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Abstract

We present the full derivation of a one dimensional ”Saint-Venant” like equations for barotropic
compressible pipe flows including friction. The one dimensional hyperbolic system is called γ−pressurized
model where γ is the adiabatic constant. It is obtained through the three dimensional barotropic Navier-
Stokes equations under ”thin layer” assumptions as a first order approximation. Prescribing suitable
boundary conditions, one can introduce a general friction law and then explicitly show its geometrical
(w.r.t the hydraulic radius) and hydrodynamical (w.r.t the Oser number) dependencies in the reduced
model. In particular, for linear pressure law (γ = 1), we justify the one dimensional pressurized model
(called P-model) introduced by the author in the context of unsteady mixed flows in closed water pipes.
For non linear pressure law (γ 6= 1), the γ−pressurized model describes the evolution of a compressible
(almost) gravityless flow.

Keywords: pressurized flow, compressible Navier-Stokes, barotropic laws, thin layer approximation, hydro-
static approximation, friction law, Oser number

AMS Subject classification : 65M08, 65M75, 76B07, 76M12, 76M28, 76N15

Notations concerning geometrical quantities

P pipe
Ω(x) cross-section area of the pipe orthogonal to the axis z = Z(x)
S(x) area of Ω(x)
R(x) radius of the cross-section Ω(x)
θ(x) angle of the inclination of the main pipe axis z = Z(x) at position

x
σ(x, z) width of the cross-section Ω(x) at altitude z
ε aspect ratio of the pipe

Notations concerning the Navier-Stokes model

ρ(t, x, y, z) density of the fluid
u(t, x, y, z) = (u(t, x, y, z),v(t, x, y, z)) velocity of the fluid
p(ρ) barotropic pressure law
γ adiabatic constant
k(u) border friction term

∗Mehmet.Ersoy@univ-tln.fr
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Notations concerning the γ− pressurized model

X(t, x) =
1

S(x)

∫
Ω(x)

X(t, x, y, z) dy dz mean value of X over Ω(x)

ρ(t, x) density of the averaged model
u(t, x) velocity of the averaged model
pγ(x, ρ) averaged barotropic pressure law
C Oser number
Kγ(x, u) averaged friction
sγ(x) (weighted) wet perimeter of Ω(x)
Sγ(x) (weighted) wet area of Ω(x)

Bold characters are used for vectors.

1 Introduction

In this work, we are interested in the model reduction of a general three dimensional barotropic compressible
flows occurring in thin and long closed pipes including friction. Compressible flows confined in thin pipe,
often referred as pressurized flows, plays an important role in many engineering applications such as storm
sewers, waste or supply pipes in hydroelectric installations, and also in the simulation of unsteady mixed
flows in closed pipes, i.e., where some part of the flow can be free surface (it means that only a part of the
pipe is filled) and/or pressurized (it means that the pipe is filled), see for instance [1, 2, 3]. The flow being
almost unidirectional (i.e. following the main pipe axis), introducing reduced models preserving some of the
main physical and geometrical features is one of the most challenging issues addressed here. Contrary to the
existing literature (see for instance, [24, 21, 13, 3]), the friction, appearing in the one dimensional reduced
model, is considered and in particular we show its geometrical and hydrodynamical dependencies.

Pressurized water flows are classically modelled by the shallow water equations (see for instance [14, 12, 9]
or [18]), commonly used to describe free surface flows in open channels, with the artifice of Preissman (see
for example [7, 6, 23]) assuming a narrow slot to exist in the upper part of the pipe. The width of the slot
is calibrated to provide the correct sonic speed. Nevertheless, as pointed out by several authors (see [20] for
instance), the pressurizing phenomenon is a dynamic shock requiring a full dynamic treatment even if the
inflows and other boundary conditions change slowly [15]. Moreover, the Preissman slot artefact is unable
to take into account the depressurisation phenomenon (i.e. sub-atmospheric flows) which occurs during
a ”water-hammer”. A model for pressurized flow, called P-model, has been proposed by Bourdarias et al
[1, 2, 3] to take into account sub-atmospheric flows. For this purpose, the fluid is assumed to be compressible
and governed by the three dimensional barotropic Euler equations with a linearized pressure pressure law.
Then, through a formal model reduction by section averaging, assuming the well-known ”motion by slices”
property, they obtain the frictionless one dimensional P-model. In order to deal with the pipe friction, a
nonlinear damping term is added.

Unlike the previous works, we propose here to study the full derivation of a one dimensional pressurized
flows, including the friction, from the three dimensional barotropic Navier-Stokes equations. Furthermore,
we generalize the model reduction to non linear pressure law p(ρ) = αργ where γ and α are some positive
constants. The reduced system, named γ−pressurized model, is a first order hyperbolic model. In comparison
with the work by Bourdarias et al [3], assuming viscous instead of inviscid flows allows, first, to consider
through a wall-law condition the border friction and, second, to get the ”motion by slices” property required
in the model reduction. In particular, we are able to justify and to show the geometrical and hydrodynamical
dependencies of the ”section-averaged” friction commonly used by the engineers community. More precisely,
we show the role of the gravity force through the Oser number (defined as Ma/Fr where Ma stands for the
Mach number and Fr is the Froude number) and the hydraulic radius to any pipe section. Let us recall that
the hydraulic radius is a length scale for non-circular ducts introduced to use the analysis done for circular
pipes (see for instance [21, 22]). Let us also emphasize that for non-linear pressure law, i.e. γ 6= 1, the
γ−pressurized models are characterized by a low Oser number, i.e. relevant almost for gravityless flows.
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In particular, in this work, we provide a justification of the full model (including the friction) introduced
by Bourdarias et al [3] for a linear pressure law and the air entrainment model (including the friction) by
Bourdarias et al [4] for non linear pressure law. Using the same process, in [9], we propose a one dimensional
Saint-Venant equations including friction from the three dimensional incompressible Navier-Stokes equations.
Let us also mention that Morales [18] proposes also a model for shallow water flows but composed of two
layers of compressible-incompressible fluids. This model is obtained through the model reduction of the
compressible and incompressible Euler equations as superposed layers.

The paper is organized as follows. In Section 2, we recall the full compressible Navier-Stokes equations
and we define the boundary conditions including a general border friction law. The ”motion by slices”
property under large Reynolds flows is obtained through the hydrostatic approximation in Section 3. Next,
under suitable assumptions, these equations are averaged through the pipe section assumed to be orthogonal
to the main flow direction. Then, we obtain the γ−pressurized model and we complete the presentation, in
Section 4, with a numerical illustration of the influence of the Oser number on the model.

2 The compressible Navier-Stokes equations and its closure

In this section, we fix the notations of the geometrical quantities involved to describe the thin domain
representing a pipe. In particular, without loss of generality (see Remark 2.1), we consider the case of pipe
with circular section.

2.1 Geometrical settings

Let us consider a compressible fluid confined in a three dimensional rigid domain P representing, a pipe of
length L:

P :=
{

(x, y, z) ∈ R3; x ∈ [0, L], (y, z) ∈ Ω(x)
}

where the section Ω(x), x ∈ [0, L], is

Ω(x) = {(y, z) ∈ R2; y ∈ [α(x, z), β(x, z)], z ∈ [−R(x), R(x)]}

as displayed in figure 1(a). Flows are assumed to be oriented in the i-direction of the pipe.
The section Ω(x), x ∈ [0, L], is assumed to be orthogonal to the main flow direction. Here R(x) stands

for the radius of the pipe section S(x) = πR2(x), α(x, z) (resp. β(x, z)) is the left (resp. the right) boundary
point at elevation −R(x) 6 z 6 R(x). In the Ω-plane, we define the coordinate of a point m ∈ ∂Ω(x),

x ∈ [0, L], by (y, ϕ(x, y)) where ϕ(x, y) =
√
R(x)2 − y2 for y > 0 and ϕ(x, y) = −

√
R(x)2 − y2 for y < 0.

The point m stands for the vector ωm where w(x, 0, Z(x)) defines the main slope elevation of the pipe with
dZ

dx
(x) = − sin θ(x). We note n =

m

|m|
the outward unit vector at the point m ∈ ∂Ω(x), x ∈ [0, L] as

represented in figure 1(b).

(a) Configuration (b) Ω-plane

Figure 1: Geometric characteristics of the pipe.

3



Remark 2.1. One can easily adapt this work to any realistic pipe. For instance in the case of ”horseshoe”
section (see figure 2.1), the section Ω(x), x ∈ [0, L], is given by

Ω(x) = ΩH(x) ∪ ΩR(x)

where
ΩH(x) =

{
(y, z) ∈ R2; y ∈ [α(x, z), β(x, z)], z ∈ [0, H(x)]

}
and

ΩR(x) = {(y, z) ∈ R2; y ∈ [α(x, z), β(x, z)], z ∈ [H(x), R(x)]} .
H is the height of the trapezoidal basis and R is the radius of the upper part of the ”horseshoe”.

Figure 2: A pipe with a ”horseshoe” section

2.2 The compressible Navier-Stokes model

In the domain P, we assume that the pipe is completely filled with a viscous barotropic and compressible
fluid. The pressure p = p(ρ) is thus a linear or non linear function of the fluid density ρ. The inner wall of the
pipe is assumed non smooth. Thus, we consider the three dimensional barotropic compressible Navier-Stokes
equations with a prescribed general wall law conditions including friction. The system is then completed
with inflows and outflows conditions at the upstream and downstream ends.

The governing equations for the motion of a barotropic compressible fluid in [0, T ]× P, T > 0 are ∂tρ+ div(ρu) = 0 ,
∂t(ρu) + div(ρu⊗ u)− divσ = ρF ,

p = p(ρ)
(1)

where u =

(
u
v

)
is the velocity fields with u the i-component and v =

(
v
w

)
the Ω-component. The

right hand side F represents the external gravity force of constant g

F = g

 sin θ(x)
0

− cos θ(x)

 . (2)

The total Cauchy stress tensor reads

σ =

(
−p+ λdiv(u) + 2µ∂xu R(u)t

R(u) −pI2 + λdiv(u)I2 + 2µDy,z(v)

)
(3)

where I2 is the identity matrix, µ is the dynamical viscosity and R(u) = µ (∇y,zu+ ∂xv). The quantity

∇y,zu =

(
∂yu
∂zu

)
is the gradient of u with respect to (y, z). Noting Xt the transpose of X, we define the

strain tensor Dy,z(v) with respect to the variable (y, z):

2Dy,z(u) = ∇y,zv +∇ty,zv .
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Finally, the pressure law is given by the following equation of state:

p(ρ) = αργ (4)

where α is a positive physical constant.
Let us end this section with several comments:

Remark 2.2.

1. The last term λdiv(u) in (3) is the classical normal stress tensor which plays an important role when
the fluid is rapidly compressed or expanded as in shock waves. The quantity λ is called the volume
viscosity, often called second viscosity, and it is usually assumed to be of the same order of the dynamical
viscosity µ for the applications under considerations (see, for instance, [17]).

2. To force a privileged flow direction, the total Cauchy stress tensor can be also defined as follows (see,
for instance, Ersoy et al [11, 10])

σ = −pI3 + 2Σ.D(u) + λdiv(u) I3 .

Through the term

Σ.D(u) =

(
2µDx(u) µ2R(u)t

µ3R(u) 2µ3∂yv

)
with the following anisotropic viscous tensor:

Σ = Σ(t, x, y)

 µ(t, x, y) µ(t, x, y) µ2(t, x, y)
µ(t, x, y) µ(t, x, y) µ2(t, x, y)
µ3(t, x, y) µ3(t, x, y) µ3(t, x, y)


the horizontal (i.e. with respect to x) can be set as the privileged flow direction. The anisotropic
property is useful for compressible flows as in the context of the atmosphere modelling [16].

3. With the equations above, pressurized water pipe flows (see [3] for further details) can be described
by setting γ = 1 with

√
α = c in the equation of state (4). The quantity c is the sonic speed defined

by c =
1√
β0ρ0

≈ 1400m2/s where β0 ≈ 5.0 10−10m2/N stands for the inverse of the bulk modulus of

compression of the water and ρ0 is the volumetric mass of water. As described in Section 1, effects
such as overpressure (sup-atmospheric) or depression (sub-atmospheric) state can be modelled with
the following the equation of state

p(ρ) = pa + c2(ρ− ρ0) .

This formula has the advantage to show clearly those states. An overpressure (respectively depression)
state is observed if ρ > ρ0 (respectively ρ < ρ0).

4. With the above equations, pressurized air pipe flows can be modelled by setting the adiabatic index γ

to
7

5
and
√
α =

pa
ργa

for some reference pressure pa and density ρa (see for instance [4]).

2.3 The boundary conditions

For pipe flow calculations, the Darcy-Weisbach equation is generally adopted which is valid for laminar as
well as for turbulent flows. Roughly speaking, such formula relates losses h occurred during flows and it
reads:

h = Cf
L

D

U2

2g

where L, D, U are the pipe length, the pipe diameter and the velocity. The friction factor Cf , instead
of being a simple constant, turns out to be a factor that depends upon several parameters such as the
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Reynolds number Re, the relative roughness δ of the material, the Froude number Fr, the Mach number Ma,
geometrical parameters, . . .

Following the type of the material, rough or smooth pipe, leaves Cf depend upon less quantities and
lead to several expressions. An empirical transition function for the region between smooth pipes and the
complete turbulence zone has been proposed by Colebrook:

1√
Cf

= −0.86 ln

(
δ

3.7D
+

2.51

Re
√
Cf

)
.

Because of the extreme complexity of the rough surfaces, most of the advances in the comprehension have
been developed around experiments leading to charts such as the Moody-Stanton diagram, expressing Cf as
a function of the Reynolds number, the relative roughness and some geometrical parameters depending on
the material. This yields to several formula depending on the modelling, for instance Chézy and Manning
which are well-known by the engineers community, see for instance [21, 23] or [3].

For laminar flow, the effects of the material roughness can be ignored due to a presence of a thin laminar

film at the pipe wall. Then, it can be shown that the Darcy-Weisbach equation reduces to Cf =
64

Re
that

we note Cf = Cl in the sequel. And, the losses are directly proportional to the velocity. When increasing
the Reynolds number, the thin laminar film becomes unstable and causes turbulence increasing the head
loss. Thus, the dependency to the Reynolds number can be neglected and the head loss is almost directly
proportional to U2. The value of the friction factor, that we note Cf = Ct in the sequel, can be read on
diagrams.

In particular, this motivates the use of the following general friction law:

k(u)u = Cf (|u|)u = Clu + Ct|u|u, Cl > 0, Ct > 0 . (5)

We do not intend in this work to define precisely the friction law but instead of, we want to directly include it
in its general form to explicitly show its dependency on physical parameters in the present model reduction
(for specific applications, we refer to [8])

Thus, on the inner wall ∂Ω(x), ∀x ∈ (0, L), we assume a wall-law condition including a general friction
law:

(σ(u)nb) · τbi = ρk(u)u · τbi , x ∈ (0, L), (y, z) ∈ Γb(x), i = 1, 2

where τbi is the ith vector of the tangential basis and nb stands for the unit outward normal vector:

nb =
1√

(∂xϕ)2 + n · n

(
−∂xϕ

n

)

with n =

(
−∂yϕ

1

)
the outward normal vector in the Ω-plane. Writing the wall-law condition in its vectorial

form (i.e. the tangential constraints),

σ(u)nb − (σ(u)nb · nb) nb = ρk(u)u, t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x) ,

one can split up the i−component and the (j,k)−components. Thus, the wall-law boundary conditions are

R(u) · n (n · n− (∂xϕ)2) + 2µ∂xϕ (Dy,z(v)n · n− ∂xu (n · n)) =
(
n · n + (∂xϕ)2

)3/2
ρk(u)u , (6)

2µ(∂xϕ)2 (Dy,z(v)n− n) + ∂xϕR(u) (n · n− (∂xϕ)2) =
(
n · n + (∂xϕ)2

)3/2
ρk(v)v . (7)

These equations are supplemented with a no-penetration condition:

u · nb = 0, t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x)

i.e.
u∂xϕ = v · n, t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x) . (8)
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3 The averaged model

The technique presented in this section is inspired by the work by Gerbeau and Perthame [14] in the
context of the reduction of the two dimensional incompressible Navier-Stokes model to the one dimensional
Saint-Venant equations. In this paper, we proceed to the reduction of the three-dimensional compressible
Navier-Stokes equations to a one dimensional shallow water like equations taking into account a general
friction law.

3.1 Dimensionless Navier-Stokes equations

In the sequel we consider the non-dimensional form of the Navier-Stokes system using the shallow water
assumption by introducing a ”small” parameter such that

ε =
D

L
=
W

U
=
V

U
� 1

where U, V = (V,W ) are the characteristic speeds in the i−direction and the (j,k)−direction.

We introduce a characteristic time T such that T =
L

U
. The dimensionless quantities of time t̃, coordinate

(x̃, ỹ, z̃) and velocity field (ũ, ṽ, w̃), noted temporarily by a ·̃, are defined by

t̃ =
t

T
, (x̃, ỹ, z̃) =

( x
L
,
y

D
,
z

D

)
, (ũ, ṽ, w̃) =

( u
U
,
v

W
,
w

W

)
, ρ̃ =

ρ

r

where r is a characteristic density. We also consider the modified friction factor Cf/U that we write in the
sequel Cf .

Let us define the following non-dimensional numbers:

Fr Froude number following the Ω-plane : Fr = U/
√
gD ,

FL Froude number following the i-direction : FL = U/
√
gL ,

Rµ Reynolds numbers with respect to µ : Rµ = ρ0UL/µ ,
Rλ Reynolds numbers with respect to λ : Rλ = ρ0UL/λ ,
Ma Mach number : Ma = U/

√
α ,

C Oser number : C = Ma/Fr =
√
gD/
√
α .

Using these new variables in Equations (1), dropping the ·̃, ordering the terms with respect to ε, the
dimensionless compressible Navier-Stokes system becomes:

∂tρ+ ∂x(ρu) + divy,z(ρv) = 0 , (9)

∂t(ρu) + ∂x(ρu2) + divy,z(ρuv) +
1

M2
a

∂xρ
γ = ρ

sin θ(x)

F 2
L

+ divy,z

(
R−1
µ

ε2
∇y,zu

)
+Rε,1(u) , (10)

1

M2
a

∇y,zργ =

 0

−ρ cos θ(x)

F 2
r

+Rε,2(u) , (11)

where

Rε,1(u) = R−1
µ

(
∂x

(
2∂xu+

R−1
λ

R−1
µ

div(u)

)
+ divy,z (∂xv)

)
= O(R−1

µ ) ,

and

Rε,2(u) = R−1
µ

(
∂x
(
∇y,zu+ ε2∂xv

)
+ divy,z

(
R−1
λ

R−1
µ

div(u) + 2Dy,z(v)

))
−ε2 (∂t(ρv) + ∂x(ρuv) + divy,z(ρv⊗ v))

= R−1
µ

(
∂x (∇y,zu) + divy,z

(
R−1
λ

R−1
µ

div(u) + 2Dy,z(v)

))
+ O(ε2)

= O(R−1
µ ) + O(ε2) .
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The first component of the wall-law boundary condition (6) becomes:

R−1
µ

ε
∇y,zu · n =

(
n · n + ε2(∂xϕ)2

)3/2
ρk(u)u

(n · n− ε2(∂xϕ)2)
− εR−1

µ

(
2∂xϕ (Dy,z(v)n · n− ∂xu (n · n))

(n · n− ε2(∂xϕ)2)
+ ∂xv · n

)
= ρ

√
n · n k(u)u+O(ε2) +O(εR−1

µ )

= ρK(u) +O(ε2) +O(εR−1
µ )

(12)
where we make use of the notations

K(u) =
√

n · n k(u)u and ∇y,zu · n := ∂nu

which are respectively the friction term and the normal derivative of u in the Ω-plane.
The second component of the wall-law boundary condition (7) becomes:

R−1
µ ∇y,zu =

ε2
(
n · n + ε2(∂xϕ)2

)3/2
ρk(v)v

∂xϕ(n · n− ε2(∂xϕ)2)
−

2ε3R−1
µ ∂xϕ

2 (Dy,z(v)n− n)

∂xϕ(n · n− ε2(∂xϕ)2)
− ε2∂xv · n

= O(ε2) + O(ε3R−1
µ )

(13)

3.2 First order approximation

As emphasized before in Section 2.3 and Remark 2.2, when increasing the Reynolds number Rµ and Rλ, we
observe instabilities at the pipe wall leading to turbulent flows. Assuming the characteristic length of the
thin unstable film larger than the relative roughness of the pipe, one can always assume smallness assumption
of the friction factor (see for instance [21, 19, 23]). In particular, it motivates for large Reynolds number,
the following asymptotic assumptions:

R−1
λ = ελ0, R−1

µ = εµ0, K = εK0 (14)

where λ0, µ0 are some constant viscosity and K0 is the asymptotic friction law

K0(u) = k(u)u . (15)

Under these assumptions, the Archimedes principle is applicable and induces small vertical accelerations.
As a consequence, one can drop all terms of order O(ε2) in Equations (9)–(11). Then, taking the formal
limit as ε vanishes, we deduce the hydrostatic equations (or the compressible primitive equations, see for
instance [16, 11, 10])

∂tρε + ∂x(ρεuε) + divy,z(ρεvε) = 0 , (16)

∂t(ρεuε) + ∂x(ρεu
2
ε) + divy,z(ρεuεvε) +

1

M2
a

∂xρ
γ
ε = ρε

sin θ(x)

F 2
L

+ divy,z

(µ0

ε
∇y,zuε

)
, (17)

1

M2
a

∇y,zργε =

 0

−ρε cos θ(x)

F 2
r

 . (18)

Let us emphasize that even if this system results from a formal limit, we prefer to note its solution (ρε, uε,vε)

due to the explicit dependency to ε through the term divy,z

(µ0

ε
∇y,zuε

)
in Equation (17). At zeroth order,

this term is precisely the friction at the inner pipe wall. Indeed, the boundary conditions (12) and (13)
provide at zeroth order

µ0

ε
∇y,zuε · n = ρεK0(uε) and µ0∇y,zuε = 0, x ∈ (0, L), (y, z) ∈ ∂Ω(x) . (19)
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Moreover, identifying terms at order
1

ε
in Equations (16)–(18), we obtain the so-called ”motion by slices”

uε(t, x, y, z) = u0(t, x) +O(ε) (20)

for some function u0(t, x), by solving the Neumann problem, for t > 0, x ∈ (0, L):{
divy,z (µ0∇y,zuε) = O(ε) , (y, z) ∈ Ω(x) ,
µ0∂nuε = O(ε) , (y, z) ∈ ∂Ω(x) .

As a consequence, the following approximation holds at first order

uε(t, x, y, z) ≈ uεt, x)

where

uεt, x) =
1

S(x)

∫
Ω(x)

uε(t, x, y, z) dydz

stands for the mean value of the fluid velocity over Ω(x) of area S(x):

S(x) =

∫
Ω(t,x)

dydz =

∫ R(x)

−R(x)

σ(x, z) dz .

Therefore, one can approximate the non-linear term u2
ε in Equation (17) by

u2
ε ≈ uε2 . (21)

Furthermore, using the Equations (18), keeping in mind the equation of state (4), we get

ρε(t, x, y, z) =

{
ρ0(t, x) exp

(
−C2 cos θ(x)z

)
+O(ε) if γ = 1 ,

ρ0(t, x)N(t, x, y, z) +O(ε) if γ 6= 1 ,
(22)

with

N(t, x, z) =

(
1 + zC2 cos θ(x)

1− γ
γρ0(t, x)γ−1

) 1
γ−1

for some positive function ρ0, called density.

Remark 3.1. For γ = 1, Equations (16)–(18) are the so-called Compressible Primitive Equations (CPEs).
In this case, we say that the density ρε(t, x, y, z) is stratified with respect to the altitude z. It means that for
each altitude z, the density is composed of ”layers” ρ0(t, x). Taking advantage of this form, Ersoy and Ngom
[10] show the existence of a global weak solution of CPEs. Moreover, such a structure lead to canonical
averaging while the case γ 6= 1 will requires an extra assumption.

Case γ 6= 1.
At this stage, let us outline that the approximation

ργε ≈ ρεγ , γ 6= 1

is obviously wrong except if N = O(1), i.e. if the dimensionless Oser number is assumed small. Therefore,

in what follows, we assume C = O(εl) for some l >
1

2
. Thus, it yields to the following approximations

ρε = ρ0 +O(C2) = ρ0 +O(ε2l) and ργε = ργ0 +O(ε2l), γ 6= 1 . (23)

As a consequence, at first order, the approximation of the non linear terms are

ρεuε = ρεuε and ργε = ρε
γ (24)

where

ρε(t, x) =
1

S(x)

∫
Ω(x)

ρε(t, x, y, z) dydz .

9



Case γ = 1.
The smallness assumption on the Oser number is not required for linear pressure law since the density is

stratified (see Equation (22) and Remark 3.1). Indeed, defining the weighted section S:

S(x) =

∫
Ω(x)

exp(−C2 cos θ(x)z) dy dz =

∫ R(x)

−R(x)

exp(−C2 cos θ(x)z)σ(x, z) dz , (25)

the averaged density reads:

ρε(t, x) = ρ0(t, x)
S(x)

S(x)
. (26)

Thus, the non linear term ρεuε can be approximated by

ρεuε =
1

S

∫
Ω

ρεuε dydz ≈ ρ0
S
S
uε = ρε uε (27)

and in particular, in view of (21) and (22), we get at first order

ρεu2
ε = ρε uε

2 . (28)

3.3 Averaged pressurized model

Let us first recall that m = (y, ϕ(x, y)) ∈ ∂Ω(x) stands for the vector ωm and n =
m

|m|
for the outward unit

normal vector to the boundary ∂Ω(x) at the point m in the Ω-plane (as displayed in figure 1(b)).
Then, gathering results (21), (23), (24) and (21), (26), (27), (28), integrating Equations (16)–(18) over

the cross-section Ω, we obtain

∂t(ρεS) + ∂x(ρεSuε) =

∫
∂Ω(x)

ρε (uε∂xm− vε) · n ds ,

∂t(ρεSuε) + ∂x

(
ρεSuε

2 +
1

M2
a

ρε
γS

)
= ρεS sin θ(x) F 2

L +
1

M2
a

ρε
γ dS

dx

+

∫
∂Ω(x)

ρεuε (uε∂xm− v) · n ds

−
∫
∂Ω(x)

µ0

ε
∇y,zuε · n ds .

(29)

Next, using the no-penetration condition (8), the boundary integrals vanishes:∫
∂Ω(x)

ρε (uε∂xm− vε) · n ds =

∫
∂Ω(x)

ρεuε (uε∂xm− vε) · n ds = 0 . (30)

Friction term.
Using the approximations (21), (23), (24) and (21), (26), (27), (28), keeping in mind Equations (15) and

(19), the reminding boundary integral becomes:∫
∂Ω(x)

µ0

ε
∇y,zuε · n ds =

∫
∂Ω(x)

ρεK0(uε) ds = ρ0Sγ(x)Kγ(x, uε)

where
Kγ(x, uε) = K0(uε)

sγ(x)

Sγ(x)
(31)

with

Sγ(x) =

{
S(x) if γ 6= 1 ,
S(x) if γ = 1 .

(32)
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In this expression, sγ(x) is the curvilinear integral of

wγ,x(z) =

{
1 if γ 6= 1 ,
exp(−C2 cos θ(x)z) if γ = 1

along the curve ∂Ω(x), i.e.,

sγ(x) =

∫
∂Ω(x)

wγ,x ds =

∫ 1

0

wx(z(t))
√

(y′(t))2 + (z′(t))2 dt (33)

where t ∈ [0, 1] 7→ (y(t), z(t)) stands for a parametrization of the curve ∂Ω(x). If γ 6= 1, sγ(x) corresponds
to the wet perimeter of the section Ω(x) while s1(x) is the weighted wet perimeter of the section Ω(x).

Remark 3.2.

1. For practical situations, the pipe section is either rectangular, circular or ”horseshoe” type. Therefore,
the quantity Sγ (32) and sγ (33), appearing in the expression of the friction (31) for instance, can

be explicitly computed. For example for a pipe with rectangular section Ω(x) =

[
−T (x)

2
,
T (x)

2

]
×

[−R(x), R(x)] of width σ(x, z) = T (x) and height 2R(x), the weighted area for γ = 1 is

S1(x) = S(x) =
T (x)

C2 cos θ(x)

(
exp(C2 cos θ(x)R)− exp(−C2 cos θ(x)R)

)
and if γ 6= 1, then Sγ corresponds to the physical area, i.e., Sγ = S(x) = 2R(x)T (x). In the same
manner, the weighted wet perimeter for γ = 1 is

s1 =
2
(
exp(C2 cos θ(x)R)− exp(−C2 cos θ(x)R)

)
C2 cos θ(x)

+ 2T (x)
(

exp(C2 cos θ(x)R) + exp(−C2 cos θ(x)R)
)

and if γ 6= 1 then sγ is the wet perimeter of the section Ω(x), i.e, sγ = 4R(x) + 2T (x).

2. For linear pressure law (γ = 1) and for low Oser flows (C � 1), as one can notice in the above
expressions for pipe with rectangular section, the weighted wet perimeter S1 = S (25), (respectively s1

(33)) corresponds approximately to the physical area (respectively the perimeter) of the pipe section
Ω(x) as in the non linear case (γ 6= 1) .

3. For linear pressure law, we call the quantity

(
S1(x)

s1(x)

)
the weighted hydraulic radius. In particular, for

low Oser flows, this quantity coincides with the classical hydraulic radius introduced by engineers as a
length scale for non-circular ducts in similitude analysis (see for instance [21, 22]). Let us outline that
this factor comes naturally with a weight depending on the Oser number. For the sake of completeness,
we propose a numerical investigation of the influence of the Oser number for linear and non linear
pressure laws in Section 4.

In view of Equations (23) and (26), thanks to the notation (32), we can write

ρεS = ρ0Sγ (34)

so that, gathering Equations (29)–(34), the resulting system is
∂t(ρ0Sγ(x)) + ∂x(ρ0Sγ(x)uε) = 0 ,

∂t(ρ0Sγ(x)uε) + ∂x

(
ρ0Sγ(x)uε

2 +
1

M2
a

ργ0Sγ(x)

)
= ρ0Sγ(x) sin θ(x) F 2

L +
1

M2
a

ργ0Sγ(x)
d lnS

dx
(x)

−ρ0Sγ(x)Kγ(x, uε) .
(35)
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Finally, multiplying Equations (35) by
rDU2

L
in order to recover the variables with dimension and skipping

the index 0 for the averaged unknowns of density ρ and fluid velocity u, defining the pressure by

pγ(x, ρ) = αργSγ(x) =

{
αργS(x) if γ 6= 1 ,
αρ S(x) if γ = 1

(36)

we get the γ−pressurized model:
∂t(ρSγ(x)) + ∂x(ρSγ(x)u) = 0 ,

∂t(ρSγ(x)u) + ∂x
(
ρSγ(x)u2 + pγ(x, ρ)

)
= gρSγ(x) sin θ(x) + pγ(x, ρ)

d lnS

dx
(x)

−ρSγ(x)Kγ(x, u) .

(37)

where the source terms are

• gρSγ(x) sin θ(x) often noted −gρSγ(x)
dZ

dx
(x) is the altitude of the main pipe axis,

• αργSγ(x)
d lnS

dx
(x) is the pressure source term which takes into account the change of section, and

• −ρSγ(x)Kγ(x, u) is the friction term where Kγ is defined by Equation (31).

Remark 3.3. Bourdarias et al. [1, 4, 5] has proposed a Finite Volume Kinetic scheme for the 1−pressurized

and
7

5
−pressurized model in the context of water and air flows in closed pipes. Through several numerical

experiments versus laboratory tests, the numerical model has been validated. Let us also mention that,
following [4], the kinetic scheme can be easily adapted to the γ−pressurized model.

Let us define the following quantities:

• c2γ(x, ρ) =
∂pγ
∂ρ

(x, ρ),

• Pγ(x, ρ) =


α

γ

γ − 1
ργ−1 if γ 6= 1 ,

α ln

(
ρ
Sγ(x)

S(x)

)
if γ = 1 ,

• Hγ(x, ρ) =


α

ργ

γ − 1
if γ 6= 1 ,

αρ
Sγ(x)

S(x)
ln

(
ρ
Sγ(x)

S(x)

)
if γ = 1 ,

Then, System (37) has the following properties:

Theorem 3.1.

1. System (37) is strictly hyperbolic on {ρ(t, x) > 0}.

2. For smooth solutions, the mean velocity u satisfies:

∂tu+ ∂x

(
u2

2
+ Pγ(x, ρ) + gZ(x)

)
= −Kγ(x, u) . (38)

The quantity
u2

2
+ Pγ(x, ρ) + gZ(x) is the so-called the total head.

12



3. For smooth solutions, the still steady state, i.e. u = 0, for System (37) is:

Pγ(x, ρ) + gZ(x) = cte

for some constant cte.

4. System (37) admits a mathematical entropy:

Eγ(x, ρ, u) =
ρu2

2
+Hγ(x, ρ) + gρZ(x)

which satisfies the entropy relation for smooth solutions

∂tEγ(x, ρ, u) + ∂x ((Eγ(x, ρ, u) + pγ(x, ρ))u) = −ρuKγ(x, u) 6 0

Proof. The proof of these assumptions relies only on algebraic combinations of the two equations of System
(37) and is left to the reader.

4 The Oser number and a formal second order approximation

In Section 3, we have constructed the γ-pressurized model (37) from the Navier-Stokes equations (1). In
particular, we have introduced the Oser number defined as C = Ma/Fr where Ma, Fr are respectively the
Mach and the Froude number. The Oser number is a dimensionless number which measures the influence
of the gravity on the flow. For γ = 1, the Oser number appears directly into the friction term (31) as
a ”weighted” measure through the terms (32) and (33) and therefore plays a role in the second order
approximation. Let us recall that, for γ 6= 1, the approximation ργ by ργ holds true if the Oser number is
assumed small.

For the sake of completeness, we propose to numerically study the influence of the Oser number in the
case of pipe with circular section. Keeping in mind the asymptotic assumptions (14), let us first consider
the equation of the conservation of the momentum (10)

divy,z

(µ
ε
∇y,zuε

)
= ∂t(ρεuε) + ∂x(ρεu

2
ε) + divy,z(ρεuεvε) +

1

M2
a

∂xρ
γ
ε + ρε

sin θ(x)

F 2
L

=


ρε

(
∂t(uε) + uε · ∇(uε) +

1

M2
a

∂x ln(ρε) +
sin θ(x)

F 2
L

)
if γ = 1

ρε

(
∂t(uε) + uε · ∇(uε) +

γ

M2
a

ργ−2
ε ∂xρε + ρε

sin θ(x)

F 2
L

)
if γ 6= 1

Next using the motion by slices ”property” (20) and the total head equation (38) on the right hand side of

the above equations, writing
dZ

dx
(x) = − sin(θ(x)), we get for all x ∈ (0, L) and (y, z) ∈ Ω(x),

divy,z

(µ
ε
∇y,zuε

)
= −ρεKγ(x, u) +O(ε) (39)

where ρε is approximated by (22) and Kγ is given by (31). In view of the boundary conditions (19), the
solution of the problem (39) yields to the second order ”paraboloid” approximation of uε. This approximation
depends on the Oser number through the density ρε (22) and the friction term (31).

To simplify the numerical problem, we assume ρ0 = 1 in (22), u0 = 1 in (20), µ = 1 and we fix ε = 10−3.
Moreover, we assume the friction factors Cl and Ct are such that K0(x, u) = 1 (see Equations (31), (15) and
(5)). Then, we compute for several value of C and γ the velocity profile for a circular pipe section of radius
1.

As expected, for small Oser number, the influence of the gravity can be neglected. We illustrate this
statement for γ = 1, 1.4, 2 and 5 and we observe that the paraboloid profile is well-centred (see figures 3(a),
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3(b), 3(c) and 3(d)). Moreover, there are no significant changes between linear and non linear results since
the right hand side of Equation (39) is almost equal. Indeed, for linear and non linear pressure law, in view
of Equation (22), one has ρε ≈ 1 and as noticed in Remark 3.2, for small Oser number the expression of the
friction term (31) is almost the same.

In figure 4, for linear pressure law (γ = 1), we display the velocity profile for C = 1, C = 2, C = 2.5 and
C = 3 to show the influence of the Oser number. In these cases the effect of the gravity cannot be neglected
and we observe that the velocity profiles are not longer centred when compared to the result in figure 3(a).
In particular, the more the Oser number C is large and the more the gravity plays an important role as
illustrated in figures 4(a), 4(b), 4(c) and 4(d).

The results for the non linear case (γ 6= 1) are not displayed since the γ−pressurized model is no longer
valid for this range of value.

IsoValue
0.999974
1.00001
1.00004
1.00007
1.00009
1.00012
1.00014
1.00017
1.0002
1.00022
1.00025
1.00028
1.0003
1.00033
1.00036
1.00038
1.00041
1.00043
1.00046
1.00053

(a) γ = 1

IsoValue
0.999974
1.00001
1.00004
1.00007
1.00009
1.00012
1.00014
1.00017
1.0002
1.00022
1.00025
1.00028
1.0003
1.00033
1.00036
1.00038
1.00041
1.00043
1.00046
1.00053

(b) γ = 1.4

IsoValue
0.999974
1.00001
1.00004
1.00007
1.00009
1.00012
1.00014
1.00017
1.0002
1.00022
1.00025
1.00028
1.0003
1.00033
1.00036
1.00038
1.00041
1.00043
1.00046
1.00053

(c) γ = 2

IsoValue
0.999974
1.00001
1.00004
1.00007
1.00009
1.00012
1.00014
1.00017
1.0002
1.00022
1.00025
1.00028
1.0003
1.00033
1.00036
1.00038
1.00041
1.00043
1.00046
1.00053

(d) γ = 5

Figure 3: Velocity profile for C = 1e− 05
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IsoValue
0.999923
1.00004
1.00012
1.00019
1.00027
1.00035
1.00042
1.0005
1.00058
1.00065
1.00073
1.00081
1.00088
1.00096
1.00104
1.00111
1.00119
1.00127
1.00134
1.00153

(a) C = 1

IsoValue
0.999756
1.00012
1.00037
1.00061
1.00085
1.0011
1.00134
1.00159
1.00183
1.00207
1.00232
1.00256
1.00281
1.00305
1.00329
1.00354
1.00378
1.00402
1.00427
1.00488

(b) C = 2

IsoValue
0.998844
1.00058
1.00173
1.00289
1.00405
1.0052
1.00636
1.00752
1.00867
1.00983
1.01098
1.01214
1.0133
1.01445
1.01561
1.01676
1.01792
1.01908
1.02023
1.02312

(c) C = 2.5

IsoValue
0.990094
1.00495
1.01486
1.02476
1.03467
1.04458
1.05448
1.06439
1.07429
1.0842
1.09411
1.10401
1.11392
1.12382
1.13373
1.14363
1.15354
1.16345
1.17335
1.19812

(d) C = 3

Figure 4: Velocity profile for large Oser number for linear pressure law.

5 Conclusions

We have presented the derivation of a one dimensional barotropic compressible system of equations called
γ−pressurized model including the friction. The hyperbolic γ−pressurized model (37) is, formally, an approx-
imation of O(ε) of the hydrostatic approximation (16)–(18) and therefore of the compressible Navier-Stokes
equations (1). Unlike previous works by Bourdarias et al [3, 4], we have proposed a full justification (deriva-
tion) of the P-model and the air entrainment model. To this purpose, first, we have obtained the ”motion by
slices” property required in the averaging process. Second, considering viscous flows instead of inviscid one,
we have integrated the border friction in the model reduction. In particular, we have explicitly described
the geometrical dependency (with respect to the hydraulic radius) and the hydrodynamical dependency
(with respect to the gravity force through the Oser number) of the ”averaged” friction appearing in the
γ−pressurized model.
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