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Abstract

We present the full derivation of a free surface pipe or open channel model including friction, changes
of section and changes of slope/topography. This 1D free surface model (also named FS-model) is
obtained from the incompressible 3D Navier-Stokes equation under shallow water assumptions with well-
suited boundary conditions. It was introduced in the general framework of unsteady mixed flows in
closed water pipes and is largely used by the engineers community.

Keywords: free surface flow, incompressible Navier-Stokes, shallow water approximation, hydrostatic ap-
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1 Introduction

Simulation of free surface flow in open channel or pipe as well as pressurized flow (when considering pipe
flow) plays an important role in many engineering applications such as storm sewers, waste or supply pipes
in hydroelectric installations . . . .

The free surface flow are described by a Newtonian, viscous an incompressible fluid through the 3D
incompressible Navier-Stokes equations. Thus from a numerical viewpoint, the use of the full 3D Navier-
Stokes equations can lead to time-consuming simulations. For specific application such as under shallow water
assumption, one can reduce the Navier-Stokes equations to the so-called Saint-Venant equations (shallow
water equations) by averaging technique.

Introducing reduced models preserving some of the main physical features is one of the most challenging
issues that we address with the obvious consequence to decrease the computational time. During these last
years, a great amount of works was devoted to the modeling and the simulation of free surface and pressurized
flow (see for instance [21, 25, 24, 15, 13, 20, 19, 18, 22], [7, 2, 1, 16, 3, 4] and the reference therein).

The classical shallow water equations are usually obtained from the 3D Navier Navier-Stokes equations
or the 2D Navier Navier-Stokes equations by vertical averaging leading to a two dimensional or a one
dimensional model. The derivation of the shallow water equations from the Navier-Stokes equations are
now classical. Gerbeau and Perthame [20] study the full derivation of the one dimensional shallow water
equations from the 2D Navier-Stokes equations including a small friction term on a flat bottom. In particular,
they derive the so-called ”motion by slices” meaning that the horizontal velocity does not depend upon the
vertical coordinate. They also propose a parabolic correction to get a viscous shallow water equations. In
the same spirit, Marche [22] propose a two dimensional viscous and non viscous shallow water equations in
a rotating framework with varying topography including Coriolis force, friction (linear and quadratic), and
capillary effects. These source terms, in particular the capillary effects, is a great utility to prove the global
existence of weak solutions for the viscous model as done in [11, 12, 10]. One can found a variant of this
work including surface wind effects in [18]. These works are mainly based on a wall-law condition at the
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bottom while Boutounet et al [9] derive a shallow water equations with a no-slip condition at the bottom
and include capillary effects.

A similar model can be also formally obtained from the 3D Euler equations by section averaging leading
to a one dimensional shallow water model called FS-model by the author. This formal derivation is now
classical (see for instance [7, 8] and [16, 4]) but in the same spirit of [20], this is unsatisfactory as pointed
out by Bernardi and Pironneau [14]. Nevertheless, let us note that numerical experiment versus laboratory
experiment was presented [2, 1, 3]) and the proposed schemes for the FS-model produce results that are in
a very good agreement. Under the hypothesis

u(t, x, y, z) ≈ u(t, x)

the 1D FS-model is an accurate approximation of the 3D Euler equations in a shallow water framework.
The so-called FS-model is:







∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A
+ gI1(x,A) cos θ

)

= −gA sin θ + gI2(x,A) cos θ
(1)

where A is the wet area, u is the mean water velocity, Q = Au is the discharge, I1 is the usual hydrostatic
pressure, I2 the presssure source term and sin θ is the ”slope variation”. To take into account the friction, a
quadratic term −ρgCfu|u| was added to the system (1). The friction factor Cf is defined by

Cf =
1

K2
sRh(A)4/3

,

where Ks is the Strickler coefficient of roughness depending on the material, Rh(A) = A/Pm is the hydraulic
radius and Pm is the wet perimeter of the wet surface area (length of the part of the channel’s section in
contact with the water).

Thus, following the full derivation proposed by Ersoy [17] for the pressurized model (see [16, 4]), we
study the full derivation including viscosity, friction with varying section and slope/topography for pipe/open
channel flow. In particular, we justify the free surface model as an approximation at order O(ε) of the full
3D incompressible Navier-Stokes system where ε is the aspect ratio assumed to be small

ε =
D

L
=

l

L
≪ 1 .

D is the mean pipe diameter (mean height of the open channel), l is the mean pipe width (mean width of
the open channel) and L its length.

In particular, we show that the ”motion by slices” assumption,

u ≈ u ,

used to formally derive the free surface model [4], is exact at first order and

u(t, x, y, z) = u(t, x) +O(ε) .

Moreover, denoting H(t, x, y) the local water elevation from the surface z = 0, H should satisfies:

H(t, x, y) = H(t, x, 0) +O(ε)

meaning that the free surface has negligible oscillations in the y-direction. Let us mention that this asymp-
totic behavior is essential to reduce the 3D incompressible Navier-Stokes equations to the 1D free surface
model.

The paper is organized as follows. In Section 2, we recall the incompressible Navier-Stokes equations
with suitable boundary conditions including friction and we fix the notations. In Section 3, we deduce the
so-called motion by slices and other assumptions required to derive the free surface model under shallow
water assumptions from the hydrostatic approximation of the incompressible Navier-Stokes equations. Then,
these equations are integrated following the section orthogonal to the main flow direction and the 1D free
surface model is obtained. Finally, we end with Section 4 where we discuss about the paraboloid correction
of the horizontal velocity.
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2 The incompressible Navier-Stokes equation and its closure

In this section, we fix the notations of the geometrical quantities involved to describe the thin domain
representing a pipe or an open channel. Then, we recall the incompressible Navier-Stokes system written in
the Cartesian coordinates with a gravity. We define the wall-law boundary conditions including a general
friction law with a no penetration condition. The free surface boundary conditions are also defined. For the
sake of simplicity, we will consider only an infinitely rigid pipe with circular sections since the derivation is
the same for open channel.

2.1 Notations and settings

Let us consider an incompressible fluid confined in a three dimensional domain P , a pipe of length L oriented
following the i vector,

P :=
{
(x, y, z) ∈ R

3; x ∈ [0, L], (y, z) ∈ Ω(x)
}

where the section Ω(x), x ∈ [0, L], is

Ω(x) = {(y, z) ∈ R
2; y ∈ [α(x, z), β(x, z)], z ∈ [0, 2R(x)]}

as displayed on figure 1(a).
The main flow direction is supposed to be in the i direction. Thus the wet section

Ω(t, x) = Ω(x) ∩ {(y, z) ∈ R
2; 0 6 z 6 H(t, x, y)}, t > 0, x ∈ [0, L] ,

is assumed to be orthogonal to the main flow direction where H(t, x, y) is the local water elevation from the
surface z = 0 in the Ω(x)-plane (as displayed on figure 1(b)).

Here R(x) stands for the radius of the pipe section S(x) = πR2(x), α(x, z) (resp. β(x, z)) is the left
(resp. the right) boundary point at elevation 0 6 z 6 2R(x).

In the Ω-plane, we define the coordinate of a point m ∈ ∂Ω(x) := Γb(t, x), x ∈ [0, L], by (y, ϕ(x, y))

where ϕ(x, y) =
√

R(x)2 − y2 for y > 0 and ϕ(x, y) = −
√

R(x)2 − y2 for y < 0. The wet boundary (part of
the boundary in contact with water) is defined as follows:

Γb(t, x) = {(y, z) ∈ R
2; z = ϕ(x, y) 6 H(t, x, y)} .

The point m stands for the vector ωm where w(x, 0, b(x)) defines the main slope elevation of the pipe with

b′(x) = sin θ(x). Then, we note n =
m

|m| the outward unit vector at the point m ∈ ∂Ω(x), x ∈ [0, L] as

represented on figure 1(b).
In the Ω-plane, we also define the coordinate of a point m ∈ ∂Ω(x) := Γfs(t, x), x ∈ [0, L], by

(y,H(t, x, y)). The free surface boundary writes:

Γfs(t, x) = {(y, z) ∈ R
2; z = H(t, x, y)} .

Finally, we note
h(t, x, y) = H(t, x, y)− ϕ(x, y)

the local elevation of the water (see figure 1(b)).
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(a) Configuration (b) Ω-plane

Figure 1: Geometric characteristics of the pipe

Remark 2.1. For the sake of simplicity, we consider here only pipe with circular section. This work can be
easily adapted to all type of realistic pipe or open channel by defining appropriately quantities involved in
the definition of the geometry (see [16]). For instance, in case of ”horseshoe” section as shown in figure 2(a),
the section Ω(x), x ∈ [0, L], is given by

Ω(x) = ΩH(x) ∩ ΩR(x)

where
ΩH(x) =

{
(y, z) ∈ R

2; y ∈ [α(x, z), β(x, z)], z ∈ [0, H(x)]
}

and
ΩR(x) = {(y, z) ∈ R

2; y ∈ [α(x, z), β(x, z)], z ∈ [H(x), R(x)]} .
H is the height of the trapezoidal basis and R is the radius of the upper part of the ”horseshoe”. A second
example concerns an open channel as shown in figure 2(b).

(a) ”horseshoe” section (b) Open channel

Figure 2: Pipe and open channel

Remark 2.2. For the sake of simplicity, the pressurized model is derived here in the Cartesian coordinates
instead of the original one [4]. In the original work, the incompressible Euler equations was written in a local
Serret-Frenet frame attached to the main pipe axis in order to take into account the local effects produced
by the changes of section and the slope variation. This approach introduces naturally a curvature term in
the derivation. Thus, as a minor difference, this term will not be present in this framework.
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2.2 The incompressible Navier-Stokes model

We consider the incompressible Navier-Stokes equations in the domain P with suitable boundary conditions
on the inner wall and on the free surface. These conditions are completed with inflows/outflows conditions
at the upstream and downstream ends. The governing equations for the motion of an incompressible fluid
in [0, T ]× P , T > 0 are given by

{
div(ρ0u) = 0 ,

∂t(ρ0u) + div(ρ0u⊗ u)− divσ − ρ0F = 0 ,
(2)

where u =

(
u
v

)

is the velocity fields with u the i-component and v =

(
v
w

)

the Ω-component, ρ0 is the

density of the fluid at atmospheric pressure and F = g





sin θ(x)
0

− cos θ(x)



 is the external gravity force.

The total stress tensor is

σ =

(
−p+ 2µ∂xu R(u)t

R(u) −pI2 + 2µDy,z(v)

)

(3)

where I2 is the identity matrix, µ is the dynamical viscosity and R(u) is defined by R(u) = µ (∇y,zu+ ∂xv).

Here, ∇y,zu =

(
∂yu
∂zu

)

is the gradient of u with respect to (y, z). Noting ·t the transpose of ·, we define

the strain tensor Dy,z(v) with respect to the variable (y, z):

2Dy,z(u) = ∇y,zv+∇t
y,zv .

2.3 The boundary conditions

The Navier-Stokes system (2)–(3) is completed with suitable boundary conditions to introduce the border
friction term on the wet inner wall of the pipe. We also assume a no-stress condition on the free surface.

As pointed out in [17], for pipe flow calculations, the Darcy-Weisbach equation, valid for laminar as
well as turbulent flows, is generally adopted while the Manning formula is widely used for open channel
(in turbulent regime). This factor Cf depends upon several parameter such as the Reynolds number, the
relative roughness, . . . Because of the extreme complexity of the rough surfaces of mean length δ, most of the
advances in understanding have been developed around experiments leading to charts such as the Moody-
Stanton diagram, expressing Cf as a function of the Reynolds number Re, the relative roughness and some
geometrical parameters depending on the material. Several formula such as Colebrook formula, Manning,
Chézy, Swamee and Jain. . . have been introduced to represents natural pipe trends. For large Reynolds

number, the friction factor Cf is almost function of the relative roughness
δ

Dh
where Dh is the hydraulic

diameter. More precisely, one can show from the Colebrook law that Cf = Ct +
Cl

Re
where Cl, Ct are some

quantity depending on the relative roughness
δ

Dh
and hydraulic parameters of the pipe. As a consequence

if the relative roughness is negligible, the friction factor can be expressed only in function of the Reynolds
number. We refer to [26, 28] for more details.

Thus, on the inner wall ∂Ω(x), ∀x ∈ (0, L), we assume a wall-law condition including a general friction
law:

(σ(u)nb) · τbi = (ρ0k(u)u) · τbi , t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x)

where k(u) = Cf |u| and Cf is the friction factor depending on the material. The vector τbi is the i
th vector

of the tangential basis.
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Let us detail the wall-law boundary conditions for the sake of completeness. Let us first write this
condition as follows:

σ(u)nb − (σ(u)nb · nb)nb = ρ0k(u)u, , t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x) .

Here nb stands for the unit outward normal vector:

nb =
1

√

(∂xϕ)2 + n · n

(
−∂xϕ
n

)

where n =

(
−∂yϕ
1

)

is the outward normal vector in the Ω-plane. Thus, the wall-law boundary conditions

are written:

R(u) · n (n · n− (∂xϕ)
2) + 2µ∂xϕ (Dy,z(v)n · n− ∂xu (n · n)) =

(
n · n+ (∂xϕ)

2
)3/2

ρ0k(u)u , (4)

2µ(∂xϕ)
2 (Dy,z(v)n− n) + ∂xϕR(u) (n · n− (∂xϕ)

2) =
(
n · n+ (∂xϕ)

2
)3/2

ρ0k(v)v . (5)

We complete it with a no-penetration condition:

u · nb = 0, t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x)

i.e.
u∂xϕ = v · n, t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x) . (6)

On the free surface, for the sake of simplicity we assume a no-stress condition:

σ(u)nfs = 0, t > 0, x ∈ (0, L), (y, z) ∈ Γfs(t, x)

where

nfs =
1

√

(∂xH)2 + nfs · nfs

(
−∂xH
nfs

)

where nfs =

(
−∂yH

1

)

is the outward normal vector to the free surface.

Remark 2.3. The range of validity of the modeling problem can be extended for pipe (respectively open
channel) flow when the air entrainment (respectively the wind stress) has an influence (see for instance Ferrari
and Saleri [18]). Let us also mention that the two-layer model proposed by Bourdarias et al [5] enters in this
framework. In particular, one can justify such a model from the present work and Ersoy [17]. Moreover, one
can also consider, as done in Marche [22], the surface tension at the fluid/air interface including capillary
effects.

As done above for the wall-law condition, let us detail the free surface boundary conditions:

(p− 2µ∂xu)∂xH +R(u) · nfs = 0 , (7)

R(u)∂xH + (p− 2µDy,z(v))nfs = 0 . (8)

Following the idea developed in [20], we introduce an indicator function which allows to define the fluid
region at time t:

Φ(t, x, y, z) =

{
1 if ϕ(x, y) 6 z 6 H(t, x, y) ,
0 otherwise

Thanks to the divergence free condition, the equation of the conservation of mass becomes:

∂tΦ+ ∂x(Φu) + divy,z(Φv) = 0 . (9)

6



3 The averaged model

In a thin-layer domain (respectively open channel), the flow follows the main pipe (respectively channel) axis
and thus it is almost unidirectional. For instance, in the supply pipes in hydroelectric installations (respec-
tively long open channels), pipes (respectively channels) are such that the average thickness D (respectively
the average width which is of the same order of a characteristic water elevation) is small in front of the
characteristic length L. Besides the fact that the aspect ratio is small

ε =
D

L
≪ 1 ,

we should assume that the characteristic speed in the Ω-plane V = (V,W ) is small compared to the horizontal
one U :

W

U
≈ V

U
≪ 1

in order to get a unidirectional flow. These physical considerations define the so-called shallow water as-
sumption.

3.1 The adimensionnalised Navier-stokes equations

Thus, in the sequel we consider the non-dimensional form of the Navier-Stokes system using the shallow
water assumption by introducing a ”small” parameter

ε =
D

L
=
W

U
=
V

U
≪ 1.

We then introduce a characteristic time T and a characteristic pressure P such that T =
L

U
and P = ρ0U

2.

The dimensionless quantities of time t̃, coordinate (x̃, ỹ, z̃) and velocity field (ũ, ṽ, w̃), noted temporarily by

a ·̃, are defined by x̃ =
x

X
. Thus, one has

t̃ =
t

T
, (x̃, ỹ, z̃) =

( x

L
,
y

D
,
z

D

)

, (ũ, ṽ, w̃) =
( u

U
,
v

W
,
w

W

)

.

We finally define the modified friction factor Cf/U that we write Cf .
We introduce the non-dimensional numbers:

Fr Froude number following the Ω-plane : Fr =
U√
gD

,

FL Froude number following the i-direction : FL =
U√
gL

,

Re Reynolds numbers with respect to µ : Rµ =
ρ0UL

µ
.

Dropping the ·̃ in equations (2), the non-dimensional incompressible Navier-Stokes system becomes:






∂x(u) + divy,z(v) = 0
∂t(u) + ∂x(u

2) + divy,z(uv) + ∂xp = Gu

ε2 (∂t(v) + ∂x(uv) + divy,z(v⊗ v)) +∇y,zp = Gv

(10)

where the source terms are given by

Gu = − sin θ(x)

F 2
L

+ ∂x
(
2R−1

e ∂xu
)
+ divy,z

(
Rε(u)

ε

)

Gv =





0

−cos θ(x)

F 2
r



+ ∂x (εRε(u)) + divy,z
(
2R−1

e Dy,z(v)
)

(11)
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with the notations

divy,zU = ∂yU + ∂zU, divU = ∂xU + divy,zU and Rε(u) = R−1
e

(
1

ε
∇y,zu+ ε∂xv

)

.

The non-dimensional wall-law boundary conditions (4)-(5) on the wet boundary Γb becomes:

Rε(u) · n (n · n− ε2(∂xϕ)
2) + 2εR−1

e ∂xϕ (Dy,z(v)n · n− ∂xu (n · n)) =
(
n · n+ ε2(∂xϕ)

2
)3/2 k(u)

U
u , (12)

2ε2R−1
e ∂xϕ

2 (Dy,z(v)n− n) + ∂xϕRε(u) (n · n− ε2(∂xϕ)
2) = ε

(
n · n+ ε2(∂xϕ)

2
)3/2 k(v)

U
v . (13)

while the no-penetration condition (6) is not modified in its dimensionless form.
The unit outward normal vector on the wet boundary Γb is now

nb =
1

√

n · n+ ε2∂xϕ

(
−ε∂xϕ

n

)

.

The non-dimensional boundary conditions (7)-(8) on the free surface Γfs becomes:

(p− 2µ∂xu)∂xH +
Rε(u)

ε
· nfs = 0 , (14)

εRε(u)∂xH + (p− 2µDy,z(v))nfs = 0 (15)

where the unit outward normal vector on the free surface Γfs is now

nfs =
1

√
nfs · nfs + ε2∂xH

(
−ε∂xH
nfs

)

.

To go further in the derivation of the free surface model, we rearrange the terms with respect to ε to
bring out the so-called hydrostatic approximation of System (10):

div(u) = 0 (16)

∂t(u) + ∂x(u
2) + divy,z(uv) + ∂xp = − sin θ(x)

F 2
L

+ divy,z

(
R−1

e

ε2
∇y,zu

)

+Rε,1(u) (17)

∇y,zp =





0

−cos θ(x)

F 2
r



+Rε,2(u) (18)

where
Rε,1(u) = R−1

e (∂x (2∂xu) + divy,z (∂xv)) = O(R−1
e )

and
Rε,2(u) = R−1

e

(
∂x
(
∇y,zu+ ε2∂xv

)
+ divy,z (2Dy,z(v))

)

−ε2 (∂t(v) + ∂x(uv) + divy,z(v⊗ v)) ,

= R−1
e (∂x (∇y,zu) + divy,z (2Dy,z(v))) +O(ε2) ,

= O(R−1
e ) +O(ε2) .

The first component of the wall-law boundary condition (12) becomes:

R−1
e

ε
∇y,zu · n =

(
n · n+ ε2(∂xϕ)

2
)3/2 k(u)

U u

(n · n− ε2(∂xϕ)2)
− εR−1

e

(
2∂xϕ (Dy,z(v)n · n− ∂xu (n · n))

(n · n− ε2(∂xϕ)2)
+ ∂xv · n

)

,

= K(u) +O(ε) +O(εR−1
e )

(19)
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where we make use of the notations

K(u) =
√
n · nk(u)

U
u and ∇y,zu · n := ∂nu

which are respectively the friction term and the normal derivative of u in the Ω-plane.
The second component of wall-law boundary condition (13) becomes:

R−1
e ∇y,zu =

ε2
(
n · n+ ε2(∂xϕ)

2
)3/2

ρ0
k(v)
U v

∂xϕ(n · n− ε2(∂xϕ)2)
− 2ε3R−1

e ∂xϕ
2 (Dy,z(v)n− n)

∂xϕ(n · n− ε2(∂xϕ)2)
− ε2∂xv · n ,

= O(ε2) +O(ε3R−1
e )

(20)

On the free surface, the boundary conditions (14)-(15) become:

R−1
e ∇y,zu · nfs = −ε2

(
(p− 2R−1

e ∂xu)∂xH +R−1
e ∂xv · nfs

)
= O(ε2) , (21)

(p− 2R−1
e Dy,z(v))nfs = −

(
R−1

e ∇y,zu+ ε2R−1
e ∂xv

)
∂xH . (22)

As a consequence, from the relation (21) and the relation (22), the pressure on the free surface satisfies

p (nfs · nfs)− 2R−1
e Dy,z(v)nfs · nfs = ε2 (∂xH)2 (p− 2R−1

e ∂xu) = O(ε2) (23)

On the basis of physical assumptions and mathematical considerations, following [20] and [17], we shall
assume the following asymptotic regime

R−1
e = εµ0, K = εK0 . (24)

3.2 First order approximation

Assuming shallow water assumption, the nearly unidirectional flow induces small vertical accelerations that
the Archimedes principle is applicable. As a consequence, one can drop all terms of order O(ε2) in equations
(16)–(18). Moreover, in view of the asymptotic assumption (24), taking the formal limit as ε vanishes, we
deduce the hydrostatic approximation

∂x(uε) + divy,z(vε) = 0 (25)

∂t(uε) + ∂x(u
2
ε) + divy,z(uεvε) + ∂xpε = − sin θ(x)

F 2
L

+ divy,z

(µ0

ε
∇y,zuε

)

+O(ε) (26)

∇y,zpε =





0

−cos θ(x)

F 2
r



+O(ε) (27)

Let us emphasize that even if this system results from a formal limit of Equations (16)–(18) as ε goes to 0,
we note its solution (pε, uε,vε) due to the explicit dependency on ε. Indeed, notice that we cannot neglect

the terms
1

ε
in Equation (26) since we are interested in computing a result at zeroth order.

Keeping in mind the above remark,

• the wall-law boundary conditions (19)-(20) become

µ0

ε
∇y,zuε ·n = ρεK0(u)+O(ε) and µ0∇y,zuε = O(ε), t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x) . (28)

• the free surface conditions (21)-(22) are:

µ0∇y,zuε · nfs
ε = O(ε) and µ0∇y,zuε = O(ε), t > 0, x ∈ (0, L), (y, z) ∈ Γfs(t, x) . (29)
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Thus, from Equation (26), the wall-law boundary conditions on Γb (28) and the free surface conditions on
Γfs (29), the so-called ”motion by slices” is obtained by solving the Neumann problem for t > 0, x ∈ (0, L)

{

divy,z

(µ0

ε
∇y,zuε

)

= O(ε) , (y, z) ∈ Ω(t, x)

µ0∂nuε = O(ε) , (y, z) ∈ ∂Ω(t, x)

where the constant is fixed through the second component of the wall-law condition (20), i.e.

µ0∇y,zuε = O(ε) , t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x) .

Thus, we get at first order
uε(t, x, y, z) = uε(t, x)

since
uε(t, x, y, z) = uε(t, x) +O(ε) . (30)

Consequently, at first order, we get
u2ε = uε

2 . (31)

Using Equations (27), one has

∂zpε = −cos θ

F 2
r

+O(ε).

Fixing y and integrating the previous relation between z and H(t, x, y), keeping in mind the relation (23),
we obtain

pε(t, x, y, z) =
cos θ

F 2
r

(Hε(t, x, y)− z) +O(ε) .

Moreover, from the first component of Equation (27), we deduce

Hε(t, x, y) = Hε(t, x, 0) +O(ε) . (32)

As a consequence, at first order, we find the usual hydrostatic pressure law,

pε(t, x, y, z) =
cos θ

F 2
r

(Hε(t, x, 0)− z) ,

i.e.

pε(t, x, y, z) =
cos θ

F 2
r

(Hε(t, x, 0)− z) +O(ε) . (33)

In view of the the definition of the water elevation Hε (32), the wet area is now modified at first order
as follows, t > 0, x ∈ [0, L]:

Ωε(t, x) = {(y, z) ∈ R
2;α(x, z) 6 y 6 β(x, z) and 0 6 z 6 Hε(t, x, 0)} (34)

where the outward unit normal vector to the free surface nfs reads at first order as displayed on figure 3

nfs
ε =

(
0
1

)

.

10



Figure 3: First order approximation of the wet area

Remark 3.1. At first order, one can deduce the vector vε from Equation (25) and the no-penetration
condition (6).

3.3 The free surface model

By virtue of the relations (30)–(34), dropping all terms of order O(ε) and integrating Equation (25)–(27)
over the cross-section Ω(t, x), following [4] we proceed as follows.

Let us first recall that m = (y, ϕ(x, y)) ∈ ∂Ω(x) stands for the vector ωm and n =
m

|m| for the outward

unit normal vector to the boundary Γb at the point m in the Ω-plane (as displayed on figure 1(b)).
Then, let us introduce A(t, x) and Q(t, x) the conservative variables of wet area and discharge defined by

the following relations:

A(t, x) =

∫

Ωε(t,x)

dydz (35)

and
Q(t, x) = A(t, x)uε(t, x) (36)

where

uε(t, x) =
1

A(t, x)

∫

Ωε(t,x)

u(t, x, y, z) dydz

is the mean speed of the fluid over the section Ωε(t, x).

Kinematic boundary conditions.

Let v be the vector field

(
v
w

)

. Integrating the equation of conservation of the mass (9) on the set:

Ω(x) = {(y, z); α(x, z) 6 y 6 β(x, z), 0 6 z 6 ∞},

we get the following equation:

∫

Ω(x)

∂t(φ) + ∂x(φuε) + divy,z(φvε) dydz = ∂tA+ ∂xQ+

∫

∂Ωε(t,x)

(uε∂xm− vε) · n ds (37)

where A and Q are given by (35) and (36).
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Now, integrating the equation (9) on Ωε(t, x), we get:

∫ Hε(t,x)

0

∂t

∫ β(x,z)

α(x,z)

dydz + ∂xQ+

∫

∂Ωε(t,x)

(vε − uε∂xm) · n ds = 0

where
∫ Hε(t,x)

0

∂t

∫ β(x,z)

α(x,z)

dydz = ∂tA− σ(x,Hε(t, x))∂th

with σ(x,Hε(t, x)) the width at the free surface elevation as displayed on figure 3.
Then, one has:

∂(A) + ∂x(Q) +

∫

Γfs
ε (t,x)

(∂tm+ uε∂xm− vε) · nfs
ε ds+

∫

Γb(t,x)

(uε∂xm− vε) · n ds = 0. (38)

Keeping in mind the no penetration condition (6) and by comparing equations (37) and (38), we finally get
the kinematic condition at the free surface:

∫

Γfs
ε (t,x)

(∂tm+ uε∂xm− vε) · nfs
ε ds = 0. (39)

which is nothing else than the usual kinematic boundary condition:

∂tHε + uε(z = Hε)∂xHε − wε(z = Hε) = 0 .

Finally, we deduced from (38) and (39) the following equation of the conservation of the mass:

∂t(A) + ∂x(Q) = 0. (40)

Equation of the conservation of the momentum.

In order to get the equation of the conservation of the momentum of the free surface model, we integrate
each terms of (26) over sections Ωε(t, x) as follows:

∫

Ωε(t,x)

∂t(uε)
︸ ︷︷ ︸

a1

+ ∂x(u
2
ε)

︸ ︷︷ ︸

a2

+divy,z (uεvε)
︸ ︷︷ ︸

a3

+ ∂xpε
︸︷︷︸

a4

dydz =

∫

Ωε(t,x)

− sin θ

F 2
L

︸ ︷︷ ︸

a5

dydz+

∫

Ωε(t,x)

divy,z (µ0∇y,zuε)
︸ ︷︷ ︸

a6

dydz .

By virtue of relations (30), (31) and (33), we successively get:

Computation of the term

∫∫∫

Ωε(t,x)

a1 dydz.

The pipe being non-deformable, only the integral at the free surface is relevant:
∫

Γb(t,x)

uε ∂tm · n ds = 0.

So, we get: ∫

Ωε(t,x)

∂t(uε) dydz = ∂t

∫

Ωε(t,x)

uε dydz −
∫

Γfs
ε (t,x)

uε ∂tm · nfs
ε ds.

Computation of the term

∫∫∫

Ωε(t,x)

a2 dydz.

∫

Ωε(t,x)

∂x(u
2
ε) dydz = ∂x

∫

Ωε(t,x)

u2ε dydz −
∫

Γfs
ε (t,x)

u2ε∂xm · nfs
ε ds−

∫

Γb(t,x)

u2ε∂xm · n ds.
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Computation of the term

∫∫∫

Ωε(t,x)

a3 dydz.

∫

Ωε(t,x)

divy,z (uεvε) dydz =

∫

Γfs
ε (t,x)

uεv · nfs
ε ds+

∫

Γb(t,x)

uεvε · n ds.

Summing the result of the previous step a1 + a2 + a3, we get:

∫

Ωε(t,x)

a1 + a2 + a3 dydz = ∂t(Q) + ∂x

(
Q2

A

)

(41)

where A and Q are given by (35) and (36).

Computation of the term

∫∫∫

Ωε(t,x)

a4 dydz.

For ψ = p, p given by the relation (33), (t, x) fixed, we have:

∫

Ωε(t,x)

∂xψ dydz =

∫ Hε(t,x)

0

∫ β(x,z)

α(x,z)

∂xψ dydz

=

∫ Hε(t,x)

0

∂x

∫ β(x,z)

α(x,z)

ψ dydz

−
(
∫ Hε(t,x)

0

∂xβ(x, z)ψ|y=β(x,z) − ∂xα(x, z)ψ|y=α(x,z) dz

)

= ∂x

∫

Ωε(t,x)

ψ dydz

−
(
∫ Hε(t,x)

0

∂xβ(x, z)ψ|y=β(x,z) − ∂xα(x, z)ψ|y=α(x,z) dz

)

−∂xHε(t, x)

∫ β|z=Hε(t,x)

α|z=Hε(t,x)

ψ|z=Hε(t,x) dy

Finally, we have:

∫

Ωε(t,x)

∂xp dydz = ∂x(gI1(x,A(t, x)) cos θ(x)) − gI2(x,A) cos θ(x) (42)

where I1 is the hydrostatic pressure:

I1(x,A) =

∫ Hε(A)

0

(Hε(A)− z)σ(x, z) dz.

The term I2 is the pressure source term:

I2(x,A) =

∫ Hε(A)

0

(Hε(A)− z)∂xσ(x, z) dz.

It takes into account of the section variation via the term ∂xσ(x, ·).

Computation of the term

∫∫∫

Ωε(t,x)

a5 dydz.

We have: ∫

Ωε(t,x)

g sin θ dydz = gA sin θ. (43)
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Computation of the term

∫∫∫

Ωε(t,x)

a6 dydz.

We have:
∫

Ωε(t,x)

divy,z (µ0∇y,zuε) dydz =

∫

Γfs
ε (t,x)

µ0∇y,zuε · nfs
ε ds+

∫

Γb(t,x)

µ0∇y,zuε · n ds (44)

where

∫

Γfs
ε (t,x)

µ0∇y,zuε ·nfs
ε ds = 0 due to the boundary condition (29). Using the boundary condition (28)

and (30), at first order, the second integral
∫

Γb(t,x)

µ0∇y,zuε · n ds =
∫

Γb(t,x)

K0(uε) ds = AK(uε)

where

K(x, uε) = K0(uε)

∫

Γb(t,x)
ds

A
ds

where

∫

Γb(t,x)

ds is the wet perimeter Pm (i.e. the portion of the perimeter where the wall is in contact

with the fluid) and thus
A

∫

Γb(t,x)
ds

is nothing else than the so-called hydraulic radius. This quantity was

introduce by engineers as a length scale for non-circular ducts in order to use the analysis derived for the
circular pipes (see for instance [26, 27]). Let us outline that this factor is naturally obtained in the derivation
of the averaged model.

Then, gathering results (40) and (41)–(44), we get the equation of the conservation of the momentum.
Finally, multiplying by ρ0U

2/L , the shallow water equations for free surface flows introduced in [4] are:






∂t(A) + ∂x(Q) = 0

∂t(Q) + ∂x

(
Q2

A
+ gI1 cos θ

)

= −gA sin θ + gI2 cos θ − gAK(x,Q/A)
(45)

This model takes into account the slope variation, change of section and the friction due to roughness on
the inner wall of the pipe. This system was formally introduced by the author in [16] and [4] in the context
of unsteady mixed flows in closed water pipes assuming the motion by slices that we have now justified here.

We have proposed a Finite volume discretisation of the free surface model introducing a new kinetic solver
in [1] based on the kinetic scheme of Perthame and Simeoni [23]. We have also proposed a new well-balanced
VFRoe scheme. These numerical scheme have been validated in [6] in a channel with varying width on a
trans-critical steady state shock. Several test cases have been passed with success through comparison with
an exact solution or a code to code comparison, see for instance [2, 3].

4 Further extensions and concluding remarks

One can also formally increase the order of accuracy by determining the first order correction on (y, z) in
the asymptotic expansion of uε(t, x, y, z). It corresponds to a paraboloid correction. To do so, let us come
back to the equation (17) assuming θ = cst and write:

divy,z

(µ0

ε
∇y,zuε

)

= ∂t(uε) + ∂x(u
2
ε) + divy,z(uεvε) + ∂xpε +

sin θ(x)

F 2
L

+O(ε)

= ∂t(uε) + uε · ∇(uε) + ∂xpε +
sin θ(x)

F 2
L

+O(ε)

= ∂t(uε) + uε · ∇(uε) + ∂xpε +
sin θ(x)

F 2
L

+O(ε)

= −K(uε) +O(ε)
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Let us numerically illustrate the paraboloid correction of uε. We consider three type of geometry (section)
for pipe: circular, rectangular and ”horseshoe” (see figure 2(a)) and three one for open channel: semi-circular,
open rectangular and trapezoidal. We consider the following settings

ε = 10−3, cos θ = 1, K(uε) = 1, and uε = 0 .

The results are represented on figures 4(a), 5(a) and 6(a) for pipe flow and on figures 4(b), 5(b) and 6(b) for
open channel flow. Let us note that the scale of the paraboloid is of order ε as predicted by the asymptotic
expansion of uε, in particular the expression (30).

Finally, we have performed an asymptotic analysis of the 3D incompressible Navier-Stokes equation with
wall-law and no-penetration conditions, and suitable free surface boundary conditions in the shallow water
limit. We have considered the incompressible hydrostatic approximation with friction boundary conditions
and free surface boundary conditions and we have integrated these equations along the Ω sections to get the
free surface model. In particular, we have shown that the free surface model (45) is an approximation of
O(ε) of the hydrostatic approximation (25)–(27) and therefore of the incompressible Navier-Stokes equations
(10).

IsoValue
6.01222e-06
1.84884e-05
3.09646e-05
4.34408e-05
5.5917e-05
6.83932e-05
8.08694e-05
9.33456e-05
0.000105822
0.000118298
0.000130774
0.00014325
0.000155727
0.000168203
0.000180679
0.000193155
0.000205631
0.000218108
0.000230584
0.00024306

(a) pipe

IsoValue
6.24581e-06
1.87374e-05
3.12291e-05
4.37207e-05
5.62123e-05
6.87039e-05
8.11955e-05
9.36872e-05
0.000106179
0.00011867
0.000131162
0.000143654
0.000156145
0.000168637
0.000181128
0.00019362
0.000206112
0.000218603
0.000231095
0.000243587

(b) open channel

Figure 4: Circular basis
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IsoValue
1.81974e-06
5.5044e-06
9.18906e-06
1.28737e-05
1.65584e-05
2.0243e-05
2.39277e-05
2.76124e-05
3.1297e-05
3.49817e-05
3.86663e-05
4.2351e-05
4.60357e-05
4.97203e-05
5.3405e-05
5.70896e-05
6.07743e-05
6.4459e-05
6.81436e-05
7.18283e-05

(a) pipe

IsoValue
1.84178e-06
5.52535e-06
9.20892e-06
1.28925e-05
1.65761e-05
2.02596e-05
2.39432e-05
2.76268e-05
3.13103e-05
3.49939e-05
3.86775e-05
4.2361e-05
4.60446e-05
4.97282e-05
5.34117e-05
5.70953e-05
6.07789e-05
6.44624e-05
6.8146e-05
7.18296e-05

(b) open channel

Figure 5: Rectangular basis

IsoValue
5.78034e-06
1.73513e-05
2.89223e-05
4.04933e-05
5.20643e-05
6.36353e-05
7.52063e-05
8.67773e-05
9.83483e-05
0.000109919
0.00012149
0.000133061
0.000144632
0.000156203
0.000167774
0.000179345
0.000190916
0.000202487
0.000214058
0.000225629

(a) basis

IsoValue
5.78537e-06
1.73561e-05
2.89269e-05
4.04976e-05
5.20683e-05
6.36391e-05
7.52098e-05
8.67806e-05
9.83513e-05
0.000109922
0.000121493
0.000133064
0.000144634
0.000156205
0.000167776
0.000179347
0.000190917
0.000202488
0.000214059
0.000225629

(b) open channel

Figure 6: ”horseshoe” basis
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