppy,`8qq
˙

and if 0 was chosen to be the median of µ (up to a translation there is not lack of generality in
this choice), the previous quantity is the inverse of the spectral gap of L in L

2pµq up to a factor
4 (see e.g. Bobkov and Götze [5]). So at least for Langevin diffusions, the existence of a strong
stationary time, whatever the initial distribution, implies a positive spectral gap. As it will appear
below and as it can be expected from Remark 3, this is far from being a sufficient condition.

˝

For instance, if for |x| large enough we have Upxq “ |x|α, with α ą 0, then Condition (17) is
satisfied if and only if α ą 2 (whereas the existence of a spectral gap is equivalent to α ě 1). In
particular, the important case of the Ornstein-Uhlenbeck process is not covered. Does it mean that
the previous approach is useless in this situation? Indeed, it is possible to get around this difficulty
by considering strong times τ where the distribution of Xτ is close to the invariant probability µ.

7



Put in practice in Section 5, this technique will enable us to recover good quantitative bounds on
the convergence of the Ornstein-Uhlenbeck process toward the Gaussian distribution in the total
variation sense.

Let us just give a glimpse of why it could interesting to investigate the multidimensional sit-
uation. Let X be a hypoelliptic diffusion taking values in a smooth manifold M of dimension
(strictly) larger than 1. Assume that it is possible to construct a process Z˚ taking values in the
set E˚ of singletons and non-empty open subsets of M and which is intertwined with X through
the Markov kernel Λ from E˚ to M given by

@ z P E˚, Λpz, ¨ q ≔

$
&
%

δxp ¨ q , if z “ txu
λp ¨ Xzq
λpzq , if z is a non-empty subset of M

where λ is a nice σ-finite measure on M giving positive weights to all non-empty open subsets
(for instance the invariant measure for X, but it could also be a more tractable measure). Then
we would have at our disposal the following representation of the time marginal laws of X for all
t ě 0,

@ x P M, LpXtqpdxq “
ż
Λpz, dxqLpZ˚

t qpdzq

from which absolute continuity and regularity properties can be deduced.
It would be instructive to begin with a simple instance of X satisfying Hörmander’s conditions and
to see which features could be deduced for corresponding processes Z˚, especially in small times.
Entrance boundary properties of singletons analogous to that presented in Proposition 4 would be
particularly desirable.

The paper is constructed on the following plan. In the next section we investigate the dual
process Z˚, making a link with the square Bessel process of dimension 3 and we prove Proposition 4.
Explosion times and Proposition 5 are the subject of Section 3. Section 4 ends the proof of
Theorem 1, providing the missing details about the coupling of X with Z˚ and showing the
converse implication. The last section and an appendix are devoted to the counter-example of the
benchmark Ornstein-Uhlenbeck process, giving us the opportunity to see why it is interesting to
consider more general strong times than strong stationary times.

2 Description of the dual process

We study here the solutions of the stochastic differential equations associated with the generator
L˚ given by (7), (8) and (9).

We begin by verifying the assertion made in the introduction about the relation between L˚

and rL defined in (13).

Lemma 8 Let h be the function introduced in (14). On E̊˚ we have rLrhs “ 0 and for any
F P C8pE̊˚q,

@ z P E̊˚, L˚rF spzq “ 1

h
rLrhF spzq

These properties extend to R ˆ t`8u and t´8u ˆ R, up to the natural modifications.

Proof

For px, yq P E̊˚, we have

Bxhpx, yq “ ´µpxq and Byhpx, yq “ µpyq

8



so that

p
a
apyqBy ´

a
apxqBxq2hpx, yq “ p

a
apyqBy ´

a
apxqBxqp

a
apyqµpyq `

a
apxqµpxqq

“
a
apyqByp

a
apyqµpyqq ´

a
apxqBxp

a
apxqµpxqq

Taking into account that

µ1 “
ˆ
c1 ´ a1

a

˙
µ “ b´ a1

a
µ

we get that

p
a
apyqBy ´

a
apxqBxq2hpx, yq “

ˆ
bpyq ´ a1pyq

2

˙
µpyq ´

ˆ
bpxq ´ a1pxq

2

˙
µpxq

“ ´pa1pxq{2 ´ bpxqqBxhpx, yq ´ pa1pyq{2 ´ bpyqqByhpx, yq

namely rLrhs “ 0.
In the same way one shows that rLrhs “ 0 on pR ˆ t`8uq \ pt´8u ˆ Rq.

By definition of rΓ, we observe that for any F P C8pE̊˚q and any z P E̊˚,

1

h
rLrhF spzq “ 1

h
phrLrF s ` F rLrhs ` rΓrh, F sq

“ rLrF s ` 1

h
rΓrh, F s

A direct computation shows that for any F,G P C8pE̊˚q and any z “ px, yq P E̊˚,

rΓrG,F s “ 2p
a
apyqBy ´

a
apxqBxqGpx, yqp

a
apyqBy ´

a
apxqBxqF px, yq

Applying this formula with G “ h, we obtain that L˚rF s “ 1
h
LrhF s, as announced.

Again these considerations extend without difficulty to pR ˆ t`8uq \ pt´8u ˆ Rq.
�

Remark 9 Similar computations are valid for the generators given by (11) and (12). Indeed, they
are respectively the Doob transforms through h of the generators defined by

Ľ ≔ p
a
apyqBy `

a
apxqBxq2 ` pa1pxq{2 ´ bpxqqBx ` pa1pyq{2 ´ bpyqqBy (18)

and

L̆ ≔ apyqB2y ` apxqB2y ` pa1pxq{2 ´ bpxqqBx ` pa1pyq{2 ´ bpyqqBy (19)

(on E̊˚ and their natural extensions on R ˆ t`8u and t´8u ˆ R).
Essentially relying on the fact that BxByh “ 0, one deduces Ľrhs “ 0 from rLrhs “ 0 and L̆rhs “ 0

from L̆ “ prL` Ľq{2.
˝

Note that the generator L˚ described in (7) expands into

L˚ “ apxqB2x ` apyqB2y ´
a
apxq

a
apyqBxBy ` pa1pxq ´ bpxqqBx ` pa1pyq ´ bpyqqBy

`2

a
apxqµpxq `

a
apyqµpyq

µprx, ysq p
a
apyqBy ´

a
apxqBxq

9



It follows that on E̊˚, the stochastic differential equation for Z˚ “ pX˚, Y ˚q associated to (7)
writes down

dX˚
t “

˜
a1pX˚

t q ´ bpX˚
t q ´ 2

a
apX˚

t qµpX˚
t q `

a
apY ˚

t qµpY ˚
t q

µprX˚
t , Y

˚
t sq

b
apX˚

t q
¸
dt´

b
2apX˚

t q dBt

dY ˚
t “

˜
a1pY ˚

t q ´ bpY ˚
t q ` 2

a
apX˚

t qµpX˚
t q `

a
apY ˚

t qµpY ˚
t q

µprX˚
t , Y

˚
t sq

b
apY ˚

t q
¸
dt `

b
2apY ˚

t q dBt

where B “ pBtqtě0 is a standard (one dimensional) Brownian motion. Starting from an initial
condition in E̊˚, the regularity of the coefficients and standard results (see for instance the book
of Ikeda and Watanabe [13]) show that there are existence and uniqueness of the solution Z˚ up
to the explosion time τ : (a.s. with respect to B). This stopping time for Z˚ is defined by

τ :
≔ minpτ1, τ2, τ3q (20)

where

τ1 ≔ lim
rÑ`8

inftt ě 0 : X˚
t ă ´ru

τ2 ≔ lim
rÑ`8

inftt ě 0 : Y ˚
t ą ru

τ3 ≔ lim
rÑ`8

inftt ą 0 : Y ˚
t ´X˚

t ă 1{ru

Of course, we have τ : ď τ˚, where τ˚ is defined in (10). The next result shows that τ3 plays no
role.

Lemma 10 Let Z˚ start from an initial condition in E̊˚. Then a.s. hpZ˚
t q converges as t goes

to τ : toward a positive quantity. In particular τ : “ minpτ1, τ2q and Z˚ can exit E̊˚ only through
pR ˆ t`8uq \ pt´8u ˆ Rq.

Proof

According to Lemma 8, we have on E̊˚, L˚r1{hs “ rLp1q{h “ 0, where 1 is the function always
taking the value 1 on E̊˚. It follows that the process M “ pMtqtě0 defined by

@ t ě 0, Mt ≔
1

hpZ˚
τ:^t

q

is a local martingale. Since it is furthermore positive, it must converge as t goes to infinity. The
announced results follow.

�

We can now obtain the equivalent of Proposition 4 but for initial conditions in E̊˚.

Proposition 11 For any z0 P E̊˚, there is a continuous Markov process Z˚
≔ pZ˚

t qtě0 starting
from z0 and whose generator is L˚. The law of this process is unique if we impose that after the
possibly finite time τ˚, defined as in (10), Z˚ stays at position p´8,`8q . Furthermore for all
t ě 0, Zt P E˚zD˚.

Proof

According to the previous arguments, we already have the existence and uniqueness of Z˚ up to the
time τ :. If τ : “ `8, the construction is over. If τ : ă `8, we deduce from Lemma 10 that either
τ1 “ τ : ă `8, or τ2 “ τ : ă `8. We only consider the first case, the second can be treated in the
same way. By the required continuity of the trajectories, we must have Z˚

τ: “ pX˚
τ1
,`8q, where

X˚
τ1

P r´8,`8q. We first consider the case where X˚
τ1

�“ ´8. By the assumption on the form of

10



L˚ on Rˆ t`8u, Z˚ must stay there after time τ :. Let us denote for any t ě 0, X:
t ≔ X˚

τ1`t. The
process X: must be (and is constructed as) a solution of the one-dimensional stochastic differential
equation

dX
:
t “

˜
a1pX:

t q ´ bpX:
t q ´ 2

apX:
t qµpX:

t q
µprX:

t ,`8qq

¸
dt´

b
2apX:

t q dBt

(where B “ pBtqtě0 is a standard Brownian motion), starting from X˚
τ1
. Due to the regularity of

the coefficients, there is no difficulty to get existence and uniqueness of the solution up to the time

τ̄ ≔ lim
rÑ`8

inftt ě 0 :
ˇ̌
ˇX:

t

ˇ̌
ˇ ą ru

As in the proof of Lemma 10, the process M : “ pM :
t qtě0 defined by

@ t ě 0, M
:
t ≔

1

hppX:
τ̄^t,`8qq

is a positive local martingale. From its convergence we deduce that

lim
tÑτ̄´

X
:
t “ ´8

and it follows that τ : ` τ̄ “ τ˚. Note that this identity is trivial if X˚
τ1

“ ´8. The analogue result
is satisfied in the situation τ2 “ τ :. Thus the law of Z˚

r0,τ˚q is uniquely determined and since we

impose that Z˚
t “ p´8,`8q for t ě τ˚ (by continuity for t “ τ˚), the same is true for Z˚. The

fact that Zt P E˚zD˚ for all t ě 0 is obvious from the previous martingale arguments.
�

For z0 P E̊˚, designate by Pz0 the law on the set of trajectories CpR`, E
˚q of Z˚ starting from

z0 and constructed as above. One way to construct Pz0 for z0 “ px0, x0q P D
˚, is to consider for

ǫ, ǫ1 ą 0, Px0´ǫ,x0`ǫ1 and to let ǫ, ǫ1 go to zero. To make clearer the convergence, we will consider
a transformation of CpR`, E

˚q so that all the difficulties are encapsulated into a square Bessel
process of dimension 3.

Here is how it appears: under Pz0 for some z0 P E̊˚, consider

ς ≔ 2

ż τ˚

0

p
a
apX˚

s qµpX˚
s q `

a
apY ˚

s qµpY ˚
s qq2 ds P p0,`8s (21)

(with the convention
a
ap˘8qµp˘8q “ 0), and the time change pθtqtPr0,ςs defined by

@ t P r0, ςs, 2

ż θt

0

p
a
apX˚

s qµpX˚
s q `

a
apY ˚

s qµpY ˚
s qq2 ds “ t (22)

We are interested in the process R ≔ pRtqtě0 given by

@ t ě 0, Rt ≔ hpZ˚
θt^ς

q (23)

Proposition 12 Under Pz0 with z0 P E̊˚, R has the law of a square Bessel process of dimension
3 starting from hpz0q P p0, 1q and stopped at 1. In particular ς is distributed as the first reaching
time of 1 for this process.

Proof

11



We begin by computing L˚rhs: in view of Lemma 8 we have on E̊˚,

L˚rhs “ 1

h
rLrh2s

“ 1

h
p2hrLrhs ` rΓrh, hsq

“ 1

h
rΓrh, hs

Taking into account the stochastic differential equations satisfied by the coordinates X˚ and Y ˚

of Z˚, Itô’s formula give us

dhpZ˚
t q “ 1

hpZ˚
t q

rΓrh, hspZ˚
t q dt ` p

b
2apX˚

t qµpX˚
t q `

b
2apY ˚

t qµpY ˚
t qq dBt

In Lemma 8 we have already seen that

@ z “ px, yq P E̊˚, rΓrh, hspzq “ 2p
a
apxqµpxq `

a
apyqµpyqq2

Classical stochastic time change calculus (cf. for instance Chapter 5 of the book [19] of Revuz and
Yor) then shows that the process R satisfies for t ă ς:

dRt “ dθt

dt

1

hpZ˚
θt

q
rΓrh, hspZ˚

θt
q dt `

c
dθt

dt

b
rΓrh, hspZ˚

θt
q dWt

where W “ pWtqtě0 is a standard Brownian motion. From the definition of the time change
pθtqtPr0,ςq, we have

@ t P r0, ςq, dθt

dt
“ 1

rΓrh, hspZ˚
θt

q

so we end up with

dRt “ 1

Rt
dt` dWt

One recognizes the stochastic differential equation characterizing the square Bessel process of di-
mension 3 (see e.g. Chapter 11 of the book [19] of Revuz and Yor). Since Z˚ is stopped when it
reaches p´8,`8q, namely when hpZ˚q hits 1, R is stopped when it reaches 1, which ends to show
the assertions of the proposition.

�

Here is a first consequence of the previous result:

Corollary 13 We have almost surely,

lim
tÑτ˚´

X˚
t “ ´8

lim
tÑτ˚´

Y ˚
t “ `8

Proof

From (21) and (22), we get that as t converges to ς´, θt converges to τ
˚´. It follows that

lim
tÑτ˚´

hpZ˚
t q “ lim

tÑς´
Rt “ 1

Recalling the definition of h given in (14), this is possible if and only if the limits described in the
above corollary take place.

12



�

The idea behind the proof of Proposition 4 is that there is no difficulty to let a square Bessel
process of dimension 3 start from 0. But to proceed rigorously, we need to consider some transfor-
mations of the martingale problem associated to L˚. First we remark that it is sufficient to show
that for any x0 P R, there is a continuous Markov process pZ˚

t qtPr0,τ:q, where τ
: is defined as in

(20), starting from px0, x0q, living in E˚zD˚ for t P p0, τ :q, and whose generator is L˚. Further-
more, we will check that the law of this process is unique. Indeed, the proof of Proposition 11
could next be used again to uniquely extend pZ˚

t qtPr0,τ:q into pZ˚
t qtě0. This observation brings us

back to the martingale problem associated to the initial condition px0, x0q and to the restriction
of the generator L˚ to E̊˚. But we begin by replacing px0, x0q by px0 ´ ǫ, x0 ` ǫ1q, with ǫ, ǫ1 ą 0,
and we consider the time change described in (22). This amounts to replace the generator L˚ by
pL ≔ p1{rΓph, hqqL˚. Or equivalently to apply the following transformation to the trajectories

pZ˚
t qtPr0,τ:q ÞÑ p pZtqtPr0,ςq ≔ pZ˚

θt
qtPr0,ςq

where

ς ≔ 2

ż τ:

0

p
a
apX˚

s qµpX˚
s q `

a
apY ˚

s qµpY ˚
s qq2 ds P p0,`8s

and pθtqtPr0,ςq is defined as in (22). The reverse mapping is given by

p pZtqtPr0,ςq ÞÑ pZ˚
t qtPr0,τ:q ≔ p pZϑt

qtPr0,τ:q

where

τ :
≔

1

2

ż ς

0

p
b
ap pXsqµp pXsq `

b
appYsqµppYsqq´2 ds P p0,`8s

and

@ t P r0, τ :q, 1

2

ż ϑt

0

p
b
ap pXsqµp pXsq `

b
appYsqµppYsqq´2 ds “ t

The stochastic differential equation for p pZtqtPr0,ςq “ p pXt, pYtqtPr0,ςq associated to pL on E̊˚ is given by

@ t P r0, ςq,
#
d pXt “ b1p pXt, pYtq dt ` σ1p pXt, pYtq dBt

dpYt “ b2p pXt, pYtq dt ` σ2p pXt, pYtq dBt

where for any px, yq P E̊˚,

b1px, yq ≔ a1pxq ´ 2bpxq
4p

a
apyqµpyq `

a
apxqµpxqq2q

´
a
apxq

p
a
apyqµpyq `

a
apxqµpxqqµprx, ysq

b2px, yq ≔ a1pyq ´ 2bpyq
4p

a
apyqµpyq `

a
apxqµpxqq2q

`
a
apyq

p
a
apyqµpyq `

a
apxqµpxqqµprx, ysq

σ1px, yq ≔ ´
a
apxqa

apyqµpyq `
a
apxqµpxq

σ2px, yq ≔
a
apyqa

apyqµpyq `
a
apxqµpxq

Finally we consider the transformation Ψ of the state space E̊˚ \D˚ given by

E̊˚ \D˚ Q px, yq ÞÑ phpx, yq, spx, yqq

13



where spx, yq is the middle point of rx, ys when R is endowed with the Riemannian structure for
which aB2 is the Laplace-Beltrami operator. More prosaically, spx, yq is defined as the unique point
in rx, ys such that

ż spx,yq

x

1a
apuq

du “
ż y

spx,yq

1a
apuq

du

Its main interest is that

@ px, yq P E̊˚,
a
apyqByspx, yq ´

a
apxqBxspx, yq “ 0

because

Bxspx, yq “ 1

2

d
apspx, yqq
apxq and Byspx, yq “ 1

2

d
apspx, yqq
apyq (24)

It is not difficult to see that Ψ is a smooth diffeomorphism from E̊˚ \ D˚ to its image. De-
note pRt, StqtPr0,ςq ≔ pΨp pZtqqtPr0,ςq. From Proposition 12 and (24) we deduce that the stochastic

differential equation satisfied by pZtPr0,ςq is transformed into

@ t P r0, ςq,
"
dRt “ 1

Rt
dt` dWt

dSt “ βpRt, Stq dt
(25)

where W “ pWtqtě0 is a standard Brownian motion and where the mapping β is defined on
ΨpE̊˚ \D˚q by

@ px, yq P E̊˚ \D˚, βpΨpx, yqq ≔ a1pxq ´ 2bpxq
8p

a
apyqµpyq `

a
apxqµpxqq2

d
apspx, yqq
apxq

` a1pyq ´ 2bpyq
8p

a
apyqµpyq `

a
apxqµpxqq2

d
apspx, yqq
apyq

It is clear that this function is smooth on its domain. So the resolution of (25) is quite obvious.
The initial condition is pR0, S0q “ Ψppx0 ´ ǫ, x0 ` ǫ1qq. Then one solves the autonomous stochastic
differential equation satisfied by R ≔ pRtqtě0. The solution R is defined for all t ě 0, and as it was
more precisely seen in Proposition 12, it is a square Bessel process of dimension 3 starting from
hpx0 ´ ǫ, x0 ` ǫ1q ą 0. The trajectory R being constructed, it remains to investigate the ordinary
differential equation dSt

dt
“ βpRt, Stq, starting from S0. Since β is smooth, it gives us a solution, up

to the possible explosion time ς when pRς´, Sς´q reaches the boundary of ΨpE̊˚ \D˚q. From the
form of Ψ, the time ς is necessarily the first time when either pX explodes to ´8 or pY explodes to
`8, where p pXt, pYtq ≔ Ψ´1pRt, Stq for t P r0, ςq, as wanted.

These observations are also valid if R0 “ 0 and enable to construct Ppx0,x0q by reversing the
previous transformations, starting from the initial condition pR0, S0q “ p0, x0q. It is also seen to
be the limit of Ppx0´ǫ,x0`ǫq as ǫ, ǫ

1 ą 0 converge to zero. In the last sentence, the weak convergence
of the probability measures is with respect to the uniform convergence of the trajectories over
compact time intervals, when the state space E˚ is endowed with a bounded distance compatible
with its natural topology (inherited from that of the compact set r´8,`8s2). This continuity
property and the requirements made on Ppx0,x0q in Proposition 4 enable us to be convinced of its
uniqueness. Indeed, consider P another probability on the trajectories CpR`, E

˚q satisfying the
same properties. On CpR`, E

˚q consider the natural time-shift maps Θt, for t ě 0: if pZ˚
s qsě0

stands for the canonical coordinate process, we have Z˚
s pΘtq “ Z˚

t`s for all t, s ě 0. Let F be a

14



bounded and continuous functional on CpR`, E
˚q. By the Markov property we must have that for

any t ą 0,

ErF pΘtqs “
ż
EzrF smtpdzq

where mt is the law of Z˚
t under P. By the requirements that Z˚

t belongs to E
˚zD˚ a.s. under P

and that P is a solution to the martingale problem associated to L˚, the expectations Ez in the
r.h.s. are relatively to the laws constructed in Proposition 11. By the continuity of the trajectories
and the assumption that Z˚

0 “ px0, x0q under P, mt converges weakly to the Dirac mass at px0, x0q
as t goes to 0`. Thus limtÑ0`

ş
EzrF smtpdzq “ Epx0,x0qrF s by the continuity of z ÞÑ Pz at px0, x0q.

On the other hand, by the dominated convergence theorem, limtÑ0` ErF pΘtqs “ ErF s. Thus
ErF s “ Epx0,x0qrF s for all bounded and continuous functional F on CpR`, E

˚q. This is sufficient
to insure that P “ Ppx0,x0q and ends the proof of Proposition 4.

Remark 14 Proposition 11 and its proof are also valid for the generators defined in (11) and (12)
and more generally for the generators L˚

α ≔ p1´αqL˚ `αĽ˚, where α P r0, 1s. But Proposition 4 is
not true for Ľ˚: as it was mentioned in the introduction, due to the regularity of the coefficients of
Ľ˚, the unique solutions P̌z for the corresponding martingale problem can be directly constructed
for all the initial conditions z P E˚ and the mapping z ÞÑ Pz is continuous. Unfortunately, starting
from z P D˚, the process cannot escape fromD˚, except by possibly exploding at one of its two ends
(Lemma 10 is not helping to prevent this event: hpZ˚

t q remains null). Indeed in this degenerate
situation one may have to add the two absorbing points p´8,´8q and p`8,`8q to the state
space E˚.

This problem is not encountered by the generators L˚
α, for α P r0, 1q, to which the above

considerations (corresponding to the case α “ 0) can be extended. Let us put a corresponding
index α to all the objects we have considered so far when L˚ is replaced by L˚

α. For instance we
introduce the generator rLα ≔ p1 ´αqrL` αĽ and we compute that its carré du champ rΓα satisfies

@ z “ px, yq P E̊˚, rΓαrh, hspzq “ 2p
a
apyqµpyq `

a
apxqµpxqq2 ´ 8α

a
apxqapyqµpxqµpyq

“ rΓrh, hspzq ´ 8α
a
apxqapyqµpxqµpyq (26)

It leads us to replace (21), (22) and (23) respectively by

ςα ≔

ż τ˚

0

rΓαrh, hspZ˚
s q ds P p0,`8s (27)

@ t P r0, ςαs,
ż θα,t

0

rΓαrh, hspZ˚
s q ds “ t

and

@ t ě 0, Rα,t ≔ hpZ˚
θα,t^ςα

q
The interest of the latter process is that under Pα,z0 , it is again a square process of dimension 3
starting from hpz0q and stopped at 1. The proof is identical to that of Proposition 12.

But from (26), we get that for any z P E˚zD˚, the quantity rΓαrh, hspzq is non-increasing in
α P r0, 1q (it is decreasing when z P E̊˚). It follows from (27), that for any fixed z0 P E̊˚ \ D˚,
if α1 ă α2 P r0, 1q, then the law of τ˚ under Pα1,z0 is strictly larger than the law of τ˚ under
Pα2,z0 , with respect to the usual stochastic ordering of laws on R` \ t`8u. Hence among all the
generators L˚

α for α P r0, 1q, L˚ “ L˚
0 leads to the dual process Z˚ to be the fastestly absorbed at

p´8,`8q and thus is the most adequate for our purpose of constructing relatively small stationary
times for L. In words, the mirror-symmetry coupling of the Brownian motions at the boundary of
the evolving segment is optimal and the identical coupling is the worst (being utterly useless for
the evolving segments starting from a singleton).

˝
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3 Explosion times

Our main objective here is to prove the finiteness assertion of Proposition 5. The arguments are
based on comparisons with some appropriate diffusions on half-lines.

Consider Z˚ “ pX˚, Y ˚q the process described in Proposition 4 (for some fixed x0 P R) and
constructed in the previous section. We are interested in the (total) explosion time τ˚ defined in
(10) and our main task is to show that it is almost surely finite if I ă `8. So let us consider the
(partial) explosion times

τ´
≔ inftt ě 0 : X˚

t “ ´8u
τ`

≔ inftt ě 0 : Y ˚
t “ `8u

For our purpose it is sufficient to show the following result (recall that I´ and I` were defined just
above the statement of Theorem 1).

Proposition 15 If I` ă `8, then τ` is a.s. finite.

Indeed, by symmetry it will follow that if I´ ă `8, then τ´ is a.s. finite, so that τ˚ “ τ´ _ τ` ă
`8 a.s. if I ă `8.

The proof of Proposition 15 relies on the comparison of Y ˚ with a diffusion U ≔ pUtqtě0

taking values in R` \ t`8u, reflected at 0, absorbed at `8 and whose generator on p0,`8q is
aB2 ´ pb ´ a1 ` 2ak1qB, where k is the mapping R Q x ÞÑ lnpµpp´8, xsqq. More precisely, we take
for U the solution of the stochastic differential equation

dUt “
`
a1pUtq ´ bpUtq ` 2apUtqk1pUtq

˘
dt `

b
2apY ˚

t q dBt ` dltpUq

up to the explosion time τpUq “ inftt ě 0 : Ut “ `8u, where pltpUqqtě0 is the local time of U
at 0 and where B “ pBtqtě0 is the same standard Brownian motion as the one driving the s.d.e.
satisfied by Y ˚

dY ˚
t “

˜
a1pY ˚

t q ´ bpY ˚
t q ` 2

a
apX˚

t qµpX˚
t q `

a
apY ˚

t qµpY ˚
t q

µprX˚
t , Y

˚
t sq

b
apY ˚

t q
¸
dt `

b
2apY ˚

t q dBt

for t ď τ` (with the natural modification of the drift term if X˚
t “ ´8). The interest is that the

quantity r
a
apX˚

t qµpX˚
t q`

a
apY ˚

t qsµpY ˚
t q

a
apY ˚

t q{µprX˚
t , Y

˚
t sq´2apY ˚

t qk1pY ˚
t q is non-negative and

even positive for 0 ă t ă τ´. So if U and Y ˚ started from the same initial condition u0 P p0,`8q,
then U stays below Y ˚ up to the time

T ≔ inftt ě 0 : Ut “ 0u

and this is true whatever the behavior of X˚:

Lemma 16 For all t P r0, T s, we have Ut ď Y ˚
t .

As usual, this assertion has to be understood a.s., but not to burden the presentation, this is
assumed to be implicit from now on. Note also that after the time T , the local time pltpUqqtě0

starts to play a role and U can end being above Y ˚.

Proof

This kind of comparison result is standard, see for instance Section 1 of Chapter 6 of the book of
Ikeda and Watanabe [13]. Nevertheless, we find more illuminating to present a simple and direct
proof than to check their assumptions via localizing arguments.

It is convenient to first transform R \ t´8,`8u via the mapping A given by

@ u P R` \ t`8u, Apuq ≔
ż u

0

1a
2apvq

dv
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Next we consider the processes rU ≔ p rUtqtě0 ≔ pApUtqqtě0 and rY ≔ prYtqtě0 ≔ pApY ˚
t qqtě0. Owing

to Itô’s formula, for t P r0, T ^ τ`q, they satisfies respectively the s.d.e.

drUt “ fp rUtq dt` dBt

drYt “ pfprYtq ` Stq dt ` dBt

where

@ u P R, fpuq ≔
`
a1puq ´ bpuq ´ 2apuqk1puq

˘
A1puq ` 1

2
A2puq

and S ≔ pStqtě0 is the previsible process given by

@ t ě 0, St ≔
?
2

a
apX˚

t qµpX˚
t q `

a
apY ˚

t qµpY ˚
t q

µprX˚
t , Y

˚
t sq ´

b
2apY ˚

t qk1pY ˚
t q

ě
?
2

a
apY ˚

t qµpY ˚
t q

µprX˚
t , Y

˚
t sq ´

b
2apY ˚

t q µpY ˚
t q

µpp´8, Y ˚
t sq

“
b

2apY ˚
t q µpY ˚

t qµpp´8,X˚
t qq

µprX˚
t , Y

˚
t sqµpp´8, Y ˚

t sq
ě 0

As already mentioned, what is important is this non-negativity of S. Consider

σ ≔ inftt P r0, T q : rUt ą rYtu

with the usual convention that σ ≔ `8 if the set in the r.h.s. is empty. We proceed by contradic-
tion: assume that σ ă T (and in particular σ is finite). Necessarily we also have σ ă τ`, because
rYt “ Ap`8q ě ApUtq “ rUt for all t ě τ`. By continuity rUσ “ rYσ and we consider two cases:

‚ If σ ă τ´, then Sσ ą 0, thus there exists ǫ ą 0 such that for s P rσ, σ`ǫs, fprYsq`Ss´fp rUsq ą
0. From the above s.d.e. we deduce that for all ǫ1 P p0, ǫs,

rYσ`ǫ1 ´ rUσ`ǫ1 “
ż σ`ǫ1

σ

fprYsq ` Ss ´ fp rUsq ds ą 0

and this contradicts the definition of σ. It follows that rUt ď rYt for all t P r0, T q and by continuity
this is also true for t “ T .

‚ If σ ě τ´: for t ě τ´, St “ 0, so p rUtqτ´ďtďT^τ` and prYtqτ´ďtďT^τ` follow the same s.d.e.

whose coefficients are regular. Since rUσ “ rYσ, the local uniqueness of the solution of their s.d.e.
implies that rU and rY keep on being equal for some time after σ and this is again contradictory
with the definition of σ.

�

The advantage of the process U is that its explosion time τpUq is well-understood, as we deduce
from Theorem 3.2 of Chapter 6 of the book of Ikeda and Watanabe [13] the following criterion:

Proposition 17 The explosion time τpUq is finite almost surely if and only if I` ă `8.

Proof

The most convenient way to exploit Section 3 of Chapter 6 of the book of Ikeda and Watanabe
[13] seems to symmetrize U : consider the functions pa and pb defined by

@ x P R,

$
’’&
’’%

papxq ≔
"
apxq , if x ě 0
ap´xq , if x ă 0

pbpxq ≔
"
a1pxq ´ bpxq ` 2apxqk1pxq , if x ě 0

´pbp´xq , if x ă 0
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to which we associate the operator

pL ≔ paB2 ` pbB

Since pa is continuous and positive and pb is measurable and locally bounded, we can use Theorem 3.3
of Chapter 4 of the book of Ikeda and Watanabe [13] and usual localization procedures to obtain,
for any given starting point v P R, the existence and uniqueness of the solution V ≔ pVtq0ďtďτpV q

of the s.d.e. associated to v and pL:
"

V0 “ v

dVt “ pbpVtqdt `
a

2papV ˚
t q dBt

up to the explosion time τpV q ≔ inftt ě 0 : limsÑt´ |Vs| “ `8u, and where B “ pBtqtě0 is a
standard Brownian motion.
Tanaka’s formula (e.g. Chapter 6 of the book [19] of Revuz and Yor) enables to see that p|Vt|q0ďtăτpV q

coincides in law with the process pUtq0ďtăτpUq starting from |v|. Formally, if Theorem 3.2 (3) of
Chapter 6 of the book of Ikeda and Watanabe [13] is applied (take c “ 0 there), we get that the
a.s. finiteness of τpUq “ τpV q (independently of the initial condition) is equivalent to

ż `8

0

exp

˜
´

ż x

0

pbpyq
papyq dy

¸ ż x

0

exp

˜ż z

0

pbpuq
papuq du

¸
dz

papzq dx ă `8 (28)

Taking into account the expressions for pa and pb, we compute that

@ x P R`,

ż x

0

pbpyq
papyq dy “

ż x

0

a1pyq ´ bpyq ` 2apyqk1pyq
apyq dy

“ ln

ˆ
apx
ap0q

˙
´ cpxq ` 2pkpxq ´ kp0qq

so that the l.h.s. of (28) is proportional to the quantity

ż `8

0

ˆż x

0

pµpp´8, ysqq2 expp´cpyqq dy
˙

1

pµpp´8, xsqq2 µpdxq

Since 0 ă µpp´8, 0sq ď µpp´8, xsq ď 1 for x P R`, the finiteness of the previous expression is
equivalent to that of I`. The only problem is that the coefficients pa and pb were required to be of
class C1 by Ikeda and Watanabe. But one can check directly in Section 3 of Chapter 6 of their
book [13] that the proof extends to the situation where the lack of regularity is restricted to 0,
where pa is assumed to be continuous and positive and pb locally bounded. Alternatively, one can
come back to the smooth situation in the following way. Define

@ x P R \ t´8,`8u, τpV, xq ≔ inftt ě 0 : Vt “ xu

As a consequence of the Markov property and of the symmetry of V , the fact that τpV q is finite
a.s., whatever the initial point, is equivalent to

"
PrτpV,´2q ^ τpV, 2q ă `8|V0 “ 0s “ 1

PrτpV,`8q ă τpV, 1q|V0 “ 2s ą 0
(29)

The Girsanov transformation enables to see that the first of these conditions is true as soon as
pa is continuous and positive on r´2, 2s and pb is bounded on r´2, 2s. The second condition is not
affected by modifications of pa and pb in p´2, 2q. So we can first apply Theorem 3.2 (3) of Chapter 6
of the book of Ikeda and Watanabe [13] to symmetric smoothings of pa and pb in p´2, 2q (this does
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not change the condition I` ă `8 either) and next deduce the same conclusion for the original
process V via (29).

�

Now we have at our disposal all the ingredients necessary to the proof of Proposition 15. So
let us assume that I` ă `8.

We begin by defining the following stopping times.

rσ0 ≔ inftt ě 0 : Y ˚
t ě 1u

By Corollary 13 we already know that limtÑ`8 Y ˚
t “ `8 so that rσ0 is finite a.s. Next consider

pσ0 ≔ inftt ą rσ0 : Y ˚
t “ `8 or Y ˚

t “ 0u

Since I` ă `8, we deduce from Lemma 16 and Proposition 17 that pσ0 is finite a.s. and we have
either Y ˚

pσ0
“ `8 or Y ˚

pσ0
“ 0. Indeed knowing the trajectory Z˚

r0,rσ0s, the conditional probability that

Y ˚
pσ0

“ `8 is bounded below by PrτpUq ă τpU, 0q|U0 “ Y ˚
rσ0

s, where τpU, 0q “ inftt ě 0 : Ut “ 0u.
Since the mapping R` Q x ÞÑ PrτpUq ă τpU, 0q|U0 “ xs is non-decreasing, we get that

PrY ˚
pσ0

“ `8|F˚
rσ0

s ě p˚ ≔ PrτpUq ă τpU, 0q|U0 “ 1s ą 0

where F˚
σ will designate the σ-field associated to the stopping time σ in the filtration generated by

the process Z˚: more explicitly F˚
σ is generated by the piece of trajectory Z˚

r0,σs (see e.g. Chapter

1 of the book [19] of Revuz and Yor). It follows that PrY ˚
pσ0

“ `8s ě p˚. If Y ˚
pσ0

“ `8, we set
N “ 0 and otherwise the value of the random variable N will be defined later on in the procedure.
Indeed, if Y ˚

pσ0
“ 0, we consider

rσ1 ≔ inftt ą pσ0 : Y ˚
t “ 1u

pσ1 ≔ inftt ą rσ1 : Y ˚
t “ `8 or Y ˚

t “ 0u

These stopping times are again a.s. finite (still conditionally on Y ˚
pσ0

“ 0). If Y ˚
pσ1

“ `8, we set
N “ 1. Note that as before,

PrY ˚
pσ1

“ `8|F˚
pσ0
, Y ˚

pσ0
“ 0s ě p˚

The construction goes on similarly: if for some n P N, pσn has been defined, we set N “ n if
Y ˚

pσn
“ `8 and the procedure stops. Otherwise, namely if Y ˚

pσn
“ 0, we consider the a.s. finite

random times

rσn`1 ≔ inftt ą pσn : Y ˚
t “ 1u

pσn`1 ≔ inftt ą rσn`1 : Y ˚
t “ `8 or Y ˚

t “ 0u

and we set N “ n` 1 if Y ˚
pσn`1

“ `8. The previous arguments show that

PrY ˚
pσn`1

“ `8|F˚
pσn
, Y ˚

pσn
“ 0s ě p˚

The validity of this property for all n P Z
`
0 implies that N is stochastically bounded below by a

geometric random variable of parameter 1 ´ p˚ ă 1:

@ n P Z
`
0 , PrN ě ns ď p1 ´ p˚qn

In particular, N is a.s. finite as well as τ` “ pσN . This ends the proof of Proposition 15 and the
finiteness assertion of Proposition 5. As explained in the introduction, this implies that τ is a
strong stationary time for X, once X and Z˚ are intertwined through Λ.
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4 Intertwining

In the two previous sections, the process Z˚ has been studied in some details. It is time now to
check that it can be intertwined with the initial one-dimensional positive recurrent diffusion X.

We begin by verifying that the commutation relation (6) is satisfied with L˚ defined by (7), (8)
and (9).

Lemma 18 For any f P C2pRq such that f and Lrf s belong to L
1pµq, we have

@ z P E˚zpD˚ \ tp´8,`8quq, ΛrLrf sspzq “ L˚rΛrf sspzq

Proof

A priori there are three situations to be considered z P E̊˚, z P t´8uˆR and z P Rˆt`8u. We are
to deal only with the first case, the other ones being similar (and even easier). So let f P C2pRq be
given (the integrability assumptions are needed only for z P t´8u ˆR and z P Rˆ t`8u to insure
the integrability of f and Lrf s with respect to µ on semi-infinite intervals). For z ≔ px, yq P R

2

with x ă y, we have

Λrf spzq “ 1

hpx, yq

ż y

x

fpuqµpduq

where h was defined in (14). Taking into account Lemma 8, we get that

L˚rΛrf sspzq “ 1

hpzq
rLrF spzq

where rL was given in (13) and where F is the function defined on E˚ by

@ px1, y1q P E˚, F px1, y1q ≔
ż y1

x1

fpuqµpduq (30)

For px, yq P E̊˚, BxF px, yq “ ´µpxqfpxq and ByF px, yq “ µpyqfpyq, so that we get that

rLrF spx, yq “ p
a
apyqBy ´

a
apxqBxqp

a
apyqµpyqfpyq `

a
apxqµpxqfpxqq

´pa1pxq{2 ´ bpxqqµpxqfpxq ` pa1pyq{2 ´ bpyqqµpyqfpyq
“

a
apyqByp

a
apyqµpyqfpyqq ´

a
apxqBxp

a
apxqµpxqfpxqq (31)

´pa1pxq{2 ´ bpxqqµpxqfpxq ` pa1pyq{2 ´ bpyqqµpyqfpyq
“ apyqµpyqByfpyq ´ apxqµpxqByfpxq ´ gpxqfpxq ` gpyqfpyq

where g is the function defined by

@ x P R, gpxq ≔
a
apxqBxp

a
apxqµpxqq ` pa1pxq{2 ´ bpxqqµpxq

Recalling the definition of µ given in (4), we compute that g is vanishes identically, so that we
obtain

@ px, yq P E̊˚, L˚rΛrf sspx, yq “ 1

hpx, yq papyqµpyqByfpyq ´ apxqµpxqByfpxqq

We turn now to the computation of ΛrLrf ss on E̊˚. Note that L can be factorized into

L ¨ “ a expp´cqBpexppcqB ¨q “ 1

µ
BpaµB ¨q
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It follows that for all f P C2pRq and px, yq P E̊˚,

ż y

x

Lrf spuqµpduq “
ż y

x

BpaµBfqpuq du

“ apyqµpyqf 1pyq ´ apxqµpxqf 1pxq

The wanted commutation relation follows at once, on E̊˚.
�

Remark 19 If in the above proof rL is replaced by the generators Ľ or L̆ defined respectively
by (18) and (19) (on E̊˚ and their natural extensions on R ˆ t`8u and by t´8u ˆ R), the same
computations are still valid. Indeed, remark that in (31) the cross differentiation BxBy vanishes,
meaning that on E̊˚ and for the function F defined in (30),

rLrF s “ ĽrF s “ L̆rF s

(simpler considerations are also valid on t´8u ˆ R \ R ˆ t`8u).
The commutation relations ΛL “ Ľ˚Λ and ΛL “ L̆˚Λ for the generators Ľ˚ and L̆˚ (defined
respectively in (11) and (12)) are then also true, because these operators are the h-transforms of
Ľ and L̆, as it was mentioned in Remark 9. This justifies the assertions made after Proposition 4
in the introduction.

Even if some of the subsequent developments could be extended to these generators, recall that
their interest is limited, due to the observations made in Remark 14.

˝

We are now going to lift the commutation relation of Lemma 18 to the level of the corresponding
semi-groups. More precisely, let pPtqtě0 be the semi-group associated to L. From a probabilistic
point of view, it is constructed in the following way. For any x P R, consider pXtqtPR the solution
starting from x of the s.d.e.

dXt “ bpXtqdt`
a

2apXtqdBt (32)

where pBtqtě0 is a standard Brownian motion. Then for any t ě 0 and any bounded and continuous
mapping f on R, we have

Ptrf spxq “ ExrfpXtqs

The semi-group pP ˚
t qtě0 can be constructed similarly. For z P E˚ XRˆR, consider the process

Z˚ starting from z defined in Proposition 4 or 11, depending if z P D˚ or not (if z “ p´8,`8q,
Z˚ stays forever at p´8,`8q). For z P t´8uˆR or z P Rˆt`8u, Z˚ is constructed as explained
in the proof of Proposition 11. Then for any t ě 0 and any bounded and continuous mapping f
on E˚, we take

P ˚
t rf spzq “ EzrfpZ˚

t qs

Proposition 20 Assume that X is positive recurrent. Then for all T ě 0 and all bounded and
continuous function f on R, we have

@ z P E˚, ΛrPT rf sspzq “ P ˚
T rΛrf sspzq

Formally, writing Pt “ expptLq and P ˚
t “ expptL˚q, the deduction of these commutation relations

from their infinitesimal version given in Lemma 18 may seem clear. Nevertheless a direct rigorous
justification does not seem so obvious (see Remark 22 below). We found it preferable to follow a
recurrent idea in the study of semi-groups à la Bakry [3] and Ledoux [15].
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Proof

It consists in investigating the evolution of

r0, T s Q t ÞÑ P ˚
t rΛrPT´trf sss

for given T ą 0 and first for f P C8
c pRq.

We begin by recalling how to exploit the martingale property of Z˚. A function defined on E˚

is said to be C2 if it is continuous on E˚ and if it is C2 on E̊˚, on t´8u \ R and on R \ t`8u.
Similarly, a continuous function defined on R` ˆE˚ is said to be C1,2 if it is C1 with respect with
the first variable in R` and C2 with respect to the second variable in E˚, the corresponding partial
derivatives being continuous on R` ˆE̊˚, on R` ˆpt´8uˆRq and on R` ˆpRˆt`8uq. Denote by
C
1,2
b pR` ˆE˚q the set of such functions F which are furthermore bounded, as well as the mapping

R` ˆ pE˚zpD˚ \ tp´8,`8quqq Q pt, zq ÞÑ BtF pt, zq ` L˚rF pt, ¨qspzq. Let us prove that for any
z P E˚zD˚, t ě 0 and F P C

1,2
b pR` ˆ E˚q,

EzrF pt ^ τ˚, Z˚
t^τ˚ qs “ F p0, zq ` Ez

«ż t^τ˚

0

BsF ps, Z˚
s q ` L˚rF ps, ¨qspZ˚

s q ds
ff

(33)

First we treat the case where z “ px, yq P E̊˚ and we replace τ˚ by τ : which was defined in (20).
Indeed, for n P N large enough, say n ě n0, where n0 P N is such that y ´ x ą 1{n0, consider

τ1pnq ≔ inftt ě 0 : X˚
t ă ´nu

τ2pnq ≔ inftt ě 0 : Y ˚
t ą nu

τ3pnq ≔ inftt ě 0 : Y ˚
t ´X˚

t ă 1{nu
τ :pnq ≔ minpτ1pnq, τ2pnq, τ3pnqq

where Z˚ “ pX˚
t , Y

˚
t qtě0. The sequence pτ :pnqqněn0

is a localizing sequence for Z˚ on the random
time interval r0, τ :q, in the sense that

τ : “ lim
nÑ8

τ :pnq

and for any F P C
1,2
b pR` ˆE˚q, we can write

@ t ě 0, F pt ^ τ :, Z˚
t^τ: q “ F p0, zq `

ż t^τ:

0

BsF ps, Z˚
s q ` L˚rF ps, ¨qspZ˚

s q ds`Mt

where for any n ě n0, the process pMt^τ:pnqqtě0 is a martingale starting from 0.
So taking expectations, we end up with

EzrF pt ^ τ :pnq, Z˚
t^τ:pnqqs “ F p0, zq ` Ez

«ż t^τ:pnq

0

BsF ps, Z˚
s q ` L˚rF ps, ¨qspZ˚

s q ds
ff

Our boundedness and continuity assumptions on F enable to use the bounded convergence theorem
to get

EzrF pt^ τ :, Z˚
t^τ: qs “ F p0, zq ` Ez

«ż t^τ:

0

BsF ps, Z˚
s q ` L˚rF ps, ¨qspZ˚

s q ds
ff

(34)

Recall from Lemma 10 that if τ : ă `8, then Z˚
: belongs to tp´8,`8qu \ pt´8u ˆRq \ pRˆ

t`8uq. Note also that if τ : ă `8 and Z˚
τ: “ p´8,`8q, then τ˚ “ τ :, so

EzrF pt ^ τ :, Z˚
t^τ: q1tτ:ďt, Z˚

τ:
“p´8,`8qus “ EzrF pt ^ τ˚, Z˚

t^τ˚ q1tτ:ďt, Z˚

τ:
“p´8,`8qus
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Thus to prove (33), taking into account the strong Markov property at time t ^ τ : (which is true
by construction of Z˚), it is sufficient to see that for all z P pt´8u ˆ Rq \ pR ˆ t`8uq,

EzrF pt ^ τ˚, Z˚
t^τ˚ qs “ F p0, zq ` Ez

«ż t^τ˚

0

BsF ps, Z˚
s q ` L˚rF ps, ¨qspZ˚

s q ds
ff

This is immediate, following a localization procedure similar to that leading to (34).
Since p´8,`8q is absorbing, if τ˚ ă t we can write for F P C

1,2
b pR` ˆ E˚q,

F pt, Z˚
t q “ F pt, p´8,`8qq

“ F pτ˚, p´8,`8qq `
ż t

τ˚

BsF ps, p´8,`8qq ds

“ F pτ˚, Z˚
τ˚ q `

ż t

τ˚

BsF ps, Z˚
s q ds

so that, recalling the Dirichlet condition for L˚ at p´8,`8q, (34) can be transformed into

EzrF pt, Z˚
t qs “ F p0, zq ` Ez

„ż t

0

BsF ps, Z˚
s q ` L˚rF ps, ¨qspZ˚

s q ds


namely in semi-group notations,

P ˚
t rF pt, ¨qspzq “ F p0, zq `

ż t

0

P ˚
s rBsF ps, ¨q ` L˚rF ps, ¨qsspzq ds (35)

Let T ą 0 and f P C8
c pRq be fixed, we want to apply the previous considerations with the

function F defined on r0, T s ˆ E˚ by

@ pt, zq P r0, T s ˆE˚, F pt, zq ≔ ΛrPT´trf sspzq

Since R` ˆ R Q pt, xq ÞÑ Ptrf spxq is well-known to be smooth, it is clear that F is C1,2.
Furthermore, recall that the semi-group pPtqtě0 can be extended into a self-adjoint continuous
semi-group on L

2pµq, whose generator is the Friedrich extension of L on L
2pµq. It follows that the

relation BtPtrf s “ LPtrf s is satisfied in the usual sense and in L
2pµq and we get

@ t P r0, T s, @ z P E˚, BtF pt, zq “ ´ΛrLrPT´trf ssspzq (36)

Since the mapping R Q x ÞÑ PT´trf spxq is C2 and

µr|PT´trf s|s ď µr|f |s
µr|LrPT´trf ss|s “ µr|PT´trLrf ss|s ď µr|Lrf s|s

we are in position to apply Lemma 18 (with f replaced by PT´trf s) to get that in the r.h.s. of (36),
we can replace ΛrLrPT´trf ssspzq by L˚rΛrPT´trf ssspzq, at least for z P E˚zpD˚ \ tp´8,`8quq.
Thus we get that

@ t P r0, T s, @ z P E˚zpD˚ \ tp´8,`8quq, BtF pt, zq ` L˚rF pt, ¨qspzq “ 0

This relation is also true for z “ p´8,`8q. Indeed, due to the fact that X is positive recurrent,
we get

@ t ě 0, F pt, p´8,`8qq “ µrPtrf ss “ µrf s

so that

BtF pt, p´8,`8qq “ 0 (37)
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In particular it is licit to apply (35) (for t P r0, T s) to get

@ z P E˚, P ˚
T rF pT, ¨qspzq “ F p0, zq

which is just the conclusion stated in the proposition, at least for f P C8
c pRq. To extend it to any

bounded and continuous function f , note that for any fixed T ě 0 and z P E˚, the mappings

R Q A ÞÑ ΛrPT r1Asspzq and R Q A ÞÑ P ˚
T rΛr1Asspzq

(R stands for the σ-algebra of Borelian subsets of R) define two probability measures. Because
they coincide on every f P C8

c pRq, they must be equal.
�

Remark 21 The assumption that X is positive recurrent is really necessary for the previous
result. Indeed, there exists generators L satisfying (3) but not (5). For the associated semi-group
pPtqtě0, for any time T ą 0 and any point x P R we have PT r1spxq ă 1. As a consequence, for any
T ą 0 and z P E˚, ΛrPT r1sspzq ă 1, while by construction P ˚

T rΛr1sspzq “ P ˚
T r1spzq “ 1.

In the above proof, the positive recurrence of X is encapsulated in (37).
˝

Remark 22 When F doesn’t depend on the time variable, (35) writes down under the familiar
form

BtP ˚
t rF s “ L˚rP ˚

t rF ss

But from an analytical point of view, it is not clear a priori in which Banach space one should
interpret this evolution equation to deduce the semi-group pP ˚

t qtě0 from L˚. If we were to work
with the elliptic generator L̆˚ defined in (12), there is a natural L2 Hilbert setting. Indeed, let
rη be the σ-finite measure on R whose density with respect to the Lebesgue measure is expp´cq.
The generator L̆ given in (19) is then symmetric with respect to the measure η which coincides
on E˚ with the restriction of prη ` δ´8 ` δ`8qb2. Since L̆˚ corresponds to the h-transform of
L̆, it is symmetric relatively to the measure ν admitting h2 as density with respect to η. Thus
the relations P̆ ˚

t “ expptL̆˚q, for t ě 0, could be given a meaning in L
2pνq. Heuristically, the

intertwining between L and L˚ can be seen as “weak conjugation relation” between them, so we
can expect that L˚ is equally reversible with respect to some σ-finite measure on E˚. Unfortunately
we have not been able to find it and in addition we have no idea about possible quasi-invariant
measures of L˚. Nevertheless, we believe that this subject really deserves to be investigated further,
especially from a quantitative point of view. An initiation of this program in a very particular case
is presented in the next section.

˝

Proposition 20 is the main technical point to get the intertwined coupling of X with Z˚. Indeed,
we can follow the construction of Diaconis and Fill [10] by applying it to skeletons of X with Z˚.
Passing to the limit in the latter approximations will enable us to justify the arguments given
before the statement of Proposition 5 in the introduction.

Let be given m0 and m˚
0 two probability measures respectively on R and E˚ such that m˚

0Λ “
m0. We want to construct an intertwining of X with Z˚ whose initial distribution is described by
η0pdx, dz˚q ≔ m˚

0pdz˚qΛpz˚, dxq (in particular the laws of X0 and Z˚
0 are respectively m0 and m

˚
0).

For fixed N P N, define a discrete time Markov chain pX̄pNq

n2´N , Z̄
pN,˚q

n2´N qnPZ` , intertwined through Λ,

in the following way: its initial distribution is η0 and its transition kernel QpNq is given by

QpNqppx, z˚q, dprx, rz˚qq ≔ P2´N px, drxqP ˚
2´N pz˚, drz˚q Λprz˚, drxq

△2´N pz˚, drxq
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(from px, z˚q P R` ˆE˚ to the infinitesimal neighborhood dprx, rz˚q of prx, rz˚q P R` ˆE˚), where the
last ratio is the Radon-Nikodym derivative of the measure Λprz˚, drxq with respect to△2´N pz˚, drxq ≔
pP ˚

2´NΛqpz˚, drxq “ pΛP2´N qpz˚, drxq. One would have remarked that due to Propositions 4 and 11,
for any z˚ P E˚, △2´N pz˚, ¨ q is equivalent to the Lebesgue measure. So except if rz˚ corresponds
to a singleton, we have Λprz˚, ¨ q ! △2´N pz˚, ¨ q. But P ˚

2´N pz˚, drz˚q-a.s. rz˚ does not correspond to
a singleton, so Q2´N is indeed a transition kernel (not only a sub-Markovian kernel).
The computations of Diaconis and Fill [10] can then be adapted to this setting, because of
the structure of the initial distribution and of Proposition 20, to show that the Markov chain

pX̄pNq

n2´N , Z̄
pN,˚q

n2´N qnPZ` thus constructed satisfies the following properties:

pX̄pNq

n2´N qnPZ` and pXpNq

n2´N qnPZ` have the same law (38)

pZ̄pN,˚q

n2´N qnPZ` and pZpN,˚q

n2´N qnPZ` have the same law (39)

@ m P Z`, the conditional law of X̄
pNq

m2´N knowing Z̄
pN,˚q
0 , Z̄

pN,˚q

2´N , ..., Z̄
pN,˚q

m2´N is ΛpZ̄pN,˚q

m2´N , ¨ q (40)

@ m P Z`, the conditional law of pZ̄pN,˚q
0 , Z̄

pN,˚q

2´N , ..., Z̄
pN,˚q

m2´N q knowing pX̄pNq

n2´N qnPZ`

depends only on X̄
pNq
0 , X̄

pNq

2´N , ..., X̄
pNq

m2´N (41)

Next we embed the Markov chain pX̄pNq

n2´N , Z̄
pN,˚q

n2´N qnPZ` into the (time-inhomogeneous) Markov

process pX̄pNq, Z̄pN,˚qq ≔ pX̄pNq
t , Z̄

pN,˚q
t qtPR` , by taking

@ t ě 0, pX̄pNq
t , Z̄

pN,˚q
t q ≔ pX̄pNq

tt2N u2´N , Z̄
pN,˚q

tt2N u2´N q

where t¨u stands for the integer part.

Proposition 23 The sequence of the laws of pX̄pNq, Z̄pN,˚qq, for N P N, on the Skorokhod space
DpR`,R ˆ E˚q, is the relatively compact. We can thus extract a subsequence converging to a
probability measure P which is necessarily supported by the set of continuous trajectories. The
canonical coordinate process pX̄t, Z̄

˚
t qtPR` is a coupling of X with Z˚ satisfying for all t P R`,

the conditional law of X̄t knowing Z̄
˚
r0,ts is ΛpZ̄˚

t , ¨ q (42)

the conditional law of Z̄˚
r0,ts knowing X̄ depends only on X̄r0,ts (43)

Proof

Using traditional properties of the Skorokhod topology on the Polish space DpR`,R ˆ E˚q (see
for instance the book [4] of Billingsley), we deduce from (38) and (39) that the laws of X̄pNq and
Z̄pN,˚q converge respectively toward those of X and Z˚. This observation implies without difficulty
the first three assertions of the above proposition. For the last two ones, note that as consequences
of (40) and (41), we have

@ t ě 0, the conditional law of X̄
pNq
t knowing Z̄

pN,˚q
r0,ts is ΛpZ̄pN,˚q

t , ¨ q

@ t ě 0, the conditional law of Z̄
pN,˚q
r0,ts knowing X̄pNq depends only on X̄

pNq
r0,ts

The deduction of (42) and (43) is then a standard exercise on conditional expectations: use on one
hand that the σ-algebra generated by ξr0,ts, where t ě 0 and ξ is either X̄ or Z̄˚, is the same as
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that generated by mappings of the form F pξt1 , ..., ξtr q, where r P N, t1, ..., tr are dyadic numbers
satisfying 0 ď t1 ă ¨ ¨ ¨ ă tr ď t and F is a bounded and continuous function on either Rr or pE˚qr,
and on the other hand that such mappings are P-a.s. continuous.

�

Remark 24 Pal and Shkolnikov [18] investigated the existence of intertwinings between diffusion
semi-groups whose generators are appropriately linked by a Markov kernel. Unfortunately the
assumptions of their Theorem 3 do not cover our situation, essentially due the lack of ellipticity
of Z˚. The intertwining of L with L̆˚ (defined in (12)) is more amenable to their conditions, after
looking at X through the chart R Q s ÞÑ

şs
0
a´1{2puq du (and correspondingly for Z˚). Nevertheless

it would still remain to check their boundary conditions. In the approach presented above, we
escaped the corresponding delicate description of what happens to the intertwined process pX,Z˚q
when X enters in contact with one of the boundaries of Z˚ by resorting to the computations of
Diaconis and Fill [10] applied to the skeleton chains.

˝

Remark 25 The previous intertwinings of the skeleton chains are in general not compatible: it

is not true that for all N P N, pX̄pN`1q

n2´N , Z̄
pN`1,˚q

n2´N qnPN has the same law as pX̄pNq

n2´N , Z̄
pN,˚q

n2´N qnPN.
˝

Proposition 23 enables to prove the direct part of Theorem 1 along the arguments given before
Proposition 4. To end this section, we show the converse implication, by considering the diffusion
X whose initial distribution is µ conditioned to be on R´ (namely Λpp´8, 0q, ¨q, the cases where
the initial distribution is Λpp´8, xq, ¨q or Λppx,`8q, ¨q, for some x P R, can be treated similarly).

In this situation the process Z˚ has the form p´8, Y ˚q, where Y ˚ is the solution starting from
0 of the s.d.e.

dY ˚
t “

˜
a1pY ˚

t q ´ bpY ˚
t q ` 2

a
apY ˚

t qµpY ˚
t q

µpp´8, Y ˚
t sq

b
apY ˚

t q
¸
dt `

b
2apY ˚

t q dBt

From Corollary 13, we know a priori that limtÑ`8 Y ˚
t “ `8. From Section 3, the boundary `8

will be reached in finite time (a.s.) if and only if I` ă `8. The reaching time of `8 by Y ˚ is
indeed the random time τ˚ defined in (10). If we assume that X admits a strong stationary time
and if we show that such a strong stationary time is stochastically larger than τ˚, we would then
get that I` ă `8. Symmetrically we would prove that the existence of a strong stationary time
for X starting from Λpp0,`8q, ¨q implies that I´ ă `8 and the converse part of Theorem 1 will
be shown. Thus according to (16), it remains to check that

Lemma 26 Under the previous assumption on X, we have

@ t ě 0, spLpXtq, µq “ Prτ˚ ą ts

The following arguments are an adaptation to our setting of Remark 2.39 of Diaconis and Fill [10].

Proof

Consider the intertwining of X and Z˚ “ p´8, Y ˚q obtained in Proposition 23. It follows that for
all t ě 0,

LpXtq “ ErΛpp´8, Y ˚
t q, ¨ qs
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In particular, we get that

spLpXtq, µq “ sup
xPR

E

„
1 ´ dΛpp´8, Y ˚

t q, ¨ q
dµ

pxq


“ 1 ´ inf
xPR

E

„
dΛpp´8, Y ˚

t q, ¨ q
dµ

pxq


The above Radon-Nikodym derivative is easy to compute: for all x P R,

dΛpp´8, Y ˚
t q, ¨ q

dµ
pxq “ 1

µpp´8, Y ˚
t qq1p´8,Y ˚

t qpxq

Note that the r.h.s. is non-increasing as a function of x P R, so the same is true of the expression

E

”
dΛpp´8,Y ˚

t q, ¨ q
dµ

pxq
ı
and we get

spLpXtq, µq “ 1 ´ lim
xÑ`8

E

„
dΛpp´8, Y ˚

t q, ¨ q
dµ

pxq


“ 1 ´ PrY ˚
t “ `8s

“ PrY ˚
t ă `8s

“ Prτ˚ ă ts

�

5 On the Ornstein-Uhlenbeck counter-example

In the study of convergence to equilibrium for diffusions, the Ornstein-Uhlenbeck process is a
benchmark, in particular due to its Gaussian feature which enables explicit computations. Unfor-
tunately, it is in some sense at the “outside boundary” of the domain of application of the approach
presented before. We will see here how the method can nevertheless be adapted to recover sharp
informations.

The Ornstein-Uhlenbeck process corresponds to the choice in (1) of a ” 1 and bpxq “ ´x, for
all x P R. The associated reversible measure is the centered and standard Gaussian distribution γ
whose density is given by γpxq “ expp´x2{2q{

?
2π, for all x P R. A traditional integration by part

leads to

γprx,`8qq „ γpxq
x

as x goes to `8, so we get that the second integral of the l.h.s. of (17) is infinite. Theorem 1
then asserts that there exists initial distributions for which it is not possible to construct strong
stationary times for the associated process X. Indeed, this is true as soon as the initial distribution
m0 has a compact support. To see it, let us recall how the law LpXtq is easily computed in this
situation: since X satisfies the s.d.e.

@ t ě 0, dXt “ ´Xt dt `
?
2dBt

(where B “ pBtqtě0 is a standard Brownian motion), the variation of parameters method gives us:

Xt “ expp´tqX0 `
?
2

ż t

0

expps´ tq dBs
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It follows that mt ≔ LpXtq is the convolution of Lpexpp´tqX0q with γ1´expp´2tq, the centered

Gaussian distribution of variance 1 ´ expp´2tq “ 2
şt
0
expp2ps ´ tqq ds. Thus if m0 has compact

support, we get that for any fixed t ą 0, the separation discrepancy of mt with γ is one:

spmt, γq “ lim
|x|Ñ`8

1 ´ dmt

dγ
pxq “ 1

(a similar reasoning, considering only the limit at ´8 or `8, would lead to the same conclusion
if the support of m0 is bounded below or above: this enables to include the initial distributions
considered for the reverse part of Theorem 1). The bound (16) then implies that there is no strong
stationary time for X.

To simplify the presentation, we will assume that the initial distribution is the Dirac mass
at 0. We deduce from the above considerations that for any t ą 0, LpXtq “ γ1´expp´2tq. In
particular LpXtq converges toward γ in total variation. Let us check that the exponential rate for
this convergence is 2:

Lemma 27 We have

lim
tÑ`8

1

t
lnp}mt ´ γ}tvq “ ´2

Proof

By one of the characterization of the total variation norm, we have for all t ą 0,

}mt ´ γ}tv “
ż

pft ´ 1q` dγ (44)

where ft is the Radon-Nikodym derivative of mt with respect to γ. We compute that

@ x P R, ftpxq “ p1 ´ e´2tq´1{2 exp

ˆ
´ e´2tx2

2p1 ´ e´2tq

˙

and we deduce that

ftpxq ě 1 ðñ |x| ď xt ≔
a

pe2t ´ 1q lnp1 ´ e´2tq

The quantity xt converges toward 1 when t goes to infinity. A simple expansion of the expression
ftpxq ´ 1 then leads to

}mt ´ γ}tv “ 2

ż xt

0

ftpxq ´ 1 γpdxq

„ e´2t

ż 1

0

1 ´ x2 γpdxq

for large t ą 0. The announced result follows at once.
�

Remark 28 The logarithmic Sobolev constant associated to L is 4, so starting from any initial
distribution m0 such that the relative entropy of mt with respect to γ is finite for some t ě 0, we
get that the exponential rate of converge in the relative entropy sense is at least 4. Using next
Pinsker’s inequality, we recover that the above exponential rate of convergence in total variation
is at least 2. For this traditional approach, see for instance the book [2] of Ané, Blachère, Chafäı,
Fougères, Gentil, Malrieu, Roberto and Scheffer. The Ornstein-Uhlenbeck process is also critical
for the use of the logarithmic Sobolev inequalities method, but it is in the “interior boundary” of
the domain of application.
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˝

Let us show how to recover this exponential rate 2 for the convergence in total variation by
using strong (non-stationary) times. So the emphasis is in testing the method, not in the result
itself. It will also enable us to illustrate on this example the directions suggested by Remark 22.

We begin by noting that the construction of the process Z˚ “ pX˚, Y ˚q made in Section 2 is
still valid. By symmetry and since we are considering Z˚

0 “ p0, 0q, we have that X˚ “ ´Y ˚. It
comes from the fact that Z˚ and p´Y ˚, Y ˚q satisfy the same well-posed martingale problem. The
diffusion Y ˚ is given as the solution starting from 0 (which is an entrance boundary for Y ˚) of the
s.d.e.

@ t ą 0, dY ˚
t “ pY ˚

t ` gpY ˚
t qq dt `

?
2 dBt (45)

where as usual B ≔ pBtqtě0 is a standard Brownian motion, and where g is the mapping defined
by

@ y ą 0, gpyq ≔ 2
γpyq

γpr0, ysq (46)

The coupling of X and Y ˚ constructed in Section 4 is equally valid. We deduce that any stopping
time for Y ˚ is a strong time for X. For any M ą 0, we are particularly interested in the following
stopping time

τ˚
M ≔ inftt ě 0 : Y ˚

t “ Mu

It has the property that τ˚
M and Xτ˚

M
are independent and that Xτ˚

M
is distributed according to

γr´M,Ms, the conditioning of γ on the interval r´M,M s. The interest of the independence of the
time and the position appears in the proof of

Lemma 29 For all t ě 0 and M ą 0, we have

}mt ´ γ}tv ď Prτ˚
M ą ts `

››γr´M,Ms ´ γ
››
tv

Proof

An equivalent formulation to (44) of the total variation is given by

}mt ´ γ}tv “ 1

2
sup

}f}8“1

ErfpXtqs ´ γrf s (47)

where the supremum is taken over all measurable functions f taking values in r´1, 1s.
Let Fτ˚

M
be the σ-field generated by the piece of trajectory of the intertwined process pX,Y ˚q up

to time τ˚
M . It is in fact generated by Xr0,τ˚

M
s and some randomness independent from the whole

trajectory X. Using the strong Markov property, we get for any function f as above,

ErfpXtq ´ γpfq|Fτ˚
M

s “ Pt´τ˚
M

^trf spXτ˚
M

^tq ´ γpfq

where pPtqtě0 is the semi-group generated by L. Taking into account that σpτ˚
M q, the σ-field

generated by τ˚
M , is included into Fτ˚

M
and that Xτ˚

M
is independent from τ˚

M and distributed

according to γr´M,Ms, we get on the event tτ˚
M ď tu,

ErfpXtq ´ γpfq|σpτ˚
M qs “ ErErfpXtq ´ γpfq|Fτ˚

M
s|σpτ˚

M qs
“ ErPt´τ˚

M
rf spXτ˚

M
q ´ γpfq|σpτ˚

M qs

“ E

„ż
Pt´τ˚

M
rf spxq γr´M,Mspdxq ´ γpfq

ˇ̌
ˇσpτ˚

M q


ď 2
›››νt´τ˚

M
´ γ

›››
tv
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where for any s P r0, ts, νt´s ≔ γr´M,MsPt´s is the law of Xt´s, when X is started from the initial
distribution γr´M,Ms. As a consequence of the Jensen inequality (relatively to the absolute value),
it is well-known that the mapping

R` Q s ÞÑ }νs ´ γ}tv
is non-increasing, so we have proved that

ErfpXtq ´ γpfq|σpτ˚
M qs1tτ˚

M
ďtu ď 2

››γr´M,Ms ´ γ
››
tv

The announced result is a consequence of this bound, by writing

ErfpXtq ´ γpfqs “ ErpfpXtq ´ γpfqq1tτ˚
M

ątus ` ErpfpXtq ´ γpfqq1tτ˚
M

ďtus
ď 2Prτ˚

M ą ts ` ErErfpXtq ´ γpfq|σpτ˚
M qs1tτ˚

M
ďtus

ď 2Prτ˚
M ą ts ` 2

››γr´M,Ms ´ γ
››
tv

and of (47), by taking the supremum over all measurable functions f taking values in r´1, 1s.
�

The last term of the previous bound is immediate to evaluate:

Lemma 30 For all M ą 0, we have

››γr´M,Ms ´ γ
››
tv

ď
?
2?
πM

expp´M2{2q

Proof

One sees that

@ x P R,
dγr´M,Ms

dγ
pxq “ 1

γpr´M,M sq1r´M,Mspxq

so coming back to (44), it appears that

››γr´M,Ms ´ γ
››
tv

“
ż M

´M

1

γpr´M,M sq ´ 1 dγ

“ 1 ´ γpr´M,M sq
“ 2γppM,`8qq

ď
?
2?
πM

expp´M2{2q

�

In view of Lemma 29, it remains to study the queues of the distribution of τ˚
M . The first idea

is to use a probabilistic approach via natural comparisons of Y ˚ with simpler processes. This is
presented in the appendix, where the weakness of this method is also explained. Indeed the efficient
approach is via spectral considerations in the direction suggested by Remark 22.

In the above computations, only Y ˚ was needed, so X (starting from 0) was in fact intertwined
with Y ˚. It is convenient to adopt the corresponding notations. Let L: be the generator of Y ˚: it
acts on functions f P C8

c pp0,`8qq via

@ y P R`, L:rf spyq ≔ f2pyq ` V 1pyqf 1pyq

where

@ y P R`, V pyq ≔ y2

2
` 2 lnpγpr0, ysqq
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So L: factorizes under the form expp´V qB exppV qB, making it apparent that L: is symmetric in
L
2pνq, where ν is the σ-finite measure on R whose density is exppV q. Thus L: can be extended into

its Freidrich extension in L
2pνq. We will denote pP :

t qtě0 the associated semi-group. At least on
functions of L2pνq which are non-negative, it coincides with its probabilistic representation given
on measurable and non-negative functions f by

@ y P R`, P
:
t rf spyq “ EyrfpY ˚

t qs

where the y in index of the expectation indicates that Y ˚ starts from y.
Besides, we designate by Λ: the Markov kernel from R` to R inherited from Λ:

@ y P R`, @ A P BpR`q, Λ:py,Aq ≔

$
&
%

δ0pAq , if y “ 0

γpr´y,ysXAq
γpr´y,ysq , otherwise

From the previous considerations, we deduce the intertwining relation

L:Λ: “ Λ:L (48)

This weak conjugacy relation suggests that the spectral decomposition of L: should be related to
that of L. So let us recall the latter. Consider pHnqnPZ` the Hermite polynomials defined by

@ n P Z`, @ x P R, Hnpxq ≔ p´1qn exppx2{2qBn expp´x2{2q

They form a orthogonal basis of L2pγq and diagonalize L:

@ n P Z`, LrHns “ ´nHn

Note that Hn is even (respectively odd) if n is even (resp. odd). It follows that Λ:rHns “ 0 if n is
even. Since H0 “ 1, we get that Λ:rH0s “ 1 and this function does not belong to L

2pνq because
ν has an infinite mass. For the remaining Hermite polynomials, we have:

Lemma 31 For all n P N, denote H
:
2n ≔ Λ:rH2ns. This function belongs to L

2pνq, satisfies

L:H
:
2n “ ´2nH:

2n and is given by

@ y ą 0, H
:
2npyq “ ´ 1?

2πγpr0, ysq
H2n´1pyq expp´y2{2q

Proof

Indeed, we compute that for any n P N and y ą 0,

Λ:rH2nspyq “ 1?
2πγpr´y, ysq

ż y

´y

H2npxq expp´x2{2q dx

“ 1?
2πγpr´y, ysq

ż y

´y

B2n expp´x2{2q dx

“ 1?
2πγpr´y, ysq

“
B2n´1 expp´x2{2q

‰y
´y

“ 2?
2πγpr´y, ysq

B2n´1 expp´y2{2q

“ ´ 1?
2πγpr0, ysq

H2n´1pyq expp´y2{2q
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Thus recalling that for y ą 0, νpyq “ pγpr0, ysqq2 exppy2{2q, we get that

νrpH:
2nq2s “ 1

2π

ż `8

0

H2
2n´1pyq expp´y2{2q dy

“ 1?
2π
γrH2

2n´1s

“ p2n ´ 1q!

(taking into account that for any n P Z`, γrH2
ns “

?
2πn!). In particular, H:

2n belongs to L
2pνq

for n P N.
The fact that H:

2n is an eigenfunction associated to the eigenvalue ´2n is a consequence of (48)
applied to H2n.

�

Let η be the positive measure on R` whose density is given by

@ y ą 0, ηpyq ≔ yγpr0, ysq

It has an infinite weight, but it should nevertheless be seen as a quasi-invariant measure:

Lemma 32 For all t ě 0 and all measurable and non-negative function f : R` Ñ R`, we have
(in R` \ t`8u),

ηrP :
t rf ss “ expp´2tqηrf s

Proof

Consider H:
2 , from Lemma 31 we have for all t ě 0, P :

t rH:
2s “ expp´2tqH:

2 . So for any f P L
2pνq,

νrH:
2Ptrf ss “ νrPtrH:

2sf s
“ expp´2tqνrH:

2f s

This is the identity announced in the lemma, at least for f P L
2pνq, as a consequence of the

proportionality of the densities η and νH:
2:

@ y ą 0, νpyqH:
2pyq “ ´pγpr0, ysqq2 expp´y2{2q 1?

2πγpr0, ysq
H1pyq expp´y2{2q

“ ´ 1?
2π
γpr0, ysqH1pyq

“ ´ 1?
2π
ηpyq

The extension to all measurable and non-negative functions f comes from the representation of P :
t

as a probability kernel and from a usual application of the monotone class theorem.
�

This result readily shows that the queues of τ˚
M admits the exponential rate 2, at least for

convenient initial distributions of Y ˚
0 :

Lemma 33 Assume that the law m0 of X0 has a bounded density with respect to η. Then there
exists C ą 0 depending on m0 such that

@ t ě 0, @ M ą 0, Pm0
rτ˚

M ą ts ď CM2 expp´2tq
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Proof

Denote f the Radon-Nikodym derivate of m0 with respect to η and let C ą 0 be an upper bound
of f . We have

Pm0
rτ˚

M ą ts ď Pm0
rY ˚

t P r0,M ss
“ ηrfP :

t r1r0,Msss
ď CηrP :

t r1r0,Msss
ď C expp´2tqηpr0,M sq

ď C expp´2tq
ż M

0

yγpr0, ysq dy

ď C expp´2tq
ż M

0

y dy

ď CM2 expp´2tq
�

We want to extend the previous bound to the case where m0 is the Dirac mass at 0. To do
so, first remark that we can restrict ourselves to M ą 1, because τ˚

M is increasing in M . Next fix
σ ą 0 small enough such that Prτ˚

1 ď σs ď 1{2 and denote ξ the sub-probability which is the image
by Y ˚

σ of the restriction of P0 on tτ˚
1 ą σu. Its interest is:

Lemma 34 We have for all t ě 0 and for all M ą 1,

P0rτ˚
M ą σ ` ts ď 2Pξrτ˚

M ą ts

Proof

This is a consequence of the strong Markov property applied to the stopping time σ ^ τ˚
1 :

P0rτ˚
M ą σ ` ts “ E0rfpσ ^ τ˚

1 , Y
˚
σ^τ˚

1

qs

where

@ s P r0, σs, @ y ě 0, fps, yq ≔ Pyrτ˚
M ą t` σ ´ ss

Note that the quantity fps, yq is non-decreasing in s and non-increasing in y. We deduce that

E0r1tτ˚
1

ăσufpσ ^ τ˚
1 , Y

˚
σ^τ˚

1

qs “ E0r1tτ˚
1

ăσufpτ˚
1 , 1qs

ď fpσ, 1qP0rτ˚
1 ă σs

Since P0rτ˚
1 ă σs ď 1{2 and fpσ, 1q ď fpσ, yq for all y P r0, 1s, we get

fpσ, 1qP0rτ˚
1 ă σs ď E0r1tτ˚

1
ěσufpσ, Y ˚

σ qs
ď E0r1tτ˚

1
ěσufpσ ^ τ˚

1 , Y
˚
σ^τ˚

1

qs

It follows that

P0rτ˚
M ą σ ` ts ď 2E0r1tτ˚

1
ěσufpσ, Y ˚

σ qs
“ 2Pξrτ˚

M ą ts
�

Thus to prove that there exists a constant C ą 0 such that

@ t ě σ, @ M ą 1, P0rτ˚
M ą ts ď CM2 expp´2tq (49)

it remains to show that ξ admits a density with respect to η which is bounded above. This is not
a priori obvious, because ηpyq is of order y2 for small y ą 0. But it is true, essentially due to the
behavior of the function g defined in (46) near 0`.
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Lemma 35 There exists a constant C ą 0 such that

@ y ą 0,
dξ

dη
pyq ď C

Proof

Consider the process Y ≔ pYtqtě0 starting from 0 and solution of the s.d.e.

@ t ě 0, dYt “ 2

Yt
dt`

?
2dBt (50)

where B “ pBtqtě0 is a standard Brownian motion. Up to the change of time R` Q t ÞÑ t{2, Y is a
Bessel process of dimension 3. It follows (see the Section 1 of Chapter 11 of Revuz and Yor [19]),
that there exists a constant K ą 0 (depending on σ) such that the density χ of Yσ has the form
Ky2 expp´y2{p4σqq. In particular, we can find another constant K 1 ą 0 such that

@ y ą 0,
χ

η
pyq ď K 1 (51)

To compare with the law of Y ˚
σ , we use the Girsanov’s formula. More precisely, define the function

ϕ on R` by

@ y ą 0, ϕpyq ≔ 1

2

ż y

0

u` 2
γpuq

γpr0, usq ´ 2

u
du

Elementary computations show that these integrals are well-defined, because the integrand is equiv-
alent to u{3 for u ą 0 small. It also appears that |ϕ|, |ϕ1| and |ϕ2|, as well u ÞÑ |ϕ1puq{u| are bounded
on p0, σs. Since the s.d.e. satisfied by Y ˚ can be written

@ t ě 0, dY ˚
t “

ˆ
2

Y ˚
t

` ϕ1pY ˚
t q

˙
dt `

?
2dBt

Girsanov’s formula (e.g. Chapter 8 of Revuz and Yor [19]) gives us

@ y ą 0,
ξpyq
χpyq “ E0

„
exp

ˆ?
2

ż σ

0

ϕ1pYsq dBs ´
ż σ

0

pϕ1pYsqq2 ds
˙
1τ1pY qąσ

ˇ̌
ˇYσ “ y



where Y is the solution of (50) starting from 0 and τ1pY q is its reaching time of 1. To evaluate the
latter conditional expectation, we write that

?
2

ż σ

0

ϕ1pYsq dBs “ ϕpYσq ´
ż σ

0

2

Ys
ϕ1pYsq ` ϕ2pYsq ds

which enables to see that

E0

„
exp

ˆ?
2

ż σ

0

ϕ1pYsq dBs ´
ż σ

0

pϕ1pYsqq2 ds
˙
1τ1pY qąσ

ˇ̌
ˇYσ “ y



“ exppϕpyqqE0

„
exp

ˆ
´

ż σ

0

ψpYsq ds
˙
1τ1pY qąσ

ˇ̌
ˇYσ “ y



where

@ y ą 0, ψpyq ≔ 2

y
ϕ1pyq ` ϕ2pyq ` pϕ1pyqq2

From our previous observations, |ψpyq| and |ϕpyq| are bounded for y P p0, σs. It follows that the
function ξ{χ is bounded on p0, σs. This also true on pσ,`8q, since ξ vanishes there. In conjunction
with (51), it ends the proof of the lemma.
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Note that there is no difficulty in transforming (49) into

@ t ě 0, @ M ą 0, P0rτ˚
M ą ts ď Cp1 _Mq2 expp´2tq

up to a change of the constant C ą 0. Thus putting together all the previous results, we have
proven that there exists a constant C ą 0 such that for all t ě 0 and all M ą 0, we have

}mt ´ γ}tv ď Cp1 _Mq2 expp´2tq `
?
2?
πM

expp´M2{2q

One could try to minimize the r.h.s. in M ą 0 for fixed t ě 0, but it is sufficient to take M “
?
2t

to see that }mt ´ γ}tv converges exponentially fast to zero and that

lim sup
tÑ`8

1

t
lnp}mt ´ γ}tvq ď ´2

Lemma 27 shows that we have recovered the optimal rate, so that the approach via strong times
is quite sharp.

Remark 36 Denote by H the Hilbert space generated by the H2n with n P N. The operator Λ:

is compact from H to L
2pνq and one to one. Indeed, this is an immediate consequence of

@ n,m P N, νrH:
2nH

:
2ms “ 1

2
?
2πn

γrH2nH2ms

which is shown as in the proof of Lemma 31. This leads to introduce G ≔ Λ:pHq and to check that
G is dense in L

2pνq. It is sufficient to see that any smooth mapping F : R` Ñ R with compact
support belongs to Λ:pHq, i.e. that we can find a measurable function f : p0,`8q Ñ R withş`8
0

f dγ “ 0,
ş`8
0

f2 dγ ă `8 and

@ y ą 0,

şy
0
f dγ

γpr0, ysq “ F pyq

(we will then have F “ Λ:r rf s where rf is the symmetrization of f , which belongs to H). So just
take

@ x ą 0, fpxq ≔ BpF pxqγpr0, xsqq

It follows that pH:
2nqnPN is an orthogonal Hilbertian basis of L2pνq consisting of eigenvectors of

L:. Thus the spectrum of L: is ´2N. By self-adjointness, we deduce that

@ t ě 0, @ f P L
2pνq, }Ptrf s}

L2pνq ď expp´2tq }f}
L2pνq

This could also have been used to recover the exponential rate 2 in (49), nevertheless we find it
more instructive to work with the quasi-stationary measure η.

In the same spirit as Remark 3, taking into account Theorem 3.3 of the recent preprint of
Cheng and Mao [7], we could also have deduced that Y ˚ is non-explosive from the fact that sum
of the inverse of the eigenvalues of ´L: in L

2pνq is infinite, namely, according to the previous
considerations, from

ř
nPN 1{p2nq “ 8. For more informations on the eigentime identity, which

states that certain reversible Markov processes are explosive if and only if the sum of the inverse
of its eigenvalues is finite, we refer to the paper of Mao [16].

˝

35



A A probabilistic estimate on queues of τ ˚

M

In the previous section we have seen that is important to upper bound quantities like Prτ˚
M ą ts

and we obtained nice estimates via spectral considerations. We were lucky because the spectral
decomposition of L is explicit in the Ornstein-Uhlenbeck example. In general a probabilistic
approach is more flexible, even if in the example at hand we did not succeed in recovering the
optimal rate using this method. Let us nevertheless present this approach. At the end we will see
another interplay between probability and spectral theories.

The basic idea is to compare Y ˚ with the simpler process Y ≔ pYtqtě0 starting from 0 and
solution of the s.d.e.

@ t ě 0, dYt “ Yt dt`
?
2dBt (52)

where B ≔ pBtqtě0 is a Brownian motion. We then define for all M ą 0,

τM ≔ inftt ě 0 : |Yt| “ Mu

Lemma 37 The law of τ˚
M is stochastically dominated by that of τM .

Proof

Recall the following behaviors of the mapping g defined in (46): as y goes to 0`, gpyq „ 2{y and
as y goes to `8, gpyq ! 1{y. So we can define

a ≔ infty ą 0 : gpyq “ 1{yu

We first compare Y ˚ and Y up to the time τ˚
a . Let rY be an independent copy of Y : it starts from

0 and is solution of the s.d.e.

@ t ě 0, drYt “ rYt dt `
?
2d rBt

where rB ≔ p rBtqtě0 is a Brownian motion independent from B. Consider the process pY ≔ ppYtqtě0

given by

@ t ě 0, pYt ≔
b
Y 2
t ` rY 2

t

Simple Itô’s computations lead to the fact that pY is the solution starting from 0 of the s.d.e.

@ t ě 0, drYt “
ˆ

rYt ` 1

rYt

˙
dt `

?
2dWt

where W ≔ pWtqtě0 is the Brownian motion defined by

@ t ě 0, Wt ≔

ż t

0

1b
Y 2
s ` rY 2

s

pYs dBs ` rYs d rBsq

Comparing with (45), where we replace B with W , it appears that |Yt| ď pYt ď Y ˚
t , at least for

t ď τ˚
a . In particular, for any M P p0, as, the law of τM is stochastically dominated by that of τ˚

M .
Using the strong Markov property at τ˚

M , to prove the same domination for M ą a, it is sufficient
to deal with the following situation. Assume that Y ˚ is the solution of (45) starting from a and
that Y is solution of (52) with an initial distribution supported by r0, as. Let B be the same in
(45) and in (52), then a.s., for all t ě 0, |Yt| ď Y ˚

t .
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Indeed, using Tanaka’s formula (see for instance Chapter 6 of the book of Revuz and Yor [19]), we
have

@ t ě 0, d |Yt| “ |Yt| dt `
?
2dBt ` dlt

where pltqtě0 is the local time at 0 of Y . Consider

σ ≔ inftt ě 0 : |Yt| ą Y ˚
t u

If σ ă `8, then we have Yσ “ Y ˚
σ . Recall from Section 2 that necessarily Y ˚

σ ą 0 and since lt is
only increasing when Yt “ 0, there exists a random interval of the form rσ, σ ` ǫq on which this
local time remains constant. But we have

@ t ě 0, dpY ˚
t ´ |Yt|q “ pY ˚

t ´ |Yt|q dt ` gpY ˚
t q dt ´ dlt

which, via the parameter variation method, leads to

@ t ě 0, Y ˚
σ`t ´ |Yσ`t| “ et

ż t

0

e´s pgpY ˚
s q ds´ dlsq

If t P r0, ǫq, the r.h.s. is non-negative, which in contradiction with the definition of σ.
�

In particular, we get that

@ M ą 0, @ t ě 0, Prτ˚
M ą ts ď PrτM ą ts (53)

The advantage is that the r.h.s. is simpler to evaluate:

Lemma 38 We have for any M ą 0 and any t ě 0,

PrτM ą ts ď
d

2

p1 ´ e´2tqπ e
´tM

Proof

Using once again the parameter variation method, we get that

@ t ě 0, Yt “
?
2

ż t

0

exppt´ sq dBs

in particular, Yt is a centered Gaussian random variable of variance e2t ´ 1. Besides, by definition,
we have

PrτM ą ts “ Pr@ s P r0, ts, |Ys| ď M s
ď Pr|Yt| ď M s

“
ż M

´M

exp

ˆ
´ y2

2pe2t ´ 1q

˙
dya

2πpe2t ´ 1q

ď 2Ma
2πpe2t ´ 1q

�

These computations leads to the bound

@ t ą 0, @ M ą 0, Prτ˚
M ą ts ď

d
2

p1 ´ e´2tqπMe´t
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which asymptotically for t ą 0 large, has not the optimal exponential rate (1 instead of 2).
So where is the weak link in the above arguments? It is the stochastic dominance (53), because

the exponential rate of PrτM ą ts for large t ą 0 is almost 1 (for large M ą 0), as it will be shown
below. So the strong repulsion of Y ˚ in 0 is the reason for the exponential rate 2 for τ˚

M . The
process Y (or |Y |) has more freedom to wander around 0, which is the best place to “stay” to avoid
the points ´M and M , and this accounts for their exit rate 1.

Since the generator of Y is rL ≔ expp´rV qB expprV qB, where rV : R Q y ÞÑ y2{2, it appears that
the measure rν admitting the density expprV q with respect to the Lebesgue measure is “reversible”:
rL can be extended into its self-adjoint Friedrich extension on L

2prνq. From the general Markovian
theory of absorption (see e.g. the book [9] of Collet, Mart́ınez and San Mart́ın), we have

lim
tÑ`8

1

t
lnpPrτM ą tsq “ ´λ0pMq

where

λ0pMq ≔ inf
fPC8pr´M,Msq : fp´Mq“fpMq“0

şM
´M

pf 1q2 drν
şM

´M
f2 drν

Lemma 38 implies that λ0pMq ě 1 for all M ą 0 and this bound is asymptotically optimal as M
goes to infinity:

Lemma 39 We have

lim
MÑ`8

λ0pMq “ 1

Proof

Let fM be the function defined on r´M,M s by
@ y P r´M,M s, fM pyq ≔ expp´y2{2q ´ expp´M2{2q

Elementary computations show that

lim inf
MÑ`8

λ0pMq ě lim
MÑ`8

şM
´M

pf 1
M q2 drν

şM
´M

f2M drν
“ 1

�

The functions fM , for M ą 0, were suggested by the spectral decomposition of rL on L
2pγq,

which can be obtained by a method somewhat dual to the one presented in the previous section.
Consider, on the appropriate domain of L2pγq, the linear mapping K : f ÞÑ expp´V qBf P L

2prνq.
Since rL “ expp´rV qB expprV qB and L “ expprV qB expp´rV qB, we get at once the intertwining relation
rLK “ KL (with a non-Markovian link K, but its inverse is a positive kernel quite close to Λ:). So
a priori the rHn ≔ KrHns, for n P N, are good candidates to be the eigenvectors of rL, associated
respectively to the eigenvalues ´n. Indeed, we compute that

@ n P N, @ y P R, rHnpyq “ n expp´y2{2qHn´1pyq
so that p rHnqnPN is an orthogonal Hilbertian basis of L2prνq, so the spectrum of rL is ´N. The
measure rη ≔ rH1rν “ expp´rV q is quasi-stationary for rL and its adaptation to the Dirichlet boundary
conditions on r´M,M s furnishes fM , for M ą 0. One can also deduce the spectral decomposition
of the generator of |Y |: restrict everything to R`, but just keep the rHn with n odd. In particular
its spectrum is t´1,´3,´5, ...u.
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