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represented by piecewise continuous Bézier
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olivier.ruatta@math.cnrs.fr

Abstract. In this work, we develop a framework based on piecewise
Bézier curves to plane shapes deformation and we apply it to shape opti-
mization problems. We describe a general setting and some general result
to reduce the study of a shape optimization problem to a finite dimen-
sional problem of integration of a special type of vector field. We show a
practical problem where this approach leads to efficient algorithms.

In all the text below, E = ❘2. In this text, we will define a set of manifolds,
each point of such a manifold is a parametrized curves in E.

1 Bézier curves

Bézier curves are usual objects in Computer Aided Geometric Design (CAGD)
and have natural and straightforward generalization for surfaces and higher di-
mension geometrical objects. We focus here on plane curves even if most of
results of this paper have a natural generalization in higher dimension. We will
show that a Bézier curve is fully encoded by a set of points. This set of points
forms the control polygon. This will lead us to a parametrization of curves by
their control polygon giving to the set of Bézier (and piecewise Bézier) curves
a manifold structure by diffeomorphism. This diffeomorphism is in fact linear
and allows to studied space of curve as a vector space. Using this will be able to
interpret deformations as infinitesimal curves of the same kind. The aim of this
section is to fix notation and make the paper as self contained as possible.

1.1 Basic definitions

Given P0, P1, . . . , PD ∈ E, we define:

B
((

P0, . . . , PD

)

, t
)

= (1− t)B
((

P0, . . . , PD−1

)

, t
)

+ tB
((

P1, . . . , PD

)

, t
)

with B ((P ) , t) = P for every P ∈ E. The associated Bézier curve is
{

B
((

P0, . . . , PD

)

, t
)

| t ∈ [0, 1]
}

and the list
(

P0, . . . , PD

)

is called the control
polygon and the points P0, . . . , PD are called the control points.

This process associates to every set of points a parametrized curve. It is a
polynomially parametrized curve and its degree is bounded :



Proposition 1. Let P0, . . . , PD ∈ E, then B
((

P0, . . . , PD

)

, t
)

is a polynomial

parametrization and its coordinates have degree at most D.

1.2 Bernstein’s polynomials

Definition 1. Let D be an integer and i ∈ {0, . . . , D}, we define the Bernstein

polynomial bi,D (t) :=
(

i
D

)

(1− t)
D−i

ti.

Notation 1 We denote ❘ [t]D the set of polynomial of degree less or equal to

D. The set ❘ [t]D has a natural ❘-vector space structure, its dimension is D+1
and

{

1, t, . . . , tD
}

is a basis of this vector space.

Proposition 2. The set {b0,D, . . . , bD,D} is a basis of ❘ [t]D.

Proposition 3. Let P0, . . . , PD ∈ E, then B
((

P0, . . . , PD

)

, t
)

=
N
∑

i=0

Pibi,D (t)

for all t ∈ [0, 1].

Corollary 1. Every polynomially parametrized curve can be represented as a

Bézier curve.

1.3 Interpolation

Since a Bézier curve of degree D is defined using D + 1 control points, one can
hope to recover D+1 control points of a curve given a sampling of D+1 points
on a curve. The following result shows that this is possible. But in fact, we do not
have a single Bézier curve of degree D but many. Each such curve is associated
with a particular sampling of the parameter interval [0, 1].

Proposition 4. Let M0, . . . ,MD ∈ E, then there exists Bézier curves of degree

D passing through these points.

Lemma 1. Let t0 = 0 < t1 < · · · < tD = 1, then there exists one and only one

Bézier curve B
((

P0, . . . , PD

)

, t
)

of degree D such that B
((

P0, . . . , PD

)

, ti
)

=
Mi, ∀i ∈ {0, . . . , D}.

Proof. Denote by M the 2× (D + 1) matrix built with the coordinates of Mi as
ith row, i.e. M = (M0, . . . ,MD)

t
, and denote by P the 2× (D + 1) matrix built

with the coordinates of Pi as ith row, i.e. P = (P0, . . . , PD)
t
. We consider the

following matrix associated with t =
(

t0, . . . , tD
)

:

Bt,D =











b0,D (0) b1,D (0) · · · bD,D (0)
b0,D (t1) b1,D (t1) · · · bD,D (t1)

...
...

. . .
...

b0,D (1) b1,D (1) · · · bD,D (1)











. (1)

The matrix of equation (1) is invertible (it is the Vandermonde matrix expressed
in the Bernstein basis) and clearly if P is such that Bt,DP = M , then
B ([P0, . . . , PD] , t) gives the wanted curve for the proof of the lemma.



Remark that once t is known, one can compute B−1
t,D once and for all, and

that it is possible to take advantage of its Vandermonde-like structure in order
to improve the cost of the multiplication of a vector by Bt,D. Generally, we use
a regular subdivision (ti =

i
D
) but there are more suitable choices in regard to

the stability of the computation.

2 Piecewize Bézier curves

2.1 Basics on piecewise Bézier curves

Let P0,0, . . . , P0,D, P1,0, . . . , P1,D, . . . , PN,0, . . . , PN,D ∈ E, such that Pi,D =
Pi+1,0 for all i ∈ {0, . . . , N − 1}, and let P i = (Pi,0, . . . , Pi,D), we define:

Γ (P 0, . . . ,PN , t) = B

(

P i,
i

l + 1
+ (l + 1) t

)

(2)

for l ∈ {0, . . . , N}, t ∈
[

i
(l+1) ,

(i+1)
(l+1)

]

and for all i ∈ {0, . . . , l} . This defines a

continuous parametrization. The curves parametrized by B
((

Pi,0, . . . , Pi,Di

)

, t
)

are called the patches of C = Γ ([0, 1]). Furthermore, if Pl,Dl
= P0,0 we say that

the curve C is closed or that it is a loop.

We denote BN,D the set of uniform piecewise Bézier curves built from N
patches of degree D. This clearly a finite dimensional subvariety of C0 ([0, 1] , E)
as the image of the following map:

ΨN,D :

{
(

ED+1
)N+1

−→ C0 ([0, 1] , E)
(P i, i = 0 . . . N) 7−→ Γ ((P i, i = 0 . . . N) , t)

(3)

Clearly, ΨN,D is onto from
(

ED+1
)N+1

to BN,D ⊂ C0 ([0, 1] , E). It is not

very difficult to check that ΨN,D is almost always one-to-one from
(

ED+1
)N+1

to

BN,D. So, ΨN,D is almost everywhere a diffeomorphism between
(

ED+1
)N+1

and
BN,D. BN,D is endowed with a manifold structure (even a submanifold structure
in C0 ([0, 1] , E)).

The density of polynomials in the set of continuous functions implies that for
each Φ : [0, 1] −→ E continuous there exists (Γn (t))n∈◆ such that lim

n→∞
‖Φ− Γn‖2 =

0. So, piecewise Bzier curves are a good approximating set for C0 ([0, 1] , E).

2.2 Sampling map and retraction to ΨN,D

Definition 2. Let t0 = 0 < t1 < . . . < tD = 1, we denote t = (t0, . . . , tD) the

associated subdivision of [0, 1], then we define the sampling map St : B1,D −→
ED+1 by St (Γ ) =

(

Γ (t0) , . . . , Γ (tD)
)

.



Proposition 5. The following diagram is commutative:

ED+1 Ψ1,D

−→
C0 ([0, 1] , E)

ց
Bt,D

↓ St

ED+1

(4)

and ΨN,D is an invertible linear isomorphism between B1,D = Im (Ψ1,D) and

ED+1 and its inverse is Ψ−1
N,D = B−1

t,D ◦ St.

Proof. Let Γ (t) =
N
∑

j=1

D
∑

i=0

Pj,ibi,D (t) ,

i.e., . Γ = ΨN,D ((P0,0, . . . , P0,D) , . . . , (PN,0, . . . , PN,D)), then clearly St (Γ ) =

Bt,DP where P =







P t
0,0
...

P t
N,D






, and so St ◦ ΨN,D (P ) = Bt,N (P ). The remainder

of the proposition is a consequence of the fact that Bt,N is a linear isomorphism.

Proposition 6. Let t1,0 = 0 < t1,1 < · · · < t1,D = 1/N = t2,0 < t2,1 <
· · · < t2,D = 2/N = t3,0 < · · · < tN,D = 1, we denote t = (t1, . . . , tN ) where

ti = (t0,i, . . . , tD,i) and we define the sampling map St,N : BN,D −→
(

ED
)N

by

St,N (Γ ) = St1 × · · · ×StN (Γ ) =
(

Γ (t1,0) , . . . , Γ (tN,D)
)

. Then St,N is a linear

isomorphism between BN,D and
(

ED+1
)N+1

.

Proof. It is a simple consequence of the fact that a Cartesian product of iso-
mophisms is an isomorphism. The inverse map is the Cartesian product of the
inverse of the component maps.

Proposition 6 is important since it allows to give BN,D a vector space struc-

ture isomorphic to
(

ED+1
)N+1

(and so, of finite dimension). For instance, it
allows to transport distance and between other things in BN,D.

In fact, we focus here on a speciale type of sampling. We consider a sampling
where ti,0 = i

N
and ti,D = i+1

N
and ti,j = ti,0 +

j
ND

. We will call this a regular
sampling and we will omit the subscript t when we use these samplings. We use
regular samplings to simplify the presentation, but all the results presented in
this paper have equivalent statements with general sampling. Let us represent
each patch by its control polygon: the matrix of St,N is N times the Cartesian
production of the map B1,D with itself: B1,D × · · ·×B1,D. This gives us an easy
way to solve the following interpolation problem.

Problem 1. Given M0,0, . . . ,M0,D, . . . ,MN,0, . . . ,MN,D ∈ E, find Γ ∈ BN,D

such that SN (Γ ) =







M t
0,0
...

M t
N,D






.



Proposition 7. The solution of problem 1 is given by the image by ΨN,D of:







B−1
1,D

. . .

B−1
1,D













M t
0,0
...

M t
N,D






. (5)

Proposition (7) implies that χt,D = B−1
t,D ◦ St : BN,D −→ ED+1 is such that

Ψ1,D ◦ χt,D = IdED+1 . It is easy to extend this result to ΨN,D using BN,D =
B1,D × · · · ×B1,D satisfying B−1

N,D = B−1
1,D × · · · ×B−1

1,D.

This approach allows us to project any element of C0 ([0, 1] , E) on BN,D using

SN . Let Λ ∈ C0 ([0, 1] , E), then denotingM =
(

Γ (0), Γ ( 1
ND

), . . . , Γ (ND−1
ND

), Γ (1)
)t

we have that P = S−1
N (M) ∈ BN,D is such that ΨN,D (P ) = B (P , t) coincides

with Λ ([0, 1]) on at least (D + 1) points counted with multiplicities on each
patch. This comes from the fact that χt,D can be extended to C0 ([0, 1] , E).

Our main claim is that, instead of working directly with BN,D, it is easier
to work on the “set of control polygons”, namely ED+1, using sampling and
interpolation that give linear isomorphism between control polygons and sets of
sampling points on the curves. In what follows, we will always take this point of
view.

2.3 Tangent space TBN,D and deformation of curve

Recall that ΨN,D defines a linear isomorphism between the “space of control

polygons”
(

ED+1
)N+1

and the space of piecewise Bézier curves BN,D. We al-

ready saw that for any γ (t) ∈ BN,D then there exists P ∈
(

ED+1
)N+1

such that

ΨN,D (P ) = γ (t) is given by B−1
N,D ◦SN (γ). This gives the following proposition:

Proposition 8. Consider the map TΨN,D : T
(

ED+1
)N+1

−→ TBN,D. Then

for any γ ∈ BN,D we have that TΨ−1
N,D (γ) : TγBN,D −→ TχN,D(γ)

(

ED+1
)N+1

is given by TΨN,D (χN,D (γ))
−1

(ε) = B−1
N,D ◦ SN (ε) = χN,D (ε) for any ε (t) ∈

TγBN,D. Moreover, this is a linear isomorphism.

An element of ε (t) ∈ TγBN,D is called a deformation curve. In fact, this
proposition allows to express, given a piecewise Bézier curve and a deformation
of its control polygon. This is an essential step proving that manipulating a
piecewise Bézier curve, it is enough to manipulate its control polygon. This is
the object of the following lemma.

Lemma 2. Let P ∈
(

ED+1
)N+1

, γ (t) = ΨN,D (P ) = B (P , t) ∈ BN,D and

ε (t) ∈ TγBN,D, then:

i. ε (t) = ΨN,D (χN,D (ε)).
ii. γ (t) + ε (t) = ΨN,D (P + χN,D (ε)).



This lemma explain how to lift a deformation from the space of curves to
the space of control polygons. The vector space structure of both the space of

control polygons
(

ED+1
)N+1

and of piecewise Bézier curves BN,D allows us to
avoid the use of computationally difficult concepts such as the exponential map
between manifold and its tangent space for instance. This structure also helps
to define a simple notion of distance between two such curves.

3 Applications to shape optimization

In this section, we show how the preceding formalism can be exploited in the con-
text of shape optimization. An application to a problem of image segmentation
is presented to illustrate our purpose.

3.1 Shape optimization problem

A typical shape optimisation problemcan be formulated as follows: given a set of
admissible shapes A and a functional F : A → ❘

+ find a shape α ∈ A such that
for all other shapes β ∈ A, we have F (α) 6 F (β). Generally, one tries to give
to the space of admissible shape a structure of manifold in such a way to be able
to compute a “shape gradient” ∇F (β) expressing the evolution of the criterium
F with respect to a deformation of the shape β. This is to say that ∇F (β)
associates with every point M ∈ β a deformation vector ∇F (β) (M) ∈ TME.
The computation of such a gradient can require sophisticated computations,
since very often, even the computation of the criterium itself requires to solve
a system of partial differential equations. Many problems can be expressed as a
shape optimization problem. The classical approach to solve this kind of prob-
lems is to use ∇F (β), when it is computable, in a gradient method to find a
local minimum.

To keep the presentation as simple as possible, we focus on geometric optimi-
sation, i.e. we keep the topology of the shape fixed, in the case where the frontier
of the admissible shapes are continuous Jordan curves. But the framework pre-
sented here can be extended to topological optimization as it is shown in [5] for
a special application on a problem of image segmentation. The case treated here
received attention because of its deep links with image segmentation and shape
recognition (see [5, 3, 2] for instance).

We denote C0
J ([0, 1] , E) the set of functions parametrizing a Jordan curve and

Bc
N,D = {γ ∈ BN,D | γ (t) = γ (s) withs 6= t ⇔ ( t = 0 ands = 1) or (t = 1ands = 0)}.

We have Bc
N,D ⊂ C0

J ([0, 1] , E). We denote:

HN,D =
{

((Pi,j , j = 0 . . . D) , i = 0 . . . N) ∈
(

ED
)N

| P0,0 = PN,D

}

which is a linear subspace of
(

ED+1
)N+1

. We then denote Ψ c
N,D = ΨN,D

∣

∣

HN,D
.

As above, Ψ c
N,D defines a linear isomorphism between HN,D and Bc

N,D using

SN

∣

∣

∣Bc
N,D

and the same BN,D to define its converse explicitly.



3.2 Vector field on BN,D lifted from the shape gradient

Let ∇F be a shape, then for each α ∈ C0
J ([0, 1] , E) and for any M ∈ α ([0, 1]),

∇F associates with M an element ∇F (α) (M) ∈ TME. Consider now α ∈ Bc
N,D

and ((M0,0, . . . ,M0,D) , . . . , (MN,0, . . . ,MN,D)) = SN (α), then M0,0 = MN,D.
We

TN,F (α) = ((∇F (α) (Mi,j) , j = 0 . . . D) , i = 0 . . . D)

This represents the sampling of the deformation of the curve implied by the shape

gradient ∇F to α. It is not difficult to see that TN,F (α) ∈ TSN (α)

(

(

ED
)N

)

.

Theorem 1. The map B−1
N,D ◦ TN,F associates with each shape gradient ∇F a

vector field on HN,D which correspond to a vector field VF on Bc
N,D through

TΨ c
N,D.

This theorem allows us to interpret the gradient descent method for shape
optimization as a algorithm for integrating a vector field in a finite dimensional
space. The gradient descent method corresponds to the Euler method. Clearly,
this approach suggests to use a better algorithm for vector field integration.

3.3 Geometry of the vector field and local extrema of shape cost

functional

Proposition 9. Let α ∈ C0
J ([0, 1] , E) be such that ∇F (α) = 0, i.e. ∇F (α) (M) =

0 for all M ∈ α ([0, 1]) and let γ ∈ BN,D be such that γ
(

i
ND

)

= α
(

i
ND

)

for

i ∈ {0, . . . , ND}, i.e. γ = ΨN,D

(

B−1
N,D ◦ SN (α)

)

. Then ∇F (γ)
(

γ
(

i
ND

))

= 0

for i ∈ {0, . . . , ND} and VF

(

B−1
N,D ◦ SN (α)

)

= 0. This is to say that a local

extremum of F induces a local extremum of its restriction to BN,D and that this

extremum is “lifted” on a singularity of the vector field VF on HN,D.

Proof. The deformation curve of γ induced by the gradient of F vanishes at
at least (D + 1) (N + 1) points, but it is a “Bézier curve” of degree D, so it
is a zero polynomial. So, its control polygon is reduced to the origin and then
B−1

N,D ◦ SN (α) is a singularity of VF .

In fact, the vector field VF is associated with the gradient of the function
F ◦ΨN,D. This is an heavy constraint on the vector field. For instance, it is easy
to see that P is an attractive singularity of VF if and only if ΨN,D (P ) is a local
minimum of F

∣

∣

HN,D
.

3.4 Application to a problem of image segmentation

In this section, we sketch an application to a problem of image segmentation. It
is a problem of omnidirectional vision. Previous methods attacked the problem
with some success but does not allowed a full real time treatment. They are all
based on snake-like algorithms (see [9]). The gradient used to detect edges is a



classical one based on a Canny filter and it is combined with a balloon force.
The best previously known method is such that propagation of the contour was
computed using the fast marching algorithm for level set method. This a typical
formulation of image segmentation as a shape optimisation problem. In [6], we
use piecewise Bézier curves to compute contour propagation and achieve a very
fast segmentation algorithm allowing real time treatment even with sequential
algorithms (no use of parallelism or special hardware architecture) on a embed-
ded system.

It is very interesting to see that, with a few algorithmic modifications, it is
also possible to treat a change of topology, i.e., curves with several connected
components as it is shown in the previous figure.
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