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In this article, we consider a jump diffusion process (Xt) t≥0 , with drift function b, diffusion coefficient σ and jump coefficient ξ 2 . This process is observed at discrete times t = 0, ∆, . . . , n∆. The sampling interval ∆ tends to 0 and the time interval n∆ tends to infinity. We assume that (Xt) t≥0 is ergodic, strictly stationary and exponentially β-mixing. We use a penalized least-square approach to compute adaptive estimators of the functions σ 2 + ξ 2 and σ 2 . We provide bounds for the risks of the two estimators.

Introduction

We consider the stochastic differential equation (SDE):

dX t = b(X t -)dt + σ(X t -)dW t + ξ(X t -)dL t , X 0 = η (1)
with η a random variable, (W t ) t≥0 a Brownian motion independent of η and (L t ) t≥0 a pure jump centered Lévy process independent of (W t ) t≥0 , η :

L t = t 0 |z|<1
z (µ(dt, dz) -ν(dz)dt)

+ t 0 |z|≥1 zµ(dt, dz)
where µ is a Poisson measure of intensity ν(dz)dt, with R (z 2 ∧ 1)ν(dz) < ∞. The process (X t ) t≥0 is assumed to be ergodic, stationary and exponentially β-mixing. It is observed at discrete times t = 0, ∆, . . . , n∆ where the sampling interval ∆ tends to 0 and the time of observation n∆ tends to infinity. Our aim is to construct adaptive non-parametric estimators of ξ 2 + σ 2 and σ 2 on a compact set A. We do not assume that the jumps are of finite intensity, only that L ∆ is centred (that is |z|≥1 zν(dz) = 0) and has a moment of order 8.

Diffusions with jumps become powerful tools to model processes in biology, physics, social sciences, medical sciences, economics, and finance. They are used in the study of dynamical systems when the noise is discontinuous or too intensive to be modeled by a Brownian motion, like polymerarization phenomenons (see [START_REF] Berestycki | Exchangeable fragmentation-coalescence processes and their equilibrium measures[END_REF]), telephone noise or infinite capacity dam [START_REF] Protter | The Euler scheme for Lévy driven stochastic differential equations[END_REF]). In finance, they are used to model a variety of financial applications such as interest rate modelling or capital asset pricing (which includes fair pricing of options). Indeed, the standard model was the Black-Sholes model, but the prices in the market are not continuous and often have jumps. The jump diffusions are therefore more and more used to model asset prices (see [START_REF] Aït | Estimating the degree of activity of jumps in high frequency data[END_REF] and [START_REF] Protter | The Euler scheme for Lévy driven stochastic differential equations[END_REF] 

for instance).

There already exists numerous articles dealing with adaptive estimation for Lévy processes (see for instance [START_REF] Kappus | Adaptive nonparametric estimation for Lévy processes observed at low frequency[END_REF] and [START_REF] Comte | Nonparametric estimation for pure jump Lévy processes based on high frequency data[END_REF] for pure jump Lévy processes and Neumann and Reiß (2009) and [START_REF] Gugushvili | Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process[END_REF] for more general Lévy processes. The estimators are based on the characteristic function. Non-parametric estimation of the coefficients of a diffusion without jumps is also well known (e.g [START_REF] Hoffmann | L p estimation of the diffusion coefficient[END_REF] or [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF]). However, to our knowledge, there do not exist adaptive estimators for the coefficients of a jump diffusion. Moreover, the non-parametric estimators are pointwise and constructed only in the finite intensity case. [START_REF] Shimizu | Some remarks on estimation of diffusion coefficients for jump-diffusions from finite samples[END_REF] construct maximum-likelihood parametric estimators of σ 2 and ξ 2 when the process (X t ) is stationnary. Their estimators converge with rates √ n and √ n∆ respectively. [START_REF] Mancini | Threshold estimation of Markov models with jumps and interest rate modeling[END_REF] and [START_REF] Hanif | Reweighted Nadaraya-Watson estimation of jump-diffusion models[END_REF] both use local times to construct pointwise, nonadaptive estimators in the finite intensity cas. [START_REF] Mancini | Threshold estimation of Markov models with jumps and interest rate modeling[END_REF] construct kernel estimators of σ 2 . [START_REF] Hanif | Reweighted Nadaraya-Watson estimation of jump-diffusion models[END_REF] provide local polynomials estimators of σ 2 + ξ 2 . They both prove the convergence and the asymptotic normality of their estimators.

In this paper, we construct L 2 adaptive estimators of the two functions σ 2 + ξ 2 and σ 2 under the asymptotic framework n∆ → ∞, ∆ → 0. To estimate the second infinitesimal moment σ 2 (x)+ξ 2 (x) on a compact set A, we consider the following random variables

T k∆ := (X (k+1)∆ -X k∆ ) 2 ∆ = σ 2 (X k∆ ) + ξ 2 (X k∆ ) + noise + remainder.
We introduce a sequence of increasing subspaces S m of L 2 (A) and we construct a sequence of estimators ĝm by minimizing over each S m a contrast function

γ 1,n (t) = 1 n n k=1 (T k∆ -t(X k∆ )) 2 .
We bound the risk, then we introduce a penalty function pen 1 (m) and we minimize on m the function γ 1,n ( fm ) + pen 1 (m). Our estimator satisfies an oracle inequality (up to a multiplicative constant). As the penalty pen 1 (m) depends on a unknown constant Σ 1 , we construct an estimator Σ1 and show that the robust estimator obtained by minimizing γ 1,n ( fm ) + pen 1 (m) satisfies the same oracle inequality.

To estimate the function σ 2 , we consider the randow variables

Y k∆ = (X (k+1)∆ -X k∆ ) 2 ∆ 1 |X(k+1)∆-Xk∆|≤ √ ∆ ln(n) = σ 2 (X k∆ ) + noise + remainder.
We show that these variables are close to the continuous part of the increments, then we construct an adaptive robust estimator of σ 2 as for σ 2 + ξ 2 . The risk of this estimator depends on the Blumenthal-Getoor index of ν and automatically realizes a bias-variance compromise. This article is composed as follows: in Section 2, we specify the model and its assumptions. In Sections 3 and 4, we construct the estimators and bound their risks. Section 5 is devoted to the e. The functions σ and ξ are bounded from below and above: ∃σ 2 1 , ξ 2 1 such that ∀x ∈ R, 0 < σ 2 (x) ≤ σ 2 1 and 0 < ξ 2 (x) ≤ ξ 2 1 .

To simplify the notations, let us set We introduce the σ-algebra F t = σ (η, (W s ) 0≤s≤t , (L s ) 0≤s≤t ).

B k∆ = ( 
The following lemma follows directly from the Burkholder-Davis-Gundy inequality.

Lemma 1. For any p ≥ 1, if I 2p := R z 2p ν(dz) < ∞ and E X 2p F k∆ < ∞, we have:

∀u ≥ 0, E sup 0≤s≤∆ (X s+u ) 2p F u (1 + |X u | 2p )
and

∀u ≥ 0, E sup 0≤s≤∆ (X s+u -X u ) 2p ∆I 2p + ∆ p (3)
where A B means ∃C, A ≤ CB and C does not depend on ∆ or on n. Then, as b, σ 2 and ξ 2 are Lipschitz:

E B 2p k∆ F k∆ = ∆ 2p b 2p (X k∆ ) + C∆ 2p+1/2 E Z 2p k∆ F k∆ = ∆ p σ 2p (X k∆ )E N 2p + C∆ p+1/2
where N ∼ N (0, 1)

E J 2p k∆ F k∆ = ∆ξ 2p (X k∆ )I 2p + C∆ 3/2 .
To bound the risk of the adaptive estimator of g = σ 2 + ξ 2 , we need bounded variables (or at least bounded variables with high probability). As exponential moments are needed, the functions σ and ξ have to be bounded. The big jumps must also be under control.

Assumption A5.

a. The Lévy measure ν is sub-exponential:

∃λ, C > 0, ∀|z| > 1, ν(] -z, z[ c ) ≤ Ce -λ|z| .
b. The random variables (X ∆ , . . . , X n∆ ) have exponential moments: ∃µ, K > 0, E (exp(µX ∆ )) ≤ K.

c. There exists δ, 0 < δ < 1, such that ∆ = O(n -δ ).

This assumption ensures that there is not too much big jumps in a fixed-time interval. Indeed, the terms |J k∆ | are bounded by a constant C with high probability. This allow us to bound the terms B k∆ , Z k∆ and J k∆ :

Lemma 2. a. Under Assumptions A1-A4, ∀ ∈]0, 1[, ∀r > 0, P |B k∆ | ≥ ∆ 1- n -r .
b. Under A1-A4 and A5e, for any r > 0,

P |Z k∆ | ≥ rσ 1 ∆ 1/2 ln(n) ≤ 2n -r .
c. For the jumps, we have two bounds. Indeed, one term of jump can be quite big, but we can control fairly well a mean of jump terms. Let us set q n = cr ln(n)/∆. Under Assumptions A1-A5, for any p > 0, for any r > 0, for c large enough,

P |J k∆ | ≥ r 2 C J ln(n) λ n -r and P 1 q n qn k=1 J 2p k∆ ≥ (r + 1) 2 C p ξ 2p 1 ∆ ln 2p (n) n -r
where the constans C J and C p will be precised later.

To estimate σ, we cut off the jumps. The following assumption ensures that the (not too small) jumps can be detected and removed.

Assumption A6.

a. The function ξ is bounded from below:

∃ξ 1 , ∀x ∈ R, ξ 2 (x) ≥ ξ 2 0 > 0. b. There exists 0 < δ < 1 such that ∆ = O(n -δ ).
To estimate the constant in the penalty function, we need an additional assumption on the stationary density. We need the following assumption: Assumption A7. The stationary density π is continuous on A.

Our aim is to estimate the functions g := σ 2 +ξ 2 and σ 2 non parametrically on the compact set A. Estimating directly a function is difficult. To do so, we introduce a sequence of increasing subspaces (S m ) m∈Mn of L 2 (A). Then, as in the linear regression framework, we construct a sequence of estimators by minimizing over each S m a mean square contrast function γ n (t). Finally we select the "best" estimators ĝ m and σ2 m thanks to a penalty function. As usual in nonparametric estimation, the risk of our estimators can be decomposed in a variance term and a bias term which depends of the regularity of the estimated function. We choose to use the Besov spaces to caracterize the regularity, which are well adapted to L 2 estimation (particularly for the wavelet decomposition).

First, we need some conditions on the subspaces S m .

Assumption A8.

a. The subspaces S m have finite dimension D m and are increasing: ∀m, S m ⊆ S m+1 .

b. The . L 2 and . ∞ norms are connected:

∃φ 1 , ∀m, ∀t ∈ S m , t 2 ∞ ≤ φ 1 D m t 2 L 2 with t 2 L 2 = A t 2 (x)dx and t ∞ = sup x∈A |t(x)|. This implies that for any orthonormal basis (ϕ λ ) λ∈Λm ) of S m , ∀x ∈ R, λ∈Λm ϕ 2 λ (x) ≤ φ 1 D m .
c. For any m ∈ N, there exists an orthonormal basis (ψ λ ) λ∈Λ of S m such that

∀λ, card(λ , ψ λ ψ λ ∞ = 0) ≤ φ 2 .
d. For any function t belonging to B α 2,∞ , the Besov space of regularity α ≤ r (see Appendix A),

∃c, ∀m, t -t m 2 L 2 ≤ cD -2α m
where t m is the orthogonal projection L 2 of t on S m .

These conditions are classical in nonparametric estimation. The vectorial subspaces generated by piecewise polynomials of degree r, spline functions of degree r or wavelets of regularity r satisfy these properties (see Meyer (1990), Proposition 4 p50, and[START_REF] Devore | Constructive approximation, volume 303 of Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Devore | Constructive approximation, volume 303 of Grundlehren der Mathematischen Wissenschaften[END_REF] for the proof of (d)).

3 Estimation of σ 2 + ξ 2 .

To estimate σ 2 for a diffusion process (without jumps), we can consider the random variables [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF] for instance). For jump diffusions,

T k∆ = (X (k+1)∆ -X k∆ ) 2 ∆ (see
X (k+1)∆ -X k∆ = B k∆ + Z k∆ + J k∆
and therefore T k∆ is a rough estimator of σ 2 (X k∆ ) + ξ 2 (X k∆ ), not of σ 2 (X k∆ ) alone. We can write:

T k∆ = σ 2 (X k∆ ) + ξ 2 (X k∆ ) + E k∆ + F k∆ + G k∆
where

∆E k∆ := (B k∆ + Z k∆ + J k∆ ) 2 -(Z k∆ + J k∆ ) 2 + E (Z k∆ + J k∆ ) 2 F k∆ -∆(σ 2 (X k∆ ) + ξ 2 (X k∆ ))
is a remainder term and

∆F k∆ := Z 2 k∆ -E Z 2 k∆ F k∆ , ∆G k∆ := J 2 k∆ -E J 2 k∆ F k∆ + 2J k∆ Z k∆ are centred.
The random variable F k∆ comes from the Brownian terms, and G k∆ from the jump and Brownian terms.

The following lemma derived from Proposition 1 and the Burkholder-Davis-Gundy inequality. It is proved in Section 6.

Lemma 3. Under Assumptions A1-A4,

• E E 2 k∆ F k∆ ∆, E E 4 k∆ F k∆ ∆. • E ( F k∆ | F k∆ ) = 0, E F 2 k∆ F k∆ = 2σ 4 (X k∆ ) + C∆ 1/2 , E F 4 k∆ F k∆ 1. • E ( G k∆ | F k∆ ) = 0, E G 2 k∆ F k∆ = ∆ -1 ξ 4 (X k∆ )I 4 + C∆ -1/2 . • E (G k∆ + F k∆ ) 2 F k∆ = ∆ -1 ξ 4 (X k∆ )I 4 + C∆ 1/2
where C is a constant that does not depend on n neither on ∆ and is not the same in two different lines.

Estimation for fixed m

For any m ∈ M n = {m, D m ≤ D n } where the maximal dimension D n satisfies D n ≤ √ n∆/ ln(n), we construct an estimator ĝm of g = σ 2 +ξ 2 by minimizing on S m the mean square contrast function

γ 1,n (t) = 1 n n k=1 (t(X k∆ ) -T k∆ ) 2 .
We can always find a function minimizing γ 1,n (t), but it may not be unique. On the contrary, the random vector (ĝ m (X ∆ ), . . . , ĝm (X n∆ ) is always uniquely defined. Therefore we consider the empirical risk R n (ĝ m ), where

R 1,n (t) = E t -g A 2 n with t 2 n = 1 n n k=1 t 2 (X k∆ )
and g A := g1 A . We introduce the L 2 π -norm t 2 π := A t 2 (x)π(x)dx, and g m,π the orthogonal projection of g on S m for the π-norm.

Proposition 4 (Bound of the empirical risk). Under Assumptions A1-A4 and A8, if m ∈ M n , the risk of the estimator ĝm is bounded by:

R 1,n (ĝ m ) ≤ g m,π -g A 2 π + 12Σ 1 D m n∆ + C∆
where the constant C does not depend on m, nor on n and ∆ and

Σ 1 := min ξ 4 1,A I 4 , Φ 1 π 0 I 4 R ξ 4 (z)π(z)dz whith ξ 1,A = sup x∈A ξ(x).
Corollary 5 (Bound of the L 2 -risk). The bound for the L 2 π -risk is less sharp. Under Assumptions A1-A4 and A8, if

m ∈ M n E ĝm -g A 2 π ≤ 9 g -g m,π 2 π + 24Σ 1 D m n∆ + 2C∆.
For any function t on the compact set A, t

2 π ≤ π 1 t 2 L 2 . Then, if we denote by g m the orthogonal projection (L 2 ) of g on S m , we get that g m,π -g A 2 π ≤ g A -g m 2 π ≤ π 1 g A -g m 2 L 2 and, under the same assumptions, E ĝm -g A 2 L 2 ≤ 9π 1 g -g m 2 L 2 + 24Σ 1 D m n∆ + 2C∆.
This estimator converges when n∆ → ∞. This is quite logical: indeed, for a compound Poisson process, we have approximatively n∆ jumps in the time interval [0, n∆]. We can remark that, quite naturally, the empirical risk and the L 2 π -risk converges with rate √ n∆. We have to find a good compromise between the bias term, g m -g A 2 L 2 , which decreases when m increases, and the variance term, proportional to D m /(n∆). If g belongs to the Besov space

B α 2,∞ (A) (with α ≥ 1), then g m -g A 2 L 2 is proportional to D -2α m .
The risk is then minimal for m opt = (n∆) 1/(1+2α) , and satisfies, when n∆ 2 → 0, [START_REF] Hanif | Reweighted Nadaraya-Watson estimation of jump-diffusion models[END_REF] assume that σ 2 and ξ 2 belongs to C 2 . If n∆ 3/2 → 0, they obtain the rate of convergence (n∆) -2/5 . We obtain the same rate of convergence for this regularity.

E ĝmopt -g A 2 L 2 (n∆) -2α/(2α+1) .

Adaptive estimator

We now have a collection of estimators ĝ0 , . . . , ĝm , . . .. Our aim is to select automatically the dimension m, without any knowlege of the regularity of g. As the subspaces S m are increasing, the function γ 1,n (ν m ) decreases when m increases. To find an adaptive estimator, we need to add a penalty term pen 1 (m). We take a penalty term proportional to the variance, that is pen 1 (m) = κΣ 1 Dm n∆ and choose the adaptive estimator ĝ m by minimizing the function m = min m∈Mn γ 1,n (ĝ m ) + pen 1 (m).

The random variables F k∆ and G k∆ are bounded with high probability thanks to Lemma 3. As they are also exponentially β-mixing, we can apply the Berbee's coupling lemma and a Talagrand's inequality for β-mixing random variables. We then obtain the following oracle inequality:

Theorem 6. Under assumptions A1-A5 and A8, there exists a universal constant κ 1 such that for any κ ≥ κ 1 ,

E ĝ m -g A 2 L 2 inf m∈Mn g m -g A 2 L 2 + pen 1 (m) + ∆ + ln 3 (n) n∆ .
The adaptive estimator ĝ m automatically realises the best (up to a multiplicative constant) compromise.

Robust estimator

It remains to find the constant in the penalty. The universal constant κ 1 can be explicitely bounded; the quantity

Σ 1 = min ξ 4 1,A I 4 , φ 1 π 0 R ξ 4 (x)π(x)dx
is unknown but can be bounded. We first estimate the function h(x) := ξ 4 (x)I 4 . Let us set

V k∆ := (X (k+1)∆ -X k∆ ) 4 ∆ = ξ 4 (X k∆ )I 4 + L k∆ small term + H k∆ centred term
.

We consider the estimator

ĥm = arg min t∈Sm γ 3,n (t) where γ 3,n (t) = 1 n n k=1 (V k∆ -t(X k∆ )) 2 . ( 4 
)
Let us denote by R 3,n := 1 n n k=1 (h(X k∆ -t(X k∆ )) 2 the empirical risk.

Proposition 7. Under Assumptions A1-A5 and A8, for any m such as

D m ≤ D n = n∆/ ln(n): E R 3,n ( ĥm ) ≤ h -h m 2 π I 4 + C D m n∆ + C ∆.
We set ĥ1 = sup x∈A ĥln(n) . Under assumptions A1-A5 and A8,

P ĥ1 -ξ 4 1,A I 4 ≥ 1/ ln(n) n -5 .
This result is sufficient to bound the penalty (which is all we need). However, the bound will be more precise if we estimate also the second term φ 1 /π 0 I 4 R ξ 4 (x)π(x)dx. In the proof of Proposition 7, we show that E L 2 k∆ ∆ and E ( H k∆ | F k∆ ) = 0. Then, we can remark that

E (V k∆ ) = E ξ 4 (X k∆ ) I 4 + C∆ 1/2 .
We can estimate E (V k∆ ) by the mean Vn . As we are insterested in the minimum of π, it is better to take the kernel estimator. Indeed, computing the pointzise risk of the kernel estimator is quite natural, and this allows us to control the error on the minimum quite easily. Moreover, the kernel estimator is already implemented in some softwares. We consider the rectangular kernel

K(x) := 1 |x|≤1 /2 and set πh (x) = 1 n n k=1 K h (X i -x) with K h (x) = h -1 K(x/h).
We take a grid (x 1 , . . . , x ln 2 (n) ) of equally spaced points of A, and we compute the minimum of π(n∆) -1/2 ) on this grid: π0 := min 1≤j≤ln 2 (n) π(n∆) -1/2 (x j ).

Let us set Σ1 = min ĥ1 , φ1 π0 Vn .

Lemma 8. Under assumptions A1-A5 and A7-A8, Σ1 is a consistent estimator of Σ 1 and more precisely, for C large enough

P | Σ1 -Σ 1 | ≥ 1 ln(n) n -5 .
Corollary 9. Under Assumption A1-A5 and A7-A8, for any κ ≥ κ 1 , the adaptive estimator ĝ m where

m = arg min m∈Mn γ 1,n (ĝ m ) + κ 1 + 1 ln(n) Σ1 D m n∆
achieves the oracle inequality:

E ĝ m -g 2 L 2 inf m∈Mn g m -g A 2 L 2 + D m n∆ + ∆ + ln 3 (n) n∆ .
4 Estimation of σ 2 .

We have that

T k∆ = (X (k+1)∆ -X k∆ ) 2 ∆ = σ 2 (X k∆ ) + J 2 k∆ + small terms + centred terms.
The idea is to keep T k∆ only when there is no jump. The continuous part of the increment is B k∆ + Z k∆ and the jump part of the increments is J k∆ . If we could access the continuous part, we would consider the quantities

U k∆ := (B k∆ + Z k∆ ) 2 ∆ .
We need to approximate these increments. As the stochastic term Z k∆ is of order ∆ 1/2 , we can only suppress the jumps of amplitude strictly greater than ∆ 1/2 . Authors such as [START_REF] Gloter | Jump filtering and efficient drift estimation for lévy-driven sde[END_REF] or [START_REF] Mancini | Threshold estimation of Markov models with jumps and interest rate modeling[END_REF] use a threshold proportional to ∆ 1/2-ε . We decide to use a slightly different threshold, proportional to ln(n)∆ 1/2 . Then we consider:

Y k∆ = X (k+1)∆ -X k∆ 2 ∆ 1 Ω X,k
where

Ω X,k = ω, X (k+1)∆ -X k∆ ≤ (σ 1 + ξ 1 ) ln(n)∆ 1/2 }.
This is a classical method to obtain the continuous increment of a Lévy process or a jump diffusion (see for instance [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF], , [START_REF] Shimizu | Estimation of parameters for diffusion processes with jumps from discrete observations[END_REF] . . . )

Lemma 10 (Approximation of the continuous increment). Under assumptions A1-A4 and A6,

E (U k∆ -Y k∆ ) 2p ln 4p (n)∆ 1-β/2 + 1 n .
We recall that β is the Blumenthal-Getoor index of the process (X t ). For a compound Poisson process, β = 0 and most of the jumps can be detected and removed. If β is high (close to 2), there is more and more small jumps and it becomes more difficult to detect them. Under Assumptions A1-A4 and A6,

P |U k∆ -Y k∆ | ≥ ln 2 (n) n -6

Estimation for fixed m

We consider the following contrast function and the empirical risk

γ 2,n (t) = 1 n n k=1 (t(X k∆ ) -Y k∆ ) 2 and R 2,n (t) = E t -σ 2 2 n .
Let us set σ2 m = arg inf t∈Sm γ 2,n (t). Proposition 11. Under Assumptions A1-A4, A6 and A8, the risk of the estimator σm is bounded by:

R 2,n (σ 2 m ) ≤ σ 2 A -σ 2 m 2 π + Σ 2 D m n + C∆ 1-β/2 ln 2 (n) where σ 2 A (x) = σ 2 (x)1 x∈A and Σ 2 ≤ min σ 4 1 , φ1 π0 σ 4 (x)π(x)dx .
The bias term σ 2 A -σ 2 m 2 L 2 and the variance term Σ 2 D m n -1 are the same as for a diffusion without jumps. Nevertheless, the remainder term is ∆ 2 for a diffusion process (see for instance [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF]). Even for Poisson processes, the remainder term will be here proportional to ∆ ln 4 (n). This is due to the jumps: to bound the risk, we use a Taylor approximation of X (k+1)∆ -X k∆ . For a SDE without jumps, we can refine this Taylor approximation to obtain a smaller remainder term. Here, the difference (X (k+1)∆ -X k∆ ) 2p is proportional to the probability of having a jump in the time interval [k∆, (k + 1)∆] and does not change with p: we can not refine the approximation.

If

σ 2 belongs to the Besov space B α 2,∞ , then σ 2 A -σ 2 m 2 L 2 D -2α m
. The best estimator is obtained for D mopt = n -1/(1+2α) and its risk is bounded by n -2α/(2α+1) + ∆ 1-β/2 . Remark 12. Let us set ∆ ∼ n -δ , with 0 < δ < 1. We have the following rates of convergence:

a jump diffusions diffusions 0 < δ ≤ 2α 2(2α+1) ≤ 1 2 ∆ 1/2-β/4 ∆ 2α 2(2α+1) ≤ δ ≤ 2α (2α+1)(1-β/2) ∧ 1 ∆ 1/2-β/4 n -α/(2α+1) 2α (2α+1)(1-β/2) ∧ 1 ≤ δ < 1 n -α/(2α+1) n -α/(2α+1)
If β = 0, the adaptive estimator will reach the rate of convergence n -α/(2α+1) for high frequency data (n∆ 2α+1/(2α) = O( 1)). This is the minimax rate of convergence for non-parametric estimation of σ 2 for diffusions processes (see for instance [START_REF] Hoffmann | L p estimation of the diffusion coefficient[END_REF]). If β or α is too big (as soon as β(α + 1/2) > 1), even for high frequency data, the remainder term will be predominant in the risk. [START_REF] Mancini | Threshold estimation of Markov models with jumps and interest rate modeling[END_REF] set δ = 1 (∆ = 1/n) and assume that the derivative of σ 2 is bounded. They obtain a rate of convergence of n -1/3 . For δ close to 1, we obtain the same rate if

σ 2 belongs to the Besov space B 1 2,∞ , that is if g ∈ L 2 .

Adaptive estimator

Let us introduce a penalty function pen 2 (m) = κn -1 Σ 2 and define the adaptive estimator σ2 m:

m = arg min m∈Mn γ 2,n σ2 m + pen 2 (m)
where

M n = {m, D m ≤ D n }.
To bound the risk of the estimator σ m, we use a Bernstein-type inequality and a decomposition on a lattice.

Theorem 13. Under Assumptions A1-A4, A6 and A8, there exists κ 2 such that, if κ ≥ κ 2 , we have the following oracle inequality:

R 2,n (σ 2 m) min m∈Mn σ 2 A -σ 2 m 2 L 2 + pen 2 (m) + ∆ 1-β/2 ln 4 (n) + 1 n .
Again, the constant

Σ 2 = min{σ 4 1 , φ1 π0 σ 4 (x)π(x)dx} is unknown. Let us set σ2 1 = sup A σ2 ln(n) and M c 4 = n -1 n k=1 (Y k∆ )
2 , and

Σ2 := min max σ4 1 , φ 1 3π 0 M c 4 .
The estimator Σ2 converges toward Σ 2 with high probability:

Lemma 14. Under Assumptions A1-A4 and A6-A7,

P Σ2 -Σ 2 ≥ 1 ln(n) n -5 .
Then the estimator with the estimated penalty satisfies also an oracle inequality:

Corollary 15. Let us set pen 2 (m) = κ Σ2 + 1 ln(n) D m /(n∆) with κ ≥ κ 2 and m = arg min m∈Mn γ 2,n (σ 2 m )+ pen 2 (m).
Then, for any κ ≥ κ 1 , under Asummptions A1-A4 and A6-A8, we have the following oracle inequality:

R n (σ 2 m) min m∈Mn σ 2 A -σ 2 m 2 L 2 + pen 2 (m) + ∆ 1-β/2 ln 4 (n) + 1 n .
5 Simulations

Models

In the first three models, we consider a stochastic process (X t ) such that

dX t = b(X t )dt + σ(X t )dW t + ξ(X t -)dL t , X 0 = η,
with L t a compound Poisson process:

L t = Nt k=1 ζ k
where N t is a compound Poisson process of intensity 1, and (ζ k ) are centred, independent, and identically distributed random variables. We denote by f the law of ζ k and we assume that E ζ 2 k = 1 and that the random variables (ζ k ) are independent of (η, (W t ) t≥0 , N t ). The simulation is done by an Euler scheme: we first simulate the instants and the size of the jumps. We obtain a time vector t 1 , . . . , t N of the time of the jumps. Thanks to an Euler scheme, we simulate X t on the sorted vector: (0, ∆, . . . , t 1 , . . . , t N , . . . , n∆). As X t can considerably vary after a jump, this method of simulation gives us a better accuracy than simulate L ∆ in one step.

The last two models have infinite jump activity: we nearly consider a stable Lévy process (with jumps smaller than 1). We use the same simulation algorithm as for the Poisson process, with an approximate simulaton of the jumps: we only compute the jumps greater than ∆. The jumps smaller than ∆ are replaced by a Gaussian.

All these models satisfy all the assumptions that we can check, that is A1, A2, A4, A5 and A6. We estimate the stationary density, and our models also seem to satisfy also Assumptions A3 and A7.

Method

We change A into the set [0, 1] by an affine transformation. We use the vectorial subspaces generated by the spline functions:

S m,r = Vect (ϕ r,k,m , k ∈ Z) , with ϕ r,k,m = 2 m/2 g r (2 m x -k)1 x∈A and g r = 1 x∈A * . . . * 1 x∈A (r + 1) time
Those subspaces nearly form a multi-resolution analysis of L 2 ([0, 1]) of regularity r.

To construct the adaptive estimator, we compute fm,r for D m ≤ √ n∆, 0 ≤ r ≤ 4 and 0 ≤ m ≤ 7. Indeed for m = 7, we already have D m = 128. If m was bigger, there will be a memory problem. The constants κ 1 and κ 2 are chosen by numerical calibration (see [START_REF] Comte | Adaptive estimation of mean and volatility functions in (auto-)regressive models[END_REF], [START_REF] Comte | A new algorithm for fixed design regression and denoising[END_REF] for a complete discussion). We take κ 1 = 6 and κ 2 = 24. Then we compute the adaptive estimators and the robust estimators. We minimize γ n ( fm,r ) + pen(m, r) with respect to m, then r.

To obtain Figures 12345, for each model, we realise 5 simulations and draw the 10 corresponding estimators: 5 with the true penalty constant, and five with the estimated penalty constant (the robust estimator). To construct the tables, for each set (n, ∆) and each model, we make 50 simulations, and for each simulation, we compute the adaptive estimators ĝ m,r or σ2 m,r and the robust estimator ĝ m,r or σ2 m,r , the selected dimension ( m, r), the estimated penalty constant Σ1 or Σ2 , and the empirical errors

risk = 1 n n k=1 (ĝ m,r (X k∆ ) -g(X k∆ )) 2 1 X k∆ ∈A , err = 1 n n k=1 (ĝ m,r (X k∆ ) -g(X k∆ )) 2 1 X k∆ ∈A .
Or for estimating

σ 2 risk = 1 n n k=1 σ2 m,r (X k∆ ) -σ 2 (X k∆ ) 2 1 X k∆ ∈A , err = 1 n n k=1 σ2 m,r (X k∆ ) -σ 2 (X k∆ ) 2 1 X k∆ ∈A .
We also compute the empirical error for each ĝm,r (or σ2 m,r ). Then we deduce the dimension (m min , r min ) that minimizes the empirical error (denoted by err min ). In the tables, we write the following informations:

• mean and standard deviation of the risk of the robust estimators ĝ m,r and σ2 m,r (in fact, we give the squrare roots of these quantities, that is mean(risk) and sd(risk) to compare more easily the error and the values of the function).

• A criteria of comparison between the risks of the adaptive estimator and the robust estimator; orpen = mean(ln(risk/err)). The quantity orpen is positive if the robust estimator is worse, and negative if the robust estimator is better.

• An oracle to compare the risks of the robust estimator and the 'oracle' estimator; or = mean(ln(risk/err min )). This quantity is always positive.

• the mean and the standard deviation of the selected dimension D m,r .

• the mean and standard deviation of the estimated penalty constant Σ1 or Σ2 .

The best results for risk are written in bold.

Results

The estimation of σ 2 seems very good for models 1-3, that is when the Blumenthal-Getoor index is equal to 0. For ∆ small enough (∆ = 10 -2 or 10 -3 for Model 1, ∆ = 10 -3 for Models 2 and 3), the risk of the robust adaptive estimator σ2 m,r is inversely proportional to n, that is proportional to the variance term. When β is not equal to 0 (models 4-5), we overestimate σ 2 : this is because the small jumps can not be cut. The risk mostly depends on ∆: the remainder term is predominant. The effect is more important for Model 5 (with Blumenthal-Getoor index equal to 3/2) than for Model 4 (with Blumenthal-Getoor index equal to 1/2): this is consistent with Remark 12. The best results are obtained for ∆ = 10 -3 and n = 10 5 . The results for function g = σ 2 + ξ 2 are quite different. Indeed, the variance term is bigger (it is proportional to 1/n∆ and not 1/n). The convergence is good for Ornstein-Uhlenbeck models (Models 1, 4 and 5); when ∆ is small enough (≤ 10 -2 ), the risk in inversely proportional to n∆. This is not exactly the case Models 2 and 3, as we have to find a good trade-off between the bias and the variance terms. But, when ∆ ≤ 10 -2 , the risk seems to depends only on n∆. The larger n∆, the larger the selected dimension: our estimator is really adaptive.

The risk of the robusts estimators seems to be either comparable, either even better (for the Ornstein-Uhlenbeck models) than the adaptive estimator with known penalty constant. For the Ornstein-Uhlenbeck, we tend to overestimate the penalty, which is better than underestimate it.

The constant Σ2 seems to converge, even very slowly. For Σ1 , it is more difficult to see a pattern. This is quite understandable: the rate of convergence of Σ2 really depends on ∆ and on n, whereas the one of Σ1 depends on ∆ and on n∆.

Proofs

Proof of Lemma1

The first two inequalities are fairly classical, so we do not give the proof here. The process being stationary, we only prove the result for k = 1.

For any function f Lipschitz, by Hölder inequality and equation ( 3),

E   (k+1)∆ k∆ f (X s ) -f (X k∆ )ds 2p F k∆   ≤ ∆ 2p-1 E (k+1)∆ k∆ (f (X s ) -f (X k∆ )) 2p ds F k∆ ∆ 2p+1 I 2p + ∆ 3p . ( 5 
)
Let us set

Bk∆ := (k+1)∆ k∆ (b(X s ) -b(X k∆ ))ds, Zk∆ := (k+1)∆ k∆ (σ(X s ) -σ(X k∆ ))dW s , Jk∆ := (k+1)∆ k∆ (ξ(X s ) -ξ(X k∆ ))dL s . (6) 
We have that

E B 2p ∆ F 0 = E ∆b(X k∆ ) + Bk∆ 2p F 0 = b(X 0 ) 2p ∆ 2p + 2p i=1 C i 2p b(X 0 ) 2p-i ∆ 2p-i E Bi k∆ F 0
Then by, as the function b is Lipschitz, by ( 5), 

E B 2p ∆ -∆ 2p b(X 0 ) 2p F 0 2p i=1 ∆ 2p-i ∆ i+1/2 ∆ 2p+1/2 .
dX t = -2X t dt + X 2 t -+ 3 X 2 t -+ 1 dW t + dL t
with Laplace jumps:

f (dz) = ν(dz) = 0.5e -|z √ 2| .
Then ξ 4 1 I 4 = 6 and σ 4 1 = 81.

Estimation of σ 2

Estimation of σ 2 + ξ 2 

(β = 3/2) b(x) = -2x σ 2 (x) = ξ 2 (x) = 1, ν(dz) = 1 4z 5/2 1 |z|≤1 .
Then the Blumethal-Getoor index is equal to 3/2 and ξ 4 1 I 4 = 1/5 and σ 4 1 = 1.

Estimation of σ 2

Estimation of σ 2 + ξ 2 We now focus on the Brownian term.

E Z 2p ∆ F 0 = E σ(X 0 )W ∆ + Zk∆ 2p F 0 = σ(X 0 ) 2p E W 2p ∆ + 2p i=1 C i 2p σ(X 0 ) 2p-i E W 2p-i ∆ Zi ∆ F 0 .
By Cauchy-Schwarz,

E Z 2p ∆ -σ(X 0 )E W 2p ∆ F 0 2p i=1 E W 4p-2i ∆ E Z2i k∆ F 0 1/2 2p i=1 ∆ 2p-i E Z2i ∆ F 0 1/2
According to the Burkholder-Davis-Gundy inequality, Hölder inequality and ( 3),

E Z2i ∆ F 0 E   ∆ 0 (σ(X s ) -σ(X k∆ )) 2 ds i F 0   ∆ i-1 E ∆ 0 (σ(X s ) -σ(X k∆ )) 2i ds F 0 ∆ i+1 (7) Therefore, As E W 2p ∆ = ∆ p E N 2p
where N is a centred reduced gaussian,

E Z 2p ∆ -σ(X 0 ) 2p ∆ p E N 2p F 0 ∆ p+1/2 .
To bound the jump term, let us first remark that

E L 2p ∆ = ∆I 2p + C∆ 2 . Then E J 2p k∆ F 0 = ξ 2p (X 0 )E L 2p ∆ + 2p i=1 C i 2p ξ 2p-i (X 0 )E L 2p-i ∆ Ji ∆ F 0 .
By the Burkholder-Davis-Gundy inequality and (5), we get:

E J2p ∆ I 2p ∆ 0 (ξ(X s ) -ξ(X k∆ )) 2p ds + ∆ 0 (ξ(X s ) -ξ(X 0 ) 2 ds p ∆I 2p (∆I 2p + ∆ p ) + ∆ p (∆I 2 ) p ∆ 2 I 2 2p + ∆ p+1 I 2p + ∆ 2p . (8) 
By Cauchy-Schwarz, we obtain:

E J k∆ -ξ 2p (X 0 )E L 2p ∆ F 0 2p i=1 ∆∆ 2 1/2 ∆ 3/2
which ends the proof.

Proof of Lemma 2

We introduce the compensated Poisson measure μ(s, z) = µ(s, z) -ν(z)s, and we decompose the Lévy process as follows:

L (1) s = s 0 |z|≤∆ 1/2 z μ(ds, dz), L (2) s = s 0 ∆ 1/2 <|z|≤∆ 1/4 z μ(ds, dz) L (3) s = s 0 ∆ 1/4 ≤|z|≤1 z μ(ds, dz), L (4) s = s 0 |z|>1 zµ(ds, dz) (9) 
and the random variables

J (i) k∆ = (k+1)∆ k∆ ξ(X s -)dL (i)
s . The Brownian and the very small jumps have a similar behaviour. One big jump term can be quite large, but as many terms are zero, its mean can be bounded.

Bound of the drift terms

As X k∆ ∈ A, b(X k∆ ) is bounded. Let us set Bk∆ := B k∆ -∆b(X k∆ ) = (k+1)∆ k∆ (b(X s )-b(X k∆ ))ds.

By Hölder inequality and Lemma 1, as

b is Lipschitz, if E X 2p 0 < ∞, E Bk∆ 2p F k∆ ≤ E   (k+1)∆ k∆ (b(X s ) -b(X k∆ )) 2p ds (k+1)∆ k∆ 1 2p/(2p-1) 2p-1 F k∆   ≤ E (k+1)∆ k∆ (X s -X k∆ ) 2p ds∆ 2p-1 F k∆ ∆ 2p+1 . (10) 
Therefore, by Markov inequality, for any ∈]0, 1[, any p ≥ 1,

P |B k∆ | ≥ ∆ 1- ∆ -2p+2p E B2p k∆ ∆ 1+2p .
By Assumption A5, ∆ = O(n -δ ) and then P |B k∆ | ≥ ∆ 1- n -r .

Bound of the Brownian terms

By Markov inequality,

P Z k∆ ≥ rσ 1 ∆ 1/2 ln(n) ≤ n -r E exp 1 σ 1 ∆ 1/2 Z k∆ ≤ n -r E exp 1 σ 2 1 ∆ (k+1)∆ k∆ σ 2 (X s )ds ≤ n -r . By symmetry, P Z k∆ ≤ -rσ 1 ∆ 1/2 ln(n) ≤ n -r and P |Z k∆ | ≥ rσ 1 ∆ 1/2 ln(n) ≤ 2n -r .
Bound of the small jumps.

The terms J

(1)

k∆ are small and can be bounded in the same way as the Brownian terms Z k∆ . As the terms are stationary, we focus on the bound of J

(1) ∆ . Let us set

K a,t = t 0 ∆ 1/2 -∆ 1/2
e aξ(Xs)z -1 -aξ(X s )z ν(dz)ds and V a,t = a t 0 ξ(X s -)dL (1) s -K a,t .

According to Corollary 5.2.2 of [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF], for any a ≥ 0, t > 0, exp(V a,t ) is a local martingale. We consider a sequence of increasing stopping times (τ N ) such that τ N → ∞ and exp(V a,t∧τ N ) is a martingale. Then E (exp(V a,∆∧τ N ) = 1. We can remark that for any a ≤ 1/(2ξ 1 ∆ 1/2 ),

K a,t ≤ t 0 ∆ 1/2 -∆ 1/2 a 2 z 2 ξ 2 (X s )ν(dz)ds ≤ ξ 2 1 a 2 t ∆ 1/2 -∆ 1/2 z 2 ν(dz).
We recall that β is the Blumenthal-Getoor index (see Assumption A2), and therefore

∆ 1/2 -∆ 1/2 z 2 ν(dz) = ∆ 1/2 -∆ 1/2 z β z 2-β ν(dz) ∆ 1-β/2 . We get K a,∆ ≤ ξ 2 1 a 2 ∆ 2-β/2
. By Markov's inequality,

S 1 := P ∆∧τ N 0 ξ(X s -)dL (1) s ≥ 2rξ 1 ∆ 1/2 ln(n) ≤ P V a,∆∧τ N ≥ exp 2raξ 1 ∆ 1/2 ln(n) -ξ 2 1 a 2 ∆ 2-β/2 ≤ exp -2raξ 1 ∆ 1/2 ln(n) + ξ 2 1 a 2 ∆ 2-β/2 .
Letting N → ∞, and a = 1/(2ξ 1 ∆ 1/2 ), we obtain P J

(1) ∆ ≥ 2rξ 1 ∆ 1/2 ln(n) exp (-r ln(n)) ≤ n -r . We prove in the same way that P -J

∆ ≥ 2rξ 1 ∆ 1/2 ln(n) n -r . Therefore:

P J (1) ∆ ≥ 2rξ 1 ∆ 1/2 ln(n) n -r . ( 11 
)
Bound for the jumps greater than ∆ 1/2 .

We want to bound 1 qn (j+1)qn-1 k=jqn (J (4) k∆ ) 2p . Let us first prove that the random variables J (4) k∆ are not too large. We have to bound both the number of jumps in the time interval [k∆, (k + 1)∆[ and the size of the jumps.

The probability of having a very large jump is quite small: by Assumption A5,

ν - (r + 2) ln(n) λ , (r + 2) ln(n) λ c n -(r+2) . ( 12 
)
The number of jumps greater than (r + 2) ln(n)/λ on the whole interval [0, n∆] follows a Poisson law of parameter smaller than Cn -(r+2) . Then

P µ [0, n∆], - (r + 2) ln(n) λ , (r + 2) ln(n) λ c ≥ 1 ≤ 1 -e -cn -(r+2) n∆ ∆ n r+1 .
The probability of having more than (r + 2)C (with C = 1/(δ(2 -β)) (see Assumption A5 for the definition of δ)) jumps greater than ∆ 1/2 in a time interval ∆ is very low. Let us set

E ∆ := ω, ∀k, µ [k∆, (k + 1)∆], -∆ 1/2 , ∆ 1/2 c < (r + 2)C .
The number of jumps greater than ∆ 1/2 in the time interval [k∆, (k + 1)∆] is a Poisson variable of parameter

∆ |z|≥∆ 1/2 ν(dz) ≤ ∆ 2-β z β ν(dz) ∆ 2-β . Then P (E c ∆ ) n(∆ 2-β ) (r+2)C = n∆ (r+2)/δ n -(r+1) (13) 
By ( 12) and ( 13), r+1) .

P |J (2)+(3)+(4) k∆ | ≥ (r + 2) 2 C ln(n) λ n -(
Bound of the mean of J , we have to bound the number of non-zero terms, which is bounded by the number of jumps greater than 1 in the time interval [jq n ∆, (j + 1)q n ∆]. We use the following property:

If Y follows a Poisson law of parameter θ n , then for any λ > 0,

P (Y ≥ c n ) ≤ e -λcn E (exp(λY )) ≤ e -λcn exp θ n (e λ -1) .
This inequality is minimal for λ = ln(c n /θ n ) and then: P (Y ≥ c n ) ≤ θn cn cn e -θn+cn . Therefore, for any λ ≥ 1:

P (Y ≥ λθ n ) ≤ e -θn(λ-1) . (14) 
Let us set v 1 := ν(] -1, 1[ c ) ∨ 1 and

E (4) p := qn k=1 J (4) k∆ 2p ≥ 2ν 1 q n ∆ (r + 2) 2 C∆ ln(n) λ 2p . If E (4) p
is true, then either one |J k∆ | is greater than (2r + 2) 2 C ln(n)/λ, either there are more than 2v 1 ∆q n jumps. As µ ([0, q n ∆[, [-1, 1] c ) is a compound Poisson process of intensity smaller than v 1 ∆q n , we obtain by ( 14),

P E (4) p q n P |J (4) k∆ | ≥ (r + 2) 2 C ln(n) λ + P (µ ([0, q n ∆[, [-1, 1] c ) ≥ 2v 1 ∆q n ) q n n r+1 + exp (-3q n ∆v 1 ) 1 n r+1 .

Bound of the mean of |J

(2)

k∆ + J (3) k∆ |. Let us set L (i)+(j) s = L (i) s + L (j) s and J (i)+(j) k∆ = J (i) k∆ + J (j)
k∆ . By (13), the probability of having more than (r + 2)C jumps greater than ∆ 1/2 in a time interval of length ∆ is smaller than n -(r+2) . Therefore

P ∃k, µ [k∆, (k + 1)∆], [-∆ 1/2 , ∆ 1/2 ] c ≥ (r + 2)C n -r+1 .
We have:

qn k=1 J (2)+(3) k∆ 2p 1 E∆ ≤ ξ 2p 1 (r + 2) 2p C p-1 qn∆ 0 |∆L (2+3) s | 2p
where

qn∆ 0 |∆L (2+3) s | 2p
is the sum of the 2p-power of all the jumps of size between ∆ 1/2 and 1 in the time interval [0, q n ∆]. Then

P qn k=1 |J (2+3) k∆ | 2p ≥ c ≤ Cn -r+1 + P qn∆ 0 |∆L (2+3) s | 2p ≥ c/((r + 2) 2p C 2p-1 ξ 2p 1 ) . As qn∆ 0 |∆L (2+3) s
| 2p is a compound Poisson process, we have, for any a ≤ 1:

E exp a qn∆ 0 |∆L (2+3) s | 2p = exp q n ∆ ∆ 1/2 ≤|z|≤1
(e az 2p -1)ν(dz)

≤ exp 2aq n ∆ ∆ 1/2 ≤|z|≤1 z 2p ν(dz) ≤ exp(2aq n ∆I 2p ).
Let us set a = (r + 1)/(q n ∆). By Markov inequality, we obtain: r+1) .

P qn∆ 0 |∆L (2+3) s | 2p ≥ q n ln(n)∆ ≤ E exp a qn∆ 0 |∆L (2+3) s | 2p exp (-a∆ ln(n)q n ) = exp (2(r + 1)I 2p ) n -(r+1) n -(
Therefore P 1 q n qn k=0 |J (2+3) k∆ | 2p ≥ (r + 2) 2p C 2p-1 ξ 2p 1 ln(n)∆ 1 n r+1 .
(15)

Proof of Lemma 3

Bound of the small term. Let us set

∆E

(1)

k∆ := (B k∆ + Z k∆ + J k∆ ) 2 -(Z k∆ + J k∆ ) 2 ∆E (2) k∆ := E (Z k∆ + J k∆ ) 2 F k∆ -∆σ 2 (X k∆ ) -∆ξ 2 (X k∆ )
We want to prove that ∆ 2 E E 2 k∆ ∆ 3 and ∆ 4 E E 4 k∆ ∆ 5 . We focus first on the term E

(1) k∆ . We can write

∆E (1) k∆ = B 2 k∆ + 2B k∆ (Z k∆ + J k∆ ) = B 2 k∆ + 2∆b(X k∆ )(Z k∆ + J k∆ ) + 2 Bk∆ (Z k∆ + J k∆ )
where Bk∆ =

(k+1)∆ k∆ (b(X s ) -b(X k∆ )ds.
Then, for p > 0, by ( 10) and Lemma 1,

∆ 2p E (E (1) k∆ ) 2p F k∆ ∆ 4p + ∆ 2p E (Z k∆ + J k∆ ) 2p F k∆ + E B2p k∆ (Z k∆ + J k∆ ) 2p F k∆ ∆ 4p + ∆ 2p+1 + E B4p k∆ F k∆ E (Z k∆ + J k∆ ) 4p F k∆ 1/2 . ∆ 4p + ∆ 2p+1 + ∆ 2p+1 ∆ 2p+1 . ( 16 
)
It remains to bound E

(2)

k∆ . As z 2 ν(dz) = 1, by Lemma 1,

∆E

(2)

k∆ = E (k+1)∆ k∆ (σ 2 (X s ) -σ 2 (X k∆ ))ds F k∆ + E (k+1)∆ k∆ (ξ 2 (X s ) -ξ 2 (X k∆ ))ds F k∆ + E ( 2Z k∆ J k∆ | F k∆ ) .
Let us prove that E ( Z k∆ J k∆ | F k∆ ) = 0. We consider two predictable (with respect to F t ) piecewise stationary processes A t and B t . Then

E (k+1)∆ k∆ A t dW t (k+1)∆ k∆ B s dL s = i,j E A ti B tj (W ti+1 -W ti )(L tj+1 -L tj ) F max(ti,tj ) = 0.
By taking the limit in L 2 , we obtain that

E (Z k∆ J k∆ ) = 0. ( 17 
)
By Lemma 1, we get that ∆E

(2) k∆

∆ 3/2 . Therefore E E 2 k∆ ∆ and E E 4 k∆ ∆.
Bound of the centred terms. By ( 17), we get that E ( G k∆ | F k∆ ) = 0 and by definition,

E ( F k∆ | F k∆ ) = 0. Moreover, by Lemma 1, E Z 4 k∆ F k∆ = 3∆ 2 σ 4 (X k∆ ) + C∆ 2+1/2 and E Z 8 k∆ F k∆ ∆ 4 . Therefore ∆ 2 E F 2 k∆ F k∆ = Var Z 2 k∆ F k∆ = 2∆ 2 σ 4 (X k∆ ) + C∆ 2+1/2
and E F 4 k∆ F k∆ 1. By Cauchy-Schwarz and Lemma 1, E J 2 k∆ Z 2 k∆ F k∆ ∆ 3/2 . By ( 17),

E Z k∆ J k∆ (J 2 k∆ -E J 2 k∆ F k∆ = E Z k∆ J 3 k∆ F k∆ .
We can write

Z ∆ J 3 ∆ = σ(X 0 )W ∆ ξ 3 (X 0 )L 3 ∆ + 3ξ 2 (X 0 )L ∆ J∆ + 3ξ(X 0 )L ∆ J2 ∆ + J3 ∆ + Z∆ J 3 ∆ We have that E W ∆ L 3 ∆ σ(X 0 )ξ 3 (X 0 ) F 0 = 0.
To bound the other terms, we use Cauchy-Schwarz inequality, Lemma 1, ( 7) and ( 8). We get that E Z k∆ J 3 k∆ ∆ 3/2 . Then

∆ 2 E G 2 k∆ F k∆ = ξ 4 (X k∆ )I 4 ∆ + C∆ 3/2 .
By Cauchy-Schwarz, E ∆ 2 F k∆ G k∆ ∆ 3/2 and therefore

∆ 2 E (F k∆ + G k∆ ) 2 F k∆ = ξ 4 (X k∆ )I 4 ∆ + C∆ 3/2
which ends the proof.

6.4 Proof of Proposition 4 (risk of the estimator of σ 2 + ξ 2 for m fixed)

We have that

γ 1,n (t) = 1 n n k=1 (t(X k∆ ) -g(X k∆ ) -E k∆ -F k∆ -G k∆ ) 2 = t -g 2 n + 1 n n k=1 (E k∆ + F k∆ + G k∆ ) 2 - 2 n n k=1 (E k∆ + F k∆ + G k∆ ) (g(X k∆ ) -t(X k∆ )) .
As ĝm minimizes γ 1,n (t), the inequality γ 1,n (ĝ m ) ≤ γ 1,n (Π m g), where Π m g is the orthogonal projection of g on S m for the . n -norm, holds and then

ĝm -g 2 n ≤ Π m g -g 2 n + 2 n n k=1 (E k∆ + F k∆ + G k∆ ) (ĝ m (X k∆ ) -Π m g(X k∆ )) .
As ĝm and Π m g are A-supported,

ĝm -g A 2 n ≤ Π m g -g A 2 n + 2 n n k=1 (E k∆ + F k∆ + G k∆ ) (ĝ m (X k∆ ) -Π m g(X k∆ )) .
where g m,π is the orthogonal projection for the . π -norm. As ĝm -g A

2 n = ĝm -Π m g 2 n + Π m g -g A 2 n , we get: ĝm -Π m g 2 n ≤ 2 n n k=1 (E k∆ + F k∆ + G k∆ ) (ĝ m (X k∆ ) -Π m g(X k∆ )) . ( 18 
)
By geometric and arithmetic means inequality,

2 n n k=1 E k∆ (ĝ m (X k∆ ) -Π m g(X k∆ )) ≤ 6 n n k=1 E 2 k∆ + 1 6 ĝm -Π m g 2 n . ( 19 
)
Let us introduce the unit random ball for the .

2 π -norm, B m = {t ∈ S m , t π ≤ 1} and the random function ν 1,n (t) = 1 n n k=1 (F k∆ + G k∆ )t(X k∆ )
. By geometric and arithmetic means inequality,

2ν 1,n (ĝ m -Π m g) ≤ ĝm -Π m g π sup t∈Bm ν 1,n (t) ≤ 1 6 ĝm -Π m g 2 π + 6 sup t∈Bm ν 2 1,n (t). ( 20 
)
Replacing ( 19) and (20) in equation ( 18), we obtain:

ĝm -Π m g 2 n ≤ 6 n n k=1 E 2 k∆ + 1 6 ĝm -Π m g 2 n + 6 sup t∈Bm ν 2 1,n (t) + 1 6 ĝm -Πg m 2 π .
Let us set

Ω n = ω, ∀m ∈ M n , ∀t ∈ S m , t 2 n t 2 π -1 ≤ 1 2
where the norms . π and . n are equivalent. The following lemma is proved by [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF] (section 7) for diffusion processes, but only relies on the β-mixing and stationary properties of the process (X t ).

Lemma 16.

P (Ω c n ) ≤ c n 8 .
On 

sup t∈Bm ν 2 1,n (t) ≤ sup Dm λ=1 a 2 λ ≤1 Dm λ=1 a 2 λ Dm λ=1 ν 2 1,n (ϕ λ ) ≤ Dm λ=1 ν 2 1,n (ϕ λ ). ( 22 
)
As

E ( F k∆ + G k∆ | F k∆ ) = 0, we get E ν 2 1,n (ϕ λ ) = E   1 n n k=1 (F k∆ + G k∆ ) ϕ λ (X k∆ ) 2   ≤ 1 n 2 n k=1 E ϕ 2 λ (X k∆ )E (F k∆ + G k∆ ) 2 F k∆ .
By Lemma 2 and stationarity,

E ν 2 1,n (ϕ λ ) ≤ 1 n E I 4 ξ 4 (X 0 ) ∆ + C √ ∆ ϕ 2 λ (X 0 ) = I 4 n∆ A (ξ 4 (y) + C √ ∆)ϕ 2 λ (y)π(y)dy ≤ ξ 4 1,A I 4 n∆ as (ϕ λ ) λ∈Λ is an orthonormal basis of S m for the L 2 π -norm. Therefore E sup t∈Bm ν 2 1,n (t) ≤ D m n∆ ξ 4 1,A I 4 . ( 23 
)
We can obtain another bound for

E sup t∈Bm ν 2 1,n (t) . Indeed, if t ∈ B m , then t 2 L 2 ≤ 1/π 0 . Then if (ψ λ ) λ∈Λ is an orthonormal basis (for the norm L 2 ) of S m , E sup t∈Bm ν 2 1,n (t) ≤ E sup t∈Sm, t 2 L 2 ≤1/π0 ν 2 1,n (t) ≤ 1 π 0 λ∈Λ E ν 2 1,n (ψ λ ) ≤ 1 π 0 n 2 n k=1 E λ∈Λ ψ 2 λ (X k∆ )(F k∆ + G k∆ ) 2 .
By Assumption 8, for any x, λ∈Λ ψ 2 (x) ≤ φ 1 D m and therefore

E sup t∈Bm ν 2 1,n (t) ≤ φ 1 D m nπ 0 E ξ 4 (X k∆ )I 4 ∆ + C∆ -1/2 = D m n∆ φ 1 I 4 π 0 R ξ 4 (z)π(z)dz.
It remains to bound the risk on Ω c n . The function ĝm minimises γ n (t) = n -1 n k=1 (T k∆t(X k∆ )) 2 . Therefore ĝm is the orthogonal projection for the . n -norm of (T ∆ , . . . , T n∆ ) on the vectorial subspace:

{(t(X ∆ ), . . . , t(X n∆ )), t ∈ S m }. As T k∆ = g(X k∆ ) + E k∆ + F k∆ + G k∆ , we obtain: ĝm -Π m g 2 n = Π m T -g 2 n = Π m E + Π m F + Π m G 2 n ≤ E + F + G 2 n .
By stationarity and Cauchy-Schwarz:

E ĝm -Π m g 2 n 1 Ω c n E 1 n n k=1 E 2 k∆ + F 2 k∆ + G 2 k∆ 1 Ω c n E E 4 ∆ + F 4 ∆ + G 4 ∆ P (Ω c n ) 1/2 .
By Lemma 16, P (Ω c n ) 1/n 8 and therefore

E ĝm -Π m g 2 n 1 Ω c n 1 ∆ 3 n 4 ≤ 1 n . Then E ĝm -g A 2 n ≤ E Π m g -g A 2 n + 12Σ 1 D m n∆ + C∆.
We can remark that, as Π m g is the orthogonal projection of g for the empirical norm on S m ,

Π m g -g A 2 n ≤ g m,π -g A 2 n . Therefore E ĝm -g A 2 n ≤ E g m,π g -g A 2 n + 12Σ 1 Dm n∆ + C∆. As, for any function t, deterministic, E t 2 n = t 2 π , we get: E ĝm -g A 2 n ≤ g m,π -g 2 π + 12Σ 1 D m n∆ + C∆.

Proof of Corollary 5

We can remark that ĝm -g

2 π = ĝm -g m,π 2 π + g m,π -g 2 π .
As ĝm and g m,π belongs to S m ,

ĝm -g m,π 2 π 1 Ωn ≤ 2 ĝm -g m,π 2 n = 2 ĝm -Π m g 2 n + 2 Π m g -g m,π 2 n ≤ 2 ĝm -Π m g 2 n + 4 Π m g -g 2 n + 4 g -g m,π 2 n ≤ 2 ĝm -Π m g 2 n + 8 g m,π -g 2 n . (24) 
As E ( t )

2 n = E t 2 π
for any deterministic function t, we have that:

E ĝm -g m,π 2 π 1 Ωn ≤ 2E ĝm -Π m g 2 n + 8 g m,π -g 2 π .
And

E ĝm -g m,π 2 π 1 Ω c n ≤ E Π m T 4 π + g 4 π 1/2 (P (Ω c n )) 1/2 1 n .
6.6 Proof of Theorem 6 (oracle inequality for ĝ m)

For any m, γ 1,n (ĝ m) + pen 1 ( m) ≤ γ 1,n (Π m g) + pen 1 (m). Therefore, as

γ n (t) = t -g 2 n + 1 n n k=1 (E k∆ + F k∆ + G k∆ ) 2 + 2 n n k=1 (E k∆ + F k∆ + G k∆ )(g(X k∆ ) -t(X k∆ ),
we obtain:

ĝ m -g A 2 n ≤ Π m g -g A 2 n +pen 1 (m)-pen 1 ( m)+ 2 n n k=1 (E k∆ +F k∆ +G k∆ )(ĝ m(X k∆ )-Π m g(X k∆ )).
Let us set B m,m = {t ∈ S m + S m , t π ≤ 1}. Then, by geometric-arithmetic mean inequality,

ĝ m -Π m g 2 n 1 Ωn ≤ 12 n n k=1 E 2 k∆ + 12 sup t∈B m, m ν 2 1,n (t) + 2 pen 1 (m) -2 pen 1 ( m).
The ball B m, m is random, it is not possible to bound E sup t∈B m, m ν 2 n (t) as previously. We introduce the function 12p 1 (m, m ) = pen 1 (m) + pen 1 (m ). Then

E ĝ m -Π m g 2 n 1 Ωn ≤ C∆ + 12E sup t∈B m, m ν 2 1,n (t) -p 1 ( m, m) + 4 pen 1 (m).
We can write:

E sup t∈B m, m ν 2 1,n (t) -p( m, m) ≤ m E sup t∈B m,m ν 2 1,n (t) -p 1 (m , m) + (25) 
To bound this term, we apply the Talagrand's inequality for β-mixing random variables (see Appendix A) to ν 1,n (t). The process (X t ) t≥0 is exponentially β-mixing: there exists c, c such that the β-mixing coefficient of X t satisfies β X (t) ≤ ce -c t . Therefore the random vectors (F k∆ + G k∆ , X k∆ ) are exponentially β-mixing with β-mixing coefficient smaller than β X (∆) ≤ ce -c ∆ . Let us set q n = 8 ln(n)/(c ∆) and p n = n/(2q n ) . We consider the set Ω B on which the random variables B k∆ , Z k∆ and J k∆ are bounded:

Ω B = ω, n k=1 |B k∆ | ≤ ∆ 1-, |Z k∆ | ≤ 7σ 1 ∆ 1/2 ln(n), |J k∆ | ≤ 49C J ln(n) λ 1≤k≤n , p∈{1 ,2,4} pn-1 j=0  
  (j+1)qn k=jqn+1 J 2p k∆ ≤ 64C p ξ 2p 1 ∆ ln 2p (n)    0≤j≤pn-1    . (26) 
By Lemma 2, P (Ω c B ) n -6 . The random variables F k∆ and G k∆ are bounded on Ω B :

∀k, F k∆ ≤ C ln 2 (n) and 1 q n qn i=1 G kqn+i∆ ≤ C ln 2 (n)
for C a constant large enough. We consider the function f t (x, y) = xt(y) and set

U j = 1 q n (j+1)qn-1 k=jqn f t (F k∆ + G k∆ , X k∆ ) = 1 q n (j+1)qn-1 k=jqn (F k∆ + G k∆ ) t(X k∆ ).
By Lemma 3, E (U j ) = 0. For any t ∈ B m,m , by stationarity,

Var (U j ) = 1 q 2 n qn k=1 E t 2 (X k∆ )E (F k∆ + G k∆ ) 2 F k∆ ≤ 1 q n E t 2 (X 0 ) ξ 4 1 (X 0 )I 4 + C∆ 1/2 ∆ .
Therefore sup

t∈B m,m Var (U j ) ≤ C q n ∆ := V q n . Let us set D = max(D m , D m ). As, if t ∈ B m,m , t ∞ D 1/2 , on Ω B , there exists a constant c such that, for any j, |U j | ≤ c ln 4 (n)D 1/2 . We set O = Ω n ∩ Ω B , M := c ln 4 (n)D 1/2 and H 2 := Σ 1 D/∆. By (23), E 1 pn U j ≤ E ν 2 1,n (t) ≤ H/ √ n.
As the dimension of S m+m is finite, we can find a countable family F dense in B m,m and we can apply the Talagrand's inequality for β-mixing random variables (see Appendix A). Therefore

E sup t∈B m,m ν 2 n,1 (t) -6H 2 + 1 O V n exp -c H 2 V + M 2 p 2 n exp -c p n q n H M + M n 2 1 n∆ e -c D + ln 8 (n)D p 2 n exp -c p n q n 1 ∆ 1/2 ln 4 (n) + ln 4 (n)D 1/2 n 2 1 n∆ e -c D + ln 10 (n) n 2 ∆ 2 D exp -c √ n∆ ln 5 (n)
where c is a constant that varies from one line to another. By (25), as

m ∈Mn D m,m ≤ D 2 n ≤ n∆, E sup t∈B m, m ν 2 n,1 (t) -p(m, m) + 1 n∆ m e -cD m,m + ln 6 (n) n∆ 1 n∆ .
We can bound E ĝ m -Π m g 2 n 1 O c in the same way as we bound the risk of the non-adaptive

estimator on Ω c n : E ĝ m -Π m g 2 n 1 O c 1 ∆ 3/2 n 5/2 1 n .
Then, for any m ∈ M n ,

E ĝ m -g A 2 n ≤ g m,π -g A 2 π + κΣ 1 D m n∆ + C∆.
It remains to replace the . n -norm by the . L 2 -norm. The proof is the same as in Subsection 6.5.

Proof of Proposition 7 (risk of the estimator of h for m fixed)

Let us first precise H k∆ and L k∆ . We can write ∆H k∆ = (Z k∆ + J k∆ ) 4 -E (Z k∆ + J k∆ ) 4 and

L k∆ = L (1) k∆ + L (2) 
k∆ with

∆L

(1)

k∆ := (B k∆ + Z k∆ + J k∆ ) 4 -(Z k∆ + J k∆ ) 4 ∆L (2) k∆ := E (Z k∆ + J k∆ ) 4 -∆ξ 4 (X k∆ )I 4 .
Let us first prove that

E L 2 k∆ ∆, E L 4 k∆ ∆ (27) E (H k∆ |F k∆ ) = 0, E H 2 k∆ |F k∆ ≤ C∆ -1 and E H 4 k∆ 1/∆ 3 . ( 28 
)
To bound L

(1) k∆ , we use the same techniques as for the bound of E

(1) k∆ : we develop L

(1) k∆ , use the decomposition B k∆ = ∆b(X k∆ ) + Bk∆ , and thanks to Cauchy-Schwarz inequality, Lemma 1 and equation ( 10), we obtain that E L

(1) k∆ p ∆. By Lemma 1, we get that E Z 4 k∆ ≤ C∆ 2 and

E J 4 k∆ = ξ 4 (X k∆ )I 4 ∆ + C∆ 3/2 . Therefore |L (2) k∆ | ∆ 1/2
. By definition, E (H k∆ ) = 0 and we derives from Lemma 1 and Cauchy-Schwarz inequality that E H 2 k∆ ∆ -1 and E H 4 k∆ ∆ -3 . The rest of the proof is done in the same way as in Subsection 6.4. We denote by Π m h the orthogonal projection of h on S m for the . n -norm and we get:

ĥm -Π m h 2 n 1 Ωn ≤ 6 n n k=1 L 2 k∆ + 6 Dm λ=1 ν 2 3,n (ϕ λ ) with ν 2 3,n (t) := 1 n n k=1 H k∆ t(X k∆ ) (29) 
By ( 28), we obtain that E ν 2 3,n (ϕ λ )

1 n∆ and therefore

E ĥm -Π m h 2 n 1 Ωn ≤ h -h m,π 2 π + C D m n∆ + C ∆.
The bound on Ω c n is done in the same way as in Subsection 6.4.

6.8 Proof of Lemma 8 (Estimation of the penalty constant)

Estimation of the first bound of the variance term. Let us set h 1,A = sup x∈A h(x). We have that

| ĥ1 -h 1,A | ≤ ĥm -h A L ∞ (A) ≤ ĥm -h m L ∞ (A) + h m -h A L ∞ (A) .
By DeVore and Lorentz (1993, p182) and Barron et al. (1999, Lemma 12), if h belongs to the Besov space

B α 2,∞ (A), then h m -h A 2 L ∞ (A) ≤ CD 1-2α m . ( 30 
)
As

g is Lipschitz on A, g ∈ B 1 2,∞ (A) and h m -h A 2 L ∞ (A)
D -1 m . As ĥm and h m belongs to S m ,

ĥm -h m 2 L ∞ (A) ≤ φ 1 D m ĥm -h m 2 L 2 ≤ φ 1 D m π 0 ĥm -h m 2 π . On Ω n , ĥm -h m 2 π ≤ 2 ĥm -h m 2 n ≤ 2 ĥm -Π m h 2 n + 2 Π m h -h m 2 n and Π m h -h m 2 n ≤ h A -h m 2 n .
Then by ( 29),

| ĥ1 -h 1,A |1 Ωn D -1 m + D m h m -h A 2 n + D m 1 n n k=1 L 2 k∆ + λ ν 2 3,n (ϕ λ ) . (31) 
We can write

h m -h A 2 n = h m -h A 2 π + h m -h A 2 n -h m -h A 2 π . As h belongs to the Besov space B α 2,∞ , h m -h A 2 π ≤ D -2α m . It remains to bound h m -h A 2 n -h m -h A 2 π .
As this term is centred, we can apply a Bennet's inequality. We can remark that, when h ∈ B α 2,∞ , by (30),

h m -h A 2 ∞ ≤ CD 1-2α m =: M and Var (h m -h A ) 2 (X k∆ ) = (h m -h A ) 4 (x)π(x)dx ≤ h m -h A 2 π h m -h A 2 ∞ ≤ C D 1-4α m =: V . Then P h m -h A 2 n -h m -h A 2 π ≥ cD -2α m ≤ exp - c 2 nD -4α m 2(D 1-4α m + D 1-4α m ln(n)∆ -1 ≤ exp -c n∆ ln(n) D -1 m n -8 .
On Ω B (see ( 26)), by Lemma 2,

∆ 2 n n k=1 L (1) k∆ 2 1 n n k=1 B 2 k∆ (J k∆ +Z k∆ ) 6 1 n n k=1 B 4 k∆ × 1 n n k=1 (Z k∆ + J k∆ ) 12 ∆ 3 ln 8 (n)
and as |L

(2)

k∆ | ≤ ∆ 1/2 , 1 n n k=1 L 2 k∆ ∆ ln 8 (n).
To bound ν 2 3,n (ϕ λ ), we apply (again) Bennett's inequality. On Ω B ,

1 q n qn k=1 |H k∆ | ∆ -1 q n qn k=1 Z 4 k∆ + J 4 k∆ ln 4 (n).
We take

V = C∆ -1 , M = C ln 4 (n)D 1/2 m . Then, as E (ν n,3 (ϕ λ )) = 0, P |ν n,3 (ϕ λ )| ≥ ln(n) √ n∆ ≤ exp - -c ln 2 (n)∆ -1 ∆ -1 + ln 6 (n)D 1/2 m ∆ -1 / √ n∆ ≤ exp   - c ln 2 (n) 1 + ln 6 (n)D 1/2 m √ n∆   and, if D 2 m ≤ (n∆)/ ln 12 (n), P |ν n,3 (ϕ λ )| ≥ ln(n) √ n∆ n -6 .
Collecting terms, we get that, as α ≥ 1,

P | ĥ1 -h 1,A | D -1 m + D m ln(n) √ n∆ + ∆ ln 6 (n) n -5 .
By taking D m = ln(n), we obtain the expected result.

Estimation of the second bound of the variance term. We first focus on the term Vn . As V k∆ = I 4 ξ 4 (X k∆ ) + L k∆ + H k∆ , by ( 28) and ( 27), E (V k∆ ) = I 4 ξ 4 (x)π(x)dx + C∆ 1/2 . Moreover,

Var (V k∆ ) ≤ E V 2 k∆ ≤ C ∆ + C ∆ 1/2
and by Lemma 2, 1 qn qn k=1 V k∆ ln 4 (n). Therefore, by Bennett's inequality,

P | Vn -E (V k∆ ) | ≥ ln 7 (n) √ n∆ exp - c ln 14 (n)∆ -1 ∆ -1 + ln 12 (n)∆ -1 exp -c ln 2 (n) n -5
and

P | Vn -ξ 4 (x)π(x)dx| ≥ C∆ 1/2 + ln 7 (n) √ n∆ n -5 .
It remains to bound π0 -π 0 . We have that E (π h (x)) = π h (x) where π h (x) = K h (y -x)π(y)dy. Moreover, as the process (X t ) is exponentially β-mixing, by Berbee's coupling lemma, on Ω *

Var (π h (x)) = Var 1 n n k=1 K h (X k∆ -x) ≤ 1 p n Var 1 q n qn k=1 K h (X k∆ -x) ≤ 1 p n Var (K h (X k∆ -x)) ≤ ln(n) n∆ E K 2 h (X k∆ -x) .
By a change of variable, we get that

Var (π h (x)) ≤ ln(n) n∆ 1 h 2 K 2 y -x h π(y)dy = ln(n) n∆h K 2 (u)π(x + hu)du ln(n) n∆h .
Then

E (π h (x) -π(x)) 2 ≤ (π h (x) -π(x)) 2 + C ln(n) n∆h .
If π is continuous, then the bias term (π h (x) -π(x)) 2 satisfies (see [START_REF] Alexandre | Introduction à l'estimation non-paramétrique[END_REF], Proposition 1.2 with β = 1)):

(π h (x) -π(x)) 2 ≤ C h. (32) 
In that case, the best estimator is obtained for h = 1/ √ n∆. By Bennett's inequality for β-mixing random variables (see Appendix A), as

|K h | ≤ 1/h = √ n∆ and Var ( qn k=1 K h (X k∆ -x)) ≤ Cq 2 n /h = q n C ln(n) ∆h = q n ln(n) √ n √ ∆ , P |π h (y) -πh (y)| ≥ ln 2 (n) (n∆) 1/4 ≤ 2 exp - c ln 4 (n)n 1/2 ∆ -1/2 ln(n)∆ -1/2 n 1/2 + ln 3 (n)n 1/2 ∆ -1/2 (n∆) -1/4 ≤ 2 exp   - c ln 4 (n) ln(n) + ln 3 (n) (n∆) 1/4   n -6
As π is continuous, by (32),

|π 0 -π 0 | ≤ min 1≤j≤ln 2 (n) |π(x j ) -π 0 | + max 1≤j≤ln 2 (n) |π (n∆) -1/2 (x j ) -π(x j )| 1 ln 2 (n) + ln 2 (n) (n∆) 1/2 + max 1≤j≤ln 2 (n) |π (n∆) -1/2 (x j ) -π (n∆) -1/2 (x j )|
and therefore

P |π 0 -π 0 | ≥ 1 ln(n) + ln 2 (n) (n∆) 1/4 n -5 (33) 
which concludes the proof.

6.9 Proof of Lemma 10 (Approximation of the continuous terms)

Let us denote by N k = µ ](k∆, (k + 1)∆] , -∆ 1/4 , ∆ 1/4 c the number of jumps of amplitude greater than ∆ 1/4 in the time interval ]k∆, (k + 1)∆]. We introduce the set

Ω N,k = ω, N k = 0 and L (1)+(2) k∆ ≤ 4 σ 1 + ξ 1 ξ 0 ∆ 1/2 ln(n)
where

L (i)
s are defined in (9). The jumps are explicitely bounded on Ω N,k , which is close to Ω X,k . The following lemma is proved later.

Lemma 17.

P Ω c X,k ∆ 1-β/2 , P Ω c N,k ∆ 1-β/2 and P Ω X,k ∩ Ω c N,k ∆ 2-β/2 + n -1 .
We can write

(U k∆ -Y k∆ ) = 1 ∆ (B k∆ + Z k∆ ) 2 1 Ω c X,k - 1 ∆ J 2 k∆ 1 Ω X,k - 2 ∆ J k∆ (Z k∆ + B k∆ ) 1 Ω X,k . On Ω B , |Z k∆ +B k∆ | ∆ 1/2 ln(n). Moreover, on Ω X,k ∩Ω B , |J k∆ | ≤ |C∆ 1/2 ln(n)-(B k∆ +Z k∆ )| ∆ 1/2 ln(n).
We obtain the following bound:

|U k∆ -Y k∆ |1 Ω B ln 2 (n)1 Ω c X,k + ln 2 (n)1 Ω X,k ∩Ω c N,k + J 2 k∆ ∆ + ln(n) |J k∆ | ∆ 1/2 1 Ω N,k . (34) 
Then by Lemma 17 and Lemma 1,

E (U k∆ -Y k∆ ) 2p ln 4p (n)∆ 1-β/2 + 1 n 6 + E J 4p k∆ ∆ -2p + J 2p k∆ ∆ -p ln 2p (n) 1 Ω N,k .
It remains to bound E J 4p k∆ ∆ -2p 1 Ω N,k . By equation ( 8),

E J 2p k∆ 1 Ω N,k E L 2p k∆ 1 Ω N,k + E J2p k∆ 1 Ω N,k E L 2p k∆ + ∆ 2 I 2 2p + ∆ p+1 I 2p + ∆ 2p .
As we are in Ω N,k , we can replace

I 2p by I 2p,N := |z|≤∆ 1/4 z 2p ν(dz). For any p ≥ 1, I 2p,N ≤ ∆ 2p/4-β/4 |z|≤∆ 1/4 z β ν(dz) ∆ p/2-β/4 . Then E J2p k∆ 1 Ω N,k ∆ 2+p-β/2 . ( 35 
)
It remains to bound E L 2p k∆ . We use the following lemma which is nearly Proposition 4.8 of Mai (2014) (the proof is given later):

Lemma 18. For any integer p ≥ 1,

E L (1)+(2) k∆ 1 Ω N,k 2p ∆ 1+p-β/2 ln(n) 2p-β Then E (J (1)+(2) k∆ ) 2p 1 Ω N,k ∆ 1+p-β/2 ln(n) 2p-β and we deduce that E (U k∆ -Y k∆ ) 2p ∆ 1-β/2 ln 4p (n). Let us now bound |U k∆ -Y k∆ |. We have that |U k∆ -Y k∆ | ≤ 2 ∆ (B k∆ + Z k∆ ) 2 + 2 ∆ J 2 k∆ 1 Ω X,k .
And

P |J k∆ | ≥ (4p + 2)σ 0 ∆ 1/2 ln(n) ∩ Ω X,k ≤ P |B k∆ + Z k∆ | ≥ (4p + 1)σ 0 ∆ 1/2 ln(n) .
Then, by Lemma 2,

P |U k∆ -Y k∆ | ≥ Cσ 2 1 ln 2 (n) n -5
where C is a universal constant.

Proof of Lemma 17

Bound of P Ω c X,k .

We have that X (k+1)∆ = X k∆ + B k∆ + Z k∆ + J k∆ . Then

P Ω c X,k ≤ P |B k∆ | ≥ ∆ 1/2 + P |Z k∆ | ≥ 6σ 1 ∆ 1/2 ln(n) + P |J k∆ | ≥ 12ξ 1 ∆ 1/2 ln(n) .
By Lemma 2,

P |B k∆ | ≥ ∆ 1/2 n -6 and P |Z k∆ | ≥ 6σ 1 ∆ 1/2 ln(n) n -6 .
By (11), P |J

(1)

k∆ | ≥ 12ξ 1 ∆ 1/2 ln(n) n -6
. Moreover, by Assumption 4

P J (2+3+4) k∆ > 0 ≤ ∆ [-∆ 1/2 ,∆ 1/2 ] c ν(dz) ≤ ∆∆ -β/2 [-∆ 1/2 ,∆ 1/2 ] c |z| β ν(dz) ∆ 1-β/2 (36)
which concludes the proof.

Bound of P Ω c N,k .

We have that

P (N k ≥ 1) = (k+1)∆ k∆ |z|≥∆ 1/4 ν(dz)dt ≤ ∆ 1-β/4 |z|≥∆ 1/4 |z| β ν(dz) ∆ 1-β/4 .
Then by ( 36) and ( 11), we obtain:

P Ω c N,k ≤ P (N k ≥ 1) + P |L (2) k∆ | > 0 + P L (1) k∆ ≥ c ln(n)∆ 1/2 ∆ 1-β/2 . Bound of P Ω X,k ∩ Ω c N,k .
We have that

P (Ω X,k ∩ {N k ≥ 1}) ≤ P (N k ≥ 2) + P (Ω X,k ∩ {N k = 1}) . Now P (N k ≥ 2) = ∆ |z|≥∆ 1/4 ν(dz) 2 ≤ ∆ 1-β/4 |z|≥∆ 1/4 |z| β ν(dz) 2 ∆ 2-β/2 .
If N k = 1, there exists a unique jump greater than ∆ 1/4 and therefore J (3+4) k∆ ≥ ξ 0 ∆ 1/4 . By conditional independence, we get:

P (Ω X,k ∩ {N k = 1}) ≤ P (N k = 1) × P B k∆ + Z k∆ + J (1+2) k∆ > cξ 0 ∆ 1/4 ≤ P (N k = 1) P (Ω c B ) + P J (1+2) k∆ ≥ cξ 0 ∆ 1/4 3 n -6 + ∆ 1-β/4 P J (1+2) k∆ ≥ cξ 0 ∆ 1/4 3 35 
By a Markov inequality, we obtain:

P J (1+2) k∆ > c∆ 1/4 ∆ -1/2 E J (1+2) k∆ 2 ∆ -1/2 ∆ ∆ 1/4 -∆ 1/4 z 2 ν(dz) ∆ 1/2 ∆ 1/2-β/4 . We obtain that P (Ω X,k ∩ {N k ≥ 1}) ∆ 2-β/2 . It remains to bound P Ω X,k ∩ {N k = 0} ∩ |L [1)+(2) k∆ | ≥ c∆ 1/2 ln(n) .
We can remark that ξ(X k∆ )L

(1)+( 2) k∆ = J

(1)+( 2) k∆ -J(1)+( 2) k∆ , and by Lemma 2,

P Ω X,k ∩ J (1)+(2) k∆ ≥ (c + 1)∆ 1/2 ln(n) ∩ {N k = 0} P |B k∆ + Z k∆ | ≥ c∆ 1/2 ln(n) n -6 .
By ( 35) and a Markov inequality, we obtain that P J(1)+( 2)

k∆ ≥ ∆ 1/2 ln(n) N k = 0 ∆ 2-β/2
which ends the proof.

Proof of Lemma 18

Let us introduce a nonnegative function f ∈ C ∞ such that

f (x) = x 2p if |x| ≤ 1 f (x) = 0 if |x| ≥ 2. and ∀x, f (x) ≤ 1. Let us set f a (x) = a 2p f (x/a) for a > 0. Then E L (1)+(2) ∆ 2p 1 Ω N,k ≤ E f c∆ 1/2 ln(n) (L (1)+(2) ∆
) .

Now L

(1)+(2) ∆ is a pure jump Lévy process, and its characteristic function is known. Following the same proof than Mai (2014, proof of Proposition 4.8), we get that, thanks to the properties of the Fourier transform denoted by F (see the Appendix),

E f a (L (1)+(2) t ) ≤ t 1 -1 f a (x)ν(dx) + Ct 2 R F f a (u)|u| 2β du.
As f belongs to the Schwarz space (see Appendix A), so does F f and therefore , for any m > 0, there exists a constant

C m such that |F f (u))| ≤ C m |u| -m . Then, as F a (u) = a 2p+1 F (au), we get that |F f a (u)| ≤ C 0 a 2p+1 ∧ C 3+β a 2p-2-β |u| -3-β . Then E f a (L (1)+(2) t ) t 2a -2a x 2p ν(dx) + t 2 a 2p+1 [-1,1] |u| 2β du + t 2 a 2p-2-β [-1,1] c |u| β-3 du.
As β < 2, β -3 < -1 and all the integrals are finite. Taking t = ∆ and a = c∆ 1/2 ln(n), we get:

E L (1)+(2) k∆ 1 Ω N,k 2p ∆ 1+p-β/2 ln 2p-β (n).
6.12 Proof of Proposition 11 (Risk of the estimator of σ for fixed m)

We have that Y k∆ = U k∆ + Y k∆ -U k∆ . We can write:

U k∆ = (B k∆ + Z k∆ ) 2 ∆ = σ 2 (X k∆ ) + F k∆ + E Z 2 k∆ ∆ -σ 2 (X k∆ ) + 2B k∆ Z k∆ + B 2 k∆ ∆ Let us set Ẽk∆ = Y k∆ -U k∆ + E Z 2 k∆ ∆ -σ 2 (X k∆ ) + 2B k∆ Z k∆ + B 2 k∆ ∆ .
By Lemmas 1 and 10, we have that

E Ẽ2 k∆ ∆ 1-β/2 ln 4 (n) + ∆ and E Ẽ4 k∆ ∆ 1-β/2 ln 8 (n).
Moreover, by Lemma 3,

E ( F k∆ | F k∆ ) = 0, E F 2 k∆ F k∆ ≤ σ 4 1 ∆ and E F 4 k∆ F k∆ 1 ∆ .
The end of the proof is the same as in Subsection 6.4. On Ω n , we obtain that:

E σ2 m -σ 2 A 2 n 1 Ωn ≤ σ 2 m -σ 2 A 2 π + 12E Ẽ2 ∆ + 12E sup t∈Bm ν 2 n,2 (t)
where ν n,2 (t) = n -1 n k=1 F k∆ t(X k∆ ). By Lemma 3, we get that

E sup t∈Sm ν 2 n,2 (t) ≤ λ∈Λ E ν 2 n,2 (ϕ λ ) = λ E F 2 k∆ ϕ 2 λ (X k∆ ) ≤ σ 4 1 D m n
where (ϕ λ ) λ∈Λ is an orthonormal basis for the . π -norm. If we take an orthonormal basis for the . L 2 -norm, we obtain the second bound

E sup t∈Sm ν 2 n,2 (t) ≤ φ 1 σ 4 (x)π(x)dx π 0 D m n .
The bound on the risk on Ω c n is done in the same as in Subsection 6.4.

6.13 Proof of Theorem 13 (Oracle inequality for the adaptive estimator of σ)

The beginning of the proof is the same as in Subsection 6.6. As, for any m, γ n,2

(σ 2 m) + pen 2 ( m) ≤ γ n,2 (σ 2 m ) + pen 2 (m), we get that σ2 m -σ 2 A 2 n ≤ σ 2 m -σ 2 A 2 n + pen 2 (m) -pen 2 ( m) + 2 n n k=1 ( Ẽk∆ + F k∆ )(σ 2 m(X k∆ ) -σ 2 m (X k∆ )).
As previously, we bound the risk on Ω n and on Ω c n . We set p 2 (m, m ) = (pen 2 (m) + pen 2 (m ))/12. On Ω n , we have:

E σ2 m -σ 2 A 2 n ≤ σ 2 m -σ 2 A 2 π +4 pen 2 (m)+C∆ 1-β/2 +12 m E sup t∈B m,m ν 2 n,2 (t) -p 2 (m, m ) + .
As in Subsection 6.6, it remains to bound E sup t∈B m,m ν 2 n,2 (t) -p 2 (m, m )

+ . We can remark that E (F p k∆ ) ≤ 1 ∆ p E Z 2p k∆ .
According to Barlow and Yor (1982, Proposition 4.2 (Burkholder-Davis-Gundy inequality with optimal constants)), there exists a constant c such that, for any p > 0:

E Z 2p k∆ ≤ c 2p (2p) p E (k+1)∆ k∆ σ 2 (X s )ds p ≤ c 2p (2p) p ∆ p σ 2p 1 .
Then E (F p k∆ ) ≤ σ We apply Bennett's inequality to n -1 n k=1 (Y k∆ -U k∆ ) 2 . Indeed, by Lemma 10, E (Y k∆ -U k∆ ) 2 ∆ 1-β/2 ln 4 (n), |U k∆ -Y k∆ | ln 2 (n) on Ω B and Var qn k=1 (Y k∆ -U k∆ ) 2 ≤ q 2 n E (U k∆ -Y k∆ ) 4 q 2 n ∆ 1-β/2 ln 8 (n) q n ln 9 (n)∆ -β/2 .

Then P 1 n n k=1

(U k∆ -Y k∆ ) 2 ≥ ∆ 1-β/2 ln 4 (n) + ln(n) √ n∆ exp -cn ln 2 (n)/n∆ ∆ -β/2 ln 9 (n) + ln 2 (n)q n ln(n)/ √ n∆ exp -c ln 2 (n) ∆ 1-β/2 ln 9 (n) + ln 4 (n)/ √ n∆ n -6 .

Moreover, ν 2,n (ϕ λ ) = n -1 n k=1 ϕ λ (X k∆ )F k∆ . We recall that E (ϕ λ (X k∆ )F k∆ ) = 0, Var ( as D m ≤ √ n∆. We get:

P |σ 2 1 -σ 2 1,A | 2 ≥ 1 D m + D m ∆ 1-β/2 ln 4 (n) + ln 4 (n) √ n∆ n -6 .
Taking D m = ln(n), we get that

P |σ 2 1 -σ 2 1 | ≥ 1/ ln(n) n -6 .
Approximation of the second bound. We have that

E Y 2 k∆ = (U k∆ + Y k∆ -U k∆ ) 2 = E U 2 k∆ + E (Y k∆ -U k∆ ) 2 + 2E (U k∆ (Y k∆ -U k∆ )) .
By Lemmas 1, 10 and Cauchy-Schwarz, E Y 2 k∆ F k∆ = 3σ 4 (X k∆ ) + C(∆ 1/2 + ∆ 1-β/2 + ∆ 1/2-β/4 ).

and therefore E Y 2 k∆ = 3 σ 4 (x)π(x)dx + C∆ 1/2-β/4 It remains to control the difference with the empirical mean and its expectation by a Bennett inequality. Indeed, on Ω B , Y Then, for any p ≥ 2, there exists a constant C p > 0 such that: Definition of Besov's spaces. A function g belongs to the Besov space B α 2,∞ (A) if

E
• g belongs to L 2 (A)

• Its modulus of smoothness ω p satisfies sup t>0 t -α ω r (g, t) 2 < ∞ with r = α + 1 and where ω r (g, t) p := sup This result can be find in [START_REF] Dellacherie | Probabilités et potentiel. Chapitres V à VIII[END_REF] or [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF].

Berbee's coupling lemma. Let (X t ) t≥0 be a stationary and exponentially β-mixing process observed at discrete times t = 0, ∆, . . . , n∆. Let us set n = 2p n q n with q n = 8 ln(n)/∆. For any a ∈ {0, 1}, 1 ≤ k ≤ p n , we consider the random variables U k,a = X ((2(k-1)+a)qn+1)∆ , . . . , X (2k-1+a)qn∆ .

There exist random variables X * ∆ , . . . , X * n∆ such that U * k,a = X * ((2(k-1)+a)qn+1)∆ , . . . , X * (2k-1+a)qn∆ satisfy:

• For any a ∈ {0, 1}, the random vectors U * 1,a , U * 2,a , . . . , U * pn,a are independent.

• For any (a, k) ∈ {0, 1} × {1, . . . , p n }, U * k,a ∼ U k,a .

• For any (a, k) ∈ {0, 1} × {1, . . . , p n }, P U k,a = U * k,a ≤ β M (q n ∆) ≤ n -8 where β M is the β-mixing coefficient of (X t ).

Let us set Ω * = ω, ∀(k, a) ∈ {0, 1} × {1, . . . , p n }, U k,a = U * k,a . Then P ((Ω * ) c ) ≤ n∆/n 8 . Berbee's coupling Lemma is proved by [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF].

The following Talagrand's inequality is proved by Birgé and Massart (1998) (corollary 2p.354) and Comte and Merlevède (2002) (p222-223).

Talagrand's inequality. Let (X 1 , . . . , X n ) be independent identically distributed random variables, F a countable family of functions and define I n : F → R such that

I n (f ) = 1 n n k=1 f (X k ) -E (f (X k )) .
If there exists M, H 2 , V ∈ R + such that

sup f ∈F f (X k ) ∞ ≤ M, E sup f ∈F I 2 n (f ) ≤ H 2 , sup f ∈F Var (f (X k )) ≤ V then E sup f ∈F I 2 n (f ) -12H 2 + V n exp -k 1 nH 2 V + M 2 n 2 exp -k 2 nH M .
where k 1 and k 2 are two explicit constants.

Bennett inequality. Let (X 1 , . . . , X n ) be independent identically distributed random variables such that Var (X i ) = V and |X i -E (X i ) | ≤ M p.s (with V, M ∈ R + . Then, for any x > 0,

P (|S n -E (S n )| ≥ x) ≤ exp -
x 2 2(nV + xM/3) where S n = n i=1 X i . From Berbee's coupling lemma and Talagrand's and Bennett's inequality, we deduce the following lemma:

Talagrand's and Bennett's inequality for β-mixing variables. Let us consider (Z k ) some random variables, exponentially β-mixing, such that the β-mixing coefficient of Z k satisfies: ∃c > 0, γ > 0, ∀k, β Z (k) ≤ ce -γk .

We define q n := 2 ln(n)/(γ) , p n = n/(2q n ) . We have that β Z (q n ) ≤ ce -2γ ln(n)/γ n -2 . Talagrand Let us consider

I n (f ) = 1 n n k=1 f (Z k ) -E [f (Z k )]
and F a countable family of functions. If we can find a triplet (M , V and H) in (R + ) 3 such that, for any 0 ≤ j ≤ p n -1:

∀c, sup f ∈F Var   1 q n (j+1)qn k=jqn+1 f (Z k )   ≤ V q n , ∀c, sup f ∈F 1 q n (j+1)qn k=jqn+1 f (Z k ) ∞ ≤ M and E sup f ∈F |I n (f )| ≤ H √ n ,
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  .) L p (A) where ∆ r h (g, x) := r k=0 (-1) k C k r g(x + kh).

  Ω n , any function t ∈ S m satisfies t It remains to bound E sup t∈Bm ν 2 1,n (t) . Let (ϕ λ ) 1≤λ≤Dm be an orthonormal (for the . π norm) basis of S m . Any function t ∈ B m can be written t =

	By Lemma 3, E E 2					
	with	Dm λ=1 a 2 λ ≤ 1. By Cauchy-Schwarz,					Dm λ=1 a λ ϕ λ
			2 π ≤ 2 t	2 n . Then	
		ĝm -Π m g	2 n 1 Ωn ≤	12 n	n k=1	E 2 k∆ + 12 sup t∈Bm	ν 2 1,n (t).	(21)

k∆

∆.

  sup

				s	p				t+h	p/2	
				σ(X u )dW u	F t -≤ C p E		σ 2 (X u )du	F t -	
		s∈[t,t+h]	t				t
	and							
			s	p				t+h	p/2	
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		s∈[t,t+h]	t					t
								t+h
						+ C p E		|ξ p (X u )| du F t -
							t	

R

|z| p ν(dz).

then we have, by Talagrand's inequality:

where C, C , k 1 and k 2 are universal constants.

Benett Let us set

If we can find V , M such that, for any 0

then, by Bennett's inequality:

and therefore:

We denote by Fh the Fourier transform of a function h ∈ L 1 (R):

The Schwarz space is defined as

Then we have the following properties:

2π R e itx Fh(t)dt. c. For any h ∈ L 2 (R), Fh(./a)(x) = |a|Fh(ax).

d. For any functions h

As Fδ y (x) = e -ixy , h(0) = R h(y)δ 0 (y)dy = 1 2π R Fh(u)du e. For any h in S(R), Fh ∈ S(R) and F(h (q) )(x) = (ix) q Fh(x).