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Abstract

The development of natural language pro-
cessing tools for dialects faces the severe
problem of lack of resources. In cases of
diglossia, as in Arabic, one variant, Mod-
ern Standard Arabic (MSA), has many re-
sources that can be used to build natu-
ral language processing tools. Whereas
other variants, Arabic dialects, are re-
source poor. Taking advantage of the
closeness of MSA and its dialects, one
way to solve the problem of limited re-
sources, consists in performing a trans-
lation of the dialect into MSA in order
to use the tools developed for MSA. We
describe in this paper an architecture for
such a translation and we evaluate it on
Tunisian Arabic verbs. Our approach re-
lies on modeling the translation process
over the deep morphological representa-
tions of roots and patterns, commonly
used to model Semitic morphology. We
compare different techniques for how to
perform the cross-lingual mapping. Our
evaluation demonstrates that the use of a
decent coverage root+pattern lexicon of
Tunisian and MSA with a backoff that as-
sumes independence of mapping roots and
patterns is optimal in reducing overall am-
biguity and increasing recall.

1 Introduction

The Arabic language has many variants. Modern
Standard Arabic (MSA) is one of them. It is the
official language of all Arab countries. However,
MSA is the native language of no Arabic speakers.
It is used for education, printed and spoken me-
dia. There exists also a variety of Arabic dialects

which are the native languages of Arabic speakers.
Unlike MSA, Dialectal Arabic (DA) varieties are
only spoken. Therefore, there is no standard or-
thographic conventions (Habash, 2010; Habash et
al., 2012b).

Most of the Arabic natural language processing
(NLP) resources are built in order to process MSA.
Very few works on processing dialects have been
established, and mainly for Egyptian, Iraqi and
Levantine Arabic. In this work, we focus on the
Tunisian Arabic dialect (TUN), an important yet
less studied Arabic dialect. We propose to trans-
form it into a form that is close to MSA by using
morphological analysis and generation in order to
take advantage of MSA NLP tools. Our approach
relies on modeling the translation process over the
deep morphological representations of roots and
patterns, commonly used to model Semitic mor-
phology. We compare different techniques for how
to perform the cross-lingual mapping. Our evalu-
ation demonstrates that the use of a decent cov-
erage root+pattern lexicon of Tunisian and MSA
with a backoff that assumes independence of map-
ping roots and patterns is optimal in reducing over-
all ambiguity and increasing recall.

The paper is organized as follows. We first
present some related work in the next section. Sec-
tion 3 discusses similarities and differences be-
tween MSA and TUN verbal morphology. In Sec-
tion 4, we describe different tools that are used
throughout this work. Section 5 evaluates our sys-
tem.

2 Related Work

A limited amount of work has been done on build-
ing DA resources and tools, and mainly for Egyp-
tian, Iraqi and Levantine Arabic. Maamouri et al.
(2004b) presented a transcription corpus with its



design principles, development tools and guide-
lines for speech recognition research. Habash et al.
(2012b) developed a conventional orthography for
dialectal Arabic (CODA) designed for developing
computational models of Arabic dialects. CODA
was used in the design of a morphological ana-
lyzer for Egyptian Arabic (Habash et al., 2012a),
as well as a morphological disambiguation system
for Egyptian Arabic (Habash et al., 2013) and a
system for normalizing spontaneous orthography
(Eskander et al., 2013). A morphological analyzer
and generator for Arabic dialects (MAGEAD) was
also developed for MSA and Levantine Arabic
(Habash et al., 2005; Habash and Rambow, 2006;
Altantawy et al., 2010; Altantawy et al., 2011). Al-
Sabbagh and Girju (2010) described an approach
of mining the web to build a DA-to-MSA lexi-
con. Riesa and Yarowsky (2006) presented a su-
pervised algorithm for online morpheme segmen-
tation on DA that cut machine translation out-
of-vocabulary (OOV) words by half. Zbib et al.
(2012) demonstrated an approach to cheaply ob-
taining DA-English data using crowd-sourcing.

Several researchers have considered the idea of
exploiting existing MSA rich resources to build
tools for DA NLP. For example, in order to use
MSA treebanks to parse Levantine Arabic, Chi-
ang et al. (2006) compared three methods that
rely on translating between MSA and Levantine.
Abo Bakr et al. (2008) introduced a hybrid ap-
proach to transfer a sentence from Egyptian Ara-
bic into MSA. Sawaf (2010), Salloum and Habash
(2011) and Salloum and Habash (2013) converted
DA into MSA using a dialectal morphological
analyzer and various mapping rules. Salloum
and Habash (2011)’s DA morphological analyzer
(ADAM), was built by extending a MSA analyzer
in a noisy fashion. Their goal was to maximize an-
alyzability not correctness. Mohamed et al. (2012)
described a method for translating disambiguated
MSA to Egyptian Arabic using a rule-based sys-
tem. Their system reduced OOVs and improved
POS tagging accuracy.

In this paper, we explore a similar approach to
previous efforts (Sawaf, 2010; Mohamed et al.,
2012; Salloum and Habash, 2013) but using a
well-motivated deep morphological representation
based on the MAGEAD approach (Habash and
Rambow, 2006). Our solution is bi-directional un-
like previous efforts and we demonstrate our ap-
proach on Tunisian Arabic.

3 Morphology: MSA vs Tunisian Arabic

Many similarities and differences exist between
MSA and TUN in every aspect of verbal morphol-
ogy: cliticization, inflection and derivation.

3.1 Cliticization Morphology

Various particles, called clitics, attach to inflected
words. Clitics are optional and do not change the
core meaning of the verbs they attach to. There are
two main differences in cliticization morphology
between MSA and Tunisian. First, several MSA
clitics change their form in Tunisian. For exam-
ple, the MSA interrogative particle proclitic (pre-

fixing clitic) +1 Aa+" becomes the enclitic (suffix-

ing clitic) 4+ +§. Second, some MSA clitics be-
come detached in TUN and vice versa. The MSA
future particle proclitic +.» sa+ is realized as the

autonomous particle U:L bAS with TUN verbs. In-
versely, indirect object pronouns are realized as en-
clitics in TUN verbs and not in MSA. The general
structure of MSA and TUN verbs is represented in
the following two regular expressions:

QST? CNJ? PRT? MSA_VERB PRN_D?
CNJ? PRT? TUN_VERB PRN_D? PRN_I? (NEG|QST)?

QST (question) is the interrogative particle, CNJ is
either the conjunctions + ¢ w+ ‘and’ or +2 f+°so’.
PRT is the class of particle proclitics such as fu-
ture, prepositional and negation particle. NEG is
a negation enclitic specified for TUN used with a
negation proclitic. PRN_D and PRN_I are the di-
rect and indirect object pronouns, respectively.

3.2 Inflectional and Derivational Morphology

Arabic words are constructed using two kinds of
morphological operations: templatic and affixa-
tional. Functionally, both operations are used in-
flectionally or derivationally (Habash, 2007). In
templatic morphology, a typically triliteral root
and a pattern combine to form a word’s stem,
which is then extended with prefixes and suffixes,
e.g., the TUN verb ilay &ileg wmAngArnuwhAS
‘and we do not compare her/it’ can be analyzed as

whmA+n-(122 }-uw+hA+3, where 1A23 is the

! Arabic orthographic transliteration is presented in the HSB
scheme (Habash et al., 2007): (in alphabetical order)

R AR SNN Nl dd S IR
Abt @ jHxddrzs § S DTD¢y f qklmnhwy
GALALAT WS, 9o, 8

and the additional letters: ’

¥



pattern, /qrn the root, clitics are marked with ‘+’
delimiter and affixes with ‘-> delimiter. MSA has a
richer inflectional morphology than TUN. In fact,
some MSA features such as nominal case and ver-
bal mood do not exist in TUN. Furthermore, the
MSA number values of singular, dual and plural
are reduced to singular and plural. Masculine and
feminine values of gender feature are not distin-
guished in TUN except for the third person sin-
gular. Patterns carry a general meaning, the MSA
pattern Ail2a33, for example, denotes the change
of state. This pattern is not used in TUN and
Tunisians express the state change by using the
pattern 12A3 which not exists in MSA. Further-
more, some MSA patterns are not defined in TUN
and vice versa.

4 Tools and Resources

Our architecture relies on the morphological pro-
cessing tool MAGEAD and on a transfer lexicon.

41 MAGEAD

MAGEAD (Habash and Rambow, 2005) is a mor-
phological analyzer and generator for the Ara-
bic language family (MSA and Arabic dialects).
MAGEAD relates (bidirectionally) a lexeme and
a set of linguistic features to a surface word form
through a sequence of transformations. In a gen-
eration perspective, the features are translated to
abstract morphemes which are then ordered, and
expressed as concrete morphemes. The concrete
templatic morphemes are interdigitated and af-
fixes added, finally morphological and phonolog-
ical rewrite rules are applied.

4.1.1 Lexeme and Features

Morphological analyses are represented in terms
of a lexeme and features. The lexeme is defined as
a root, a morphological behavior class (MBC). We
use as our example the surface form & a> J" Aiz-
daharat ‘she flourished’. The MAGEAD lexeme-
and-features representation of this word form is as
follows:

(1) Root:zhr MBC:verb-VIII POS:V PER:3 GEN:F
NUM:SG ASPECT:PERF

4.1.2 Morphological Behavior Class

An MBC maps sets of linguistic feature-value
pairs to sets of abstract morphemes. For exam-
ple, MBC verb-VIII maps the feature-value pair
ASPECT:PERF to the abstract root morpheme

[PAT_PV:VIII], which in MSA corresponds to
the concrete root morpheme V1tV2V3, while the
MBC verb-II maps ASPECT:PEREF to the abstract
root morpheme [PAT_PV:II], which in MSA cor-
responds to the concrete root morpheme 1V22V3.
MBCs are defined using a hierarchical represen-
tation with non-monotonic inheritance. The hier-
archy allows to specify only once those feature-
to-morpheme mappings for all MBCs which share
them. For example, the root node of MSA MBC
hierarchy is a word, and all Arabic words share
certain mappings, such as that from the linguis-
tic feature conj:w to the clitic w+. This means
that all Arabic words can take a cliticized conjunc-
tion. Similarly, the object pronominal clitics are
the same for all transitive verbs, no matter what
their templatic pattern is.

4.1.3 MAGEAD Morphemes

To keep the MBC hierarchy variant-
independent, a variant-independent representation
of the abstract morphemes (AMs) that the MBC
hierarchy maps to have been chosen. The AMs
are then ordered into the surface order of the
corresponding concrete morphemes. The ordering
of AMs is specified in a variant-independent
context-free grammar. At this point, our example
(1) looks like this:

2) [Root:zhr][PAT_PV:VIII][VOC_PV:VIlI-act] +

[SUBJSUF_PV:3FS]
Note that the root, pattern, and vocalism are not
ordered with respect to each other, they are simply
juxtaposed. The ‘+ sign indicates the ordering
of affixational morphemes. Only now are the
AMs translated to concrete morphemes (CMs),
which are concatenated in the specified order. Our
example becomes:

(3) <zhr,V1tV2V3,iaa> + at
Simple interdigitation of root, pattern and
vocalism then yields the form iztahar+at.

4.14 MAGEAD Rules

MAGEAD uses two types of rules. Morpho-
phonemic/phonological rules map from the mor-
phemic representation to the phonological and or-
thographic representations.  Orthographic rules
rewrite only the orthographic representation. For
our example, we get /izdaharat/ at the phono-
logical level (as opposed to /iztaharat/). Using
standard MSA diacritized orthography, our exam-
ple becomes Aizdaharat. Removing the diacritics
turns this into the more familiar Azdhrt. We follow



(Kiraz, 2000) in using a multi-tape representation.
MAGEAD extend the analysis of Kiraz by intro-
ducing a fifth tier. The five tiers are used as fol-
lows: Tier 1: pattern and affixational morphemes;
Tier 2: root; Tier 3: vocalism; Tier 4: phonolog-
ical representation; Tier 5: orthographic represen-
tation. In the generation direction, tiers 1 through 3
are always input tiers. Tier 4 is first an output tier,
and subsequently an input tier. Tier 5 is always an
output tier.

4.1.5 From MSA to Tunisian

We adapted MAGEAD to process TUN verbs.
Our effort concentrated on the orthographic rep-
resentation. Changes concerned only the repre-
sentation of linguistic knowledge, leaving the pro-
cessing engine unchanged. We modified the MBC
hierarchy, adding one MBC, removing three and
editing five. The AM ordering has been modified
and a new AM has been added for indirect object.
The mapping from AMs to CMs and the defini-
tion of rules, which are variant-specific, are ob-
tained from a linguistically trained native speaker.
Furthermore, we needed to change some morpho-
phonemic rules. In MSA, for example, the gem-
ination? rule, allows deleting the vowel between
the second and the third radical if it is followed
by a suffix starting with a vowel: compare sae

madad+tu ‘I extended’ with & Xe mad~+at ‘she
extended’ (NOT madad+at). In Tunisian, in con-
trast, gemination always happens, independently
of the suffix: e mad~+iyt ‘1 extended’ and

& dw mad~+it ‘she extended’. Many other rule
changes were needed for TUN. For example, the
first root radical becomes a long vowel in the
imperfective aspect when it corresponds to s ’

(hamza/glottal stop) ( Jf L yAkl becomes f L yAKkl
‘he/it eats’). On the other hand, verbs whose
root ends with ¢ ’, behave the same way as verbs

whose final root radical ¢y in the perfective as-
pect. For example, roots of TUN verbs L . bdynA
‘we started” and U , rmynA ‘we threw’ are respec-
tively ¢ 5 o bd’ and Spormy. More details
are discussed in Hamdi et al. (2013).

4.2 Root and Pattern Lexicon

Our lexicon is made of pairs of the form
(P]V[SA; PTUN) where Pys54 and Pryn are them-

2The second and the third root radical are identical.

selves pairs made of a root and an MBC. Its devel-
opment was based on the Arabic Tree Bank (ATB)
(Maamouri et al., 2004a) which contains 29,911
verb tokens. In order to extract the lemmas and
the roots of these verbs, we used the morphologi-
cal analyzer ElixirFM (SmrZ, 2007) which extracts
the lemma and the root of MSA inflected forms.>
Then, each token of MSA lemma was translated
by a Tunisian native speaker. At this point, lexi-
con entries are composed of a lemma and a root
on the MSA side but only a lemma on the TUN
side. We then associated to every entry an MBC
(on the MSA side) and an MBC and a root (on the
TUN side). In 81.49% of cases, we identified an
Arabic existing root for TUN verbs. When there
was no root for a given lemma, we used a deduc-
tive method to create a new one. Indeed, given the
equation root + pattern = lemma, when we have
a lemma and a pattern, it is possible to deduce a
root. Using this process, we defined 100 new spe-
cific Tunisian roots.

In its current state, the lexicon contains 1,638
entries. The TUN side contains 920 distinct pairs
and the MSA side 1,478 distinct pairs. As ex-
pected, the ambiguity is more important in the
TUN — MSA sense. On average, a TUN pair
corresponds to 1.78 MSA pairs, 1.11 in the oppo-
site direction. The maximum ambiguity is equal
to four in the MSA — TUN direction and sixteen
in the opposite direction. More will be said about
ambiguity in Section 5.

A sample of the lexicon appears in Table 1.
The MBC indicates the pattern and in some cases
the short vowels of the second root radical in the
perfective and the imperfective aspects since they
could change from verb to other. As shown in the
table, a MSA MBC could be mapped to many TUN
MBCs and vice versa.

Two by-products can be built form the lexicon,
a root lexicon and a pattern correspondence table,
both described below.

4.2.1 Root Lexicon

The root lexicon is made of pairs of the form
(rarsa, rTun), where rarsa is an MSA root and
rpyn 1s @ TUN root. The root lexicon contains
1,329 entries. The MSA side contains 1,050 dis-

3We did not use MAGEAD to perform the root extraction
because the work on the lexicon had already started inde-
pendently. MAGEAD for MSA, whose lexicon is based on
the Buckwalter Arabic Morphological Analyzer (Buckwalter,
2002) — just like ElixirFM, could have been used in principle.



MSA TUN English
Root/MBC / Pattern[RootMBC / Pattern Gloss
Smt| 1-aa/la2a3 | skt 1-i1/ 1213 ‘to be silent’
Hlq | 1-aa/1a2a3 |[Hjm| 2-ii/1a22i3 ‘to cut hair’
rtb 2/1a22a3 |nZm| 2-ii/1a22i3 ‘to rank’
Hlq| 2/71a22a3 |Tyr| 1-a/12a3 ‘to fly’
xSm| 3/1A2a3 srk | 3-ii/1A2i3 ‘to dispute’
dhm| 3/1A2a3 |hjm 1-ii/ 1213 ‘to attack’
bhr | 4/Aal2a3 | gjb 1-11/12i3 ‘to amaze’
xfy | 4/Aal2a3 |xby| 2-ai/la22a3 ‘to hide’
r8f | S5/tala22a3 | r8f | 5-ii/tla22i3 ‘to savor’
gjb | 5/tala22a3 | bht 1-i1/12i3  |‘to be surprised’
§ir | 6/talA2a3 | ¢tk | 6/t1A2i3 ‘to fight’
sfy | 6/talA2a3 |bry | l-aa/12a3 ‘to be cured’
xtD | 7/ Ainla2a3 |nqS| 1-uu/12u3 ‘to decrease’
sHb| 7/ Ainla2a3 | bTl | 2-ii/1a22i3 | ‘to step down’
nhy | 8/Ailta2a3 |kml 1-11/12i3 ‘to be end’
Hdn| 8/Ailta2a3 |Hml| 2-ii/1a22i3 ‘to hold’
dgy | 10/ Aistal2a3 | ¢dy | 10/ Aistal2a3 ‘to invite’
wiy [ 10/ Aistal2a3 | kml | 2-ii/1a22i3 | ‘to complete’

Table 1: A sample TUN-MSA lexicon. The pat-
tern provided is the form used with 3rd masculine
singular perfective inflection. It is only presented
for illustrative reasons to exemplify and highlight
differences between TUN and MSA MBCs.

tinct roots and the TUN side 646 ones. 519 entries
are composed of the same root on both sides. As
in the root and pattern lexicon, the ambiguity is
higher in the TUN — MSA direction. On average,
a TUN root is paired with 2.06 MSA roots. In the
opposite direction, this figure is equal to 1.26.

4.2.2 Pattern Correspondence Table

The pattern correspondence table indicates, for
a pattern in MSA or TUN, the most frequent corre-
sponding pattern in the other side. The pattern cor-
respondence table is itself built on a pattern corre-
spondence matrix, which is represented in Table 2.
Each line of the matrix corresponds to a MSA pat-
tern and each column to a TUN pattern. The matrix
reads as follow, MSA pattern 1, for example, cor-
responds in 434 times to TUN pattern 1, 98 times
to TUN pattern 2, and so on.

This matrix reveals several interesting facts.
First, all patterns are not present in MSA or TUN
in our lexicon. Pattern 9, for example is absent
both in MSA and TUN and patterns 4 and 7 are
absent on the TUN side. Second, there is a general
tendency to keep the same pattern on the source
and target sides of a lexicon entry. This is repre-
sented in the matrix by the fact that figures on the
diagonal (in bold face) usually are the highest fig-
ure of both their line and column (the only excep-
tion is pattern 8). When a pattern does not exist in

TUN
1 2 [3[5[6]8]10
114347 98 [ 10| 15 2
2139 (298| 2 | 2| 2 2
3] 24 | 19 [567 2
M|4] 69 118 4 | 6
S[5]26 | 16 | 2 |88 3
Al6 | 18 [ 14 [ 2] 7 |26
7113 | 7 | 2
8| 41" [ 24 | 5 | 16| 4 |18,
0] 17 | 24 | 2 | 3 317

Table 2: Pattern correspondence matrix. Bolded
cells are either the highest counts when translating
from TUN to MSA or from MSA to TUN. X* in-
dicates highest count from MSA to TUN; and X,
indicates highest count from TUN to MSA.

TUN, it is usually mapped to pattern 1.

The extraction of the pattern correspondence
tables form the pattern correspondence matrix is
straightforward: it consists in selecting for every
pattern in the source side the most frequent pattern
for the target side. It is interesting to note that is
some cases, the most frequent pattern clearly dom-
inates the other patterns, as it is the case for pattern
2 in MSA. In other cases, the tendency is not clear,
as in pattern 4 in MSA.

Overall, the matrix tells us that selecting a tar-
get root and a target pattern are not independent
processes. In other words, the root and pattern lex-
icon contains more information than the root lex-
icon along with the pattern correspondence table.
We will experimentally quantify, in Section 5, the
influence of making such an independence hypoth-
esis.

5 Evaluation

The process of translating a source verbal form to
a target verbal form proceeds in three main steps:
morphological analysis using MAGEAD for the
source language, followed by lexical transfer of
roots and MBCs and finally, morphological gen-
eration of target verbal forms. All of these steps
are reversible.

The whole process contains two sources of am-
biguity: the analysis can create multiple (root,
MBC) pairs and the lexicon may propose for an
input pair many target pairs.

As we mentioned in the introduction, the goal
of this work is not translation for TUN to MSA but



generating from a TUN text an approximation of
MSA, so that MSA NLP tools, such as morpho-
syntactic taggers or parsers can be applied to this
new form of text with acceptable results. The ex-
periments described here provide only a partial
evaluation, they allow to measure the proportion of
cases in which the correct MSA form is generated
given a TUN form.

The evaluation process is faced with the prob-
lem of lack of written resources for dialects. To
overcome this problem, we used a book by Dhouib
(2007) which is a Tunisian theater piece. 1500
tokens of TUN verbal forms were identified and
translated in context to MSA by two Tunisian na-
tive speakers. At the end of this process, 1500
pairs were produced. This set was divided into
two equal parts. The first was used as a develop-
ment set and the second as a test set. Two standard
metrics were used to evaluate the process: recall,
which indicates the proportion of cases where the
correct target form was produced; and ambiguity,
which indicates the number of target forms pro-
duced on average for an input. The development
set allowed us to fill some gaps in MAGEAD and
enrich our lexicon.

We conducted the evaluation on undiacritized
verbal forms since most of written Arabic is undi-
acritized. Without neither morphological nor lexi-
cal transfer, recall reaches 30.93% on tokens and
29.44% on types* but ambiguity is still at 1.0.
This experiment gives the ratio of identical undi-
acritized TUN and MSA verbal forms in the test
set.

In the following four sections, we present a se-
ries of experiments with different ways of realizing
the transfer especially with respect to factorizing
roots and patterns.

5.1 Pattern Correspondence Table

The most simple transfer process that we have ex-
perimented consists in leaving the source root un-
changed and selecting the target pattern by a pat-
tern correspondence table lookup. This experiment
corresponds to the situation in which we do not
have at our disposal a transfer lexicon. Since pat-
tern is defined as a superset of MBCs, the target
pattern maps to many target MBCs, each of them
is associated to the target root and features to form
the input of the morphological generator. We have

“Types are unique instances of tokens.

chosen to build a correspondence pattern table in-
stead of a correspondence MBC table for two main
reasons : first, evaluations are made in an undia-
critized set of verbs. Second, patterns carry a gen-
eral meaning which can be a way to match MSA
with TUN patterns. A block diagram of the pro-
cess is presented in Figure 1 and the result of the
experiment can be found in Table 3.

—= source root ——

source verb %{ MAGEAD ]—ﬁ source MBC

L~ features

at. corresp.
l [ P table p}

— features

target verb A—[ MAGEAD }——7 target MBC
L—— targetroot |=—!
Figure 1: Translation process of source verbal

form to target verbal form using a pattern corre-
spondence table

recall ambiguity
tokens | types | tokens | types
TUN — MSA | 47.74 | 43.40 | 3941 | 37.61
MSA — TUN | 52.55 |48.05| 5.89 | 7.12

Table 3: Recall and ambiguity on test set using pat-
tern correspondence table

Table 3 shows two interesting features. First,
the recall is quite low, around 50%. Keeping the
source root is therefore a very rough approxima-
tion of the target variant. Second, the ambiguity is
much higher in the TUN—MSA direction. This
is due to the fact that TUN forms are morpho-
logically more ambiguous than MSA forms. On
average, a TUN form has 24.05 different analy-
ses while MSA forms has on average 10.21 analy-
ses. As mentioned in Section 3 MSA has a richer
inflectional morphology than TUN, however our
system used the same features for TUN and MSA
analysis. Consequently, when a feature does not
exist on TUN side, it produces many identical anal-
ysis with different values of this feature and gener-
ates subsequently many MSA verbal forms.

The same experiment was done using two tar-
get patterns instead of one (see Table 4). Table 4
shows a slight increase in recall. It rises on to-
kens to 51.65% in the TUN—MSA direction and
53.96% in the other direction. However, the ambi-
guity becomes higher, the process produces about



70 MSA verbs on average for a TUN token.

recall ambiguity
tokens | types | tokens | types
TUN — MSA | 51.65 [ 48.23 | 66.98 | 64.69
MSA — TUN | 53.96 [50.87 | 9.81 |10.68

Table 4: Recall and ambiguity on test set using pat-
tern correspondence table

5.2 Root Lexicon and Pattern
Correspondence Table

In this experiment, the target pattern is selected as
before by a lookup in the pattern correspondence
table but the target roots are selected by a root lex-
icon lookup. This new setting was devised in or-
der to increase the recall by better modeling root
modification. The block diagram of the new set-
ting appears in Figure 2 and the results on test set
in Table 5 and 6.

source verb H MAGEAD J

—={ source root

source MBC

L—| features

|

l [ pal.lf{gll‘gesp} {mol lexicon J

— features
target MBC

L target root

target verb H MAGEAD }

Figure 2: Translation process of source verbal
form to target verbal form using a root lexicon and
a pattern correspondence table

recall ambiguity
tokens | types | tokens | types
TUN — MSA | 68.98 |66.56 | 74.37 | 72.89
MSA — TUN | 72.37 |71.60 | 13.70 | 14.52

Table 5: Recall and ambiguity on test using a root
lexicon and a pattern correspondence table

As expected, Table 5 shows a significant im-
provement of the recall. Ambiguity has also in-
creased, this is due to the fact that a source root
can map to several target roots: on average 2.06 in
the TUN—MSA direction and 1.26 in the opposite
direction.

Using the two most frequent target patterns from
the pattern correspondence table, the translation
process gives the highest recall and ambiguity, as
shown in Table 6. In the MSA—TUN direction,

recall rises to 86.12% on tokens and 81.77% in the
inverse direction. The downside of this process is
the ambiguity which becomes more then 100 in the
TUN—MSA direction.

recall ambiguity
tokens | types | tokens | types
TUN — MSA | 81.77 | 80.66 | 126.44 | 122.45
MSA — TUN | 86.12 | 84.97 | 21.92 | 22.56

Table 6: Recall and ambiguity on test using a root
lexicon and a pattern correspondence table

5.3 Root and Pattern Lexicon

In the preceding experiment, target roots and target
patterns are translated independently and paired to
compose the input of the morphological generator.
But, as mentioned in Section 1, target root selec-
tion and target pattern selection are not indepen-
dent processes: two source (root, pattern) pairs,
sharing a common pattern can select different tar-
get patterns. In such cases the preceding method
will give birth to incorrect (root, pattern) pairs and,
eventually, incorrect verbal forms. In this exper-
iment, target roots and patterns are selected to-
gether by a root and pattern lexicon access. The
new process is represented in Figure 3 and results
appear in Table 7.

‘{ MAGEAD }

—= source root

source MBC

source verb

L= features

lexicon

[root and pat.

— features

target MBC

target verb

A—{ MAGEAD }

L— target root

Figure 3: Translation process of source verbal
form to target verbal form using a root and pattern
lexicon

recall ambiguity
tokens | types | tokens | types
TUN — MSA | 76.43 | 74.52 | 26.82 | 25.57
MSA — TUN | 79.24 | 75.10 | 1.47 | 3.10

Table 7: Recall and ambiguity on test using a root
and pattern lexicon

Replacing the root lexicon and the pattern corre-
spondence table by a root and pattern lexicon has
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Figure 4: Translation process of source verbal
form to target verbal form using a root and pat-
tern lexicon with backoff on a root lexicon and a
pattern correspondence table

a positive effect both on recall and ambiguity. The
difference between the results of this experiment
and the preceding one allows us to quantify the
independence hypothesis of the root selection and
the pattern selection we made in the preceding ex-
periment.

The main weakness of this method is lexical
coverage. We cannot expect to have a complete
root and pattern lexicon and, sometimes, lexicon
access fails. It is interesting at this point to mention
the results of the same experiment on the develop-
ment set. Recall that the verbal forms included in
the development set have been used to populate the
lexicon. As a consequence, a lexicon access never
fails, and always produces the correct target (root,
pattern) pair. The results of such an experiment, al-
though artificial, allow to estimate an upper bound
of such a method. In TUN — MSA direction, re-
call on tokens reaches 87.65% and in the inverse
direction, it reaches 89.56%.

The reason why we did not reach 100% recall in
this experiment is due to the fact that both MSA
and TUN MAGEAD do not always produce the
correct analysis, when used as an analyzer, or the
correct form when used as a generator. An error
analysis in the TUN — MSA direction showed that
21.8% of errors come from MSA MAGEAD and
78.2% from TUN MAGEAD. Most MAGEAD
mistakes are due to morphological phenomena
which have not been implemented yet, as quadrilit-
eral verbs and the imperative form of defective
verbs.’

5.4 Root and Pattern Lexicon with Backoff

In order to deal with low lexical coverage, we
devised a variant of the preceding method which
backs off, in cases of lexicon lookup failure, to the

5 Arabic defective verbs contain /w/ or /y/ in their root.

1| root lexicon

root lexicon and a the pattern correspondence ta-
ble. The architecture of the system is shown in Fig-
ure 4, where the dotted lines represent the backoff
path.

As Table 8 shows, this method increases recall
significantly. This increase is itself the result of
a better coverage. Ambiguity has also increased,
this is due to the fact that when backing off, the
transfer tends to be more ambiguous.

recall ambiguity
tokens | types | tokens | types
TUN — MSA | 79.71 | 78.94 | 29.16 | 28.44
MSA — TUN | 84.83 | 84.03 | 3.47 | 4.95

Table 8: Recall and ambiguity on test using a root
and pattern lexicon with backoff on a root lexicon
and a pattern correspondence table

6 Conclusion and Future Work

We presented a translation system between MSA
and TUN verbal forms. This work is part of a
wider project of translating Arabic dialects to an
approximation of MSA. The results given by our
system are about 80% recall in the TUN — MSA
direction and 84% recall in the opposite direction.
The translation process is highly ambiguous, in
the MSA — TUN direction, the mean ambiguity
is equal to 3.47 and reaches 29.16 in the oppo-
site direction. A contextual disambiguation pro-
cess is therefore necessary for such a process to be
of practical use.

Future work will involve the development of a
morphological model for nouns for TUN follow-
ing the work of Altantawy et al. (2010), as well as
a lexicon. In parallel we will work on the disam-
biguation of the TUN — MSA translations using a
language model trained on a MSA corpus.
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