
HAL Id: hal-00908757
https://hal.science/hal-00908757

Submitted on 25 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Near-Optimal Algorithm for Delivering Multiple
Live Video Channels in CDNs

Jiayi Liu, Gwendal Simon

To cite this version:
Jiayi Liu, Gwendal Simon. Fast Near-Optimal Algorithm for Delivering Multiple Live Video Channels
in CDNs. ICCCN 2013 : 22nd International Conference on Computer Communications and Networks,
Jul 2013, Nassau, Bahamas. �10.1109/ICCCN.2013.6614138�. �hal-00908757�

https://hal.science/hal-00908757
https://hal.archives-ouvertes.fr

Fast Near-Optimal Algorithm for Delivering

Multiple Live Video Channels in CDNs

Jiayi Liu Gwendal Simon

Télécom Bretagne, France, firstname.lastname@telecom-bretagne.eu

Abstract—Content Delivery Networks (CDNs) are confronted
with a sharp increase in traffic related to live video (channel)
streaming. Previous theoretical models that deal with streaming
capacity problems do not capture the emerging reality faced by
today’s CDNs. In particular, a modern CDN has to deliver a large
set of independent non-divisible data streams, which need to be
either delivered in whole, or not delivered at all. This constraint
is not addressed in previous works.

In this paper we identify a new, discretized streaming model
for live video delivery in CDNs. For this model we formulate a
general optimization problem and show that it is NP-complete.
Then we study a practical scenario that occurs in real CDNs. We
present a fast, easy to implement, and near-optimal algorithm
with performance approximation ratios that are negligible for
large network. To our knowledge, these are the first results for
the discretized streaming model, and have both practical and
theoretical importance in a topic of growing criticality.

I. INTRODUCTION

In today’s Internet, a small set of companies—referred to

as Content Delivery Network (CDN) providers—handle the

majority of video traffic on behalf of content producers. The

techniques used by these companies to deliver terabytes of

data per second are mainly exposed by reverse-engineering

studies [1]. In comparison to the importance of video traffic

today, the amount of research related to live video delivery in

CDN infrastructures has stayed remarkably low.

The previous theoretical works related to live streaming

in CDNs have highlighted the main characteristics of these

networks, in particular the 3-tier topology (origin servers,

reflectors and edge-servers) [2], and the restriction on the

upload capacity of the equipment [3, 4]. The goal of these

previous works is to reduce the transmission cost of video

delivery. However, modern CDNs rely on edge-servers that

are located within the network of Internet Service Providers

(ISPs), and on peering agreements with these ISPs [5]. As a

matter of fact, the bandwidth cost to make the traffic transit

across different networks has significantly decreased [6], to a

point that it is no longer the main issue.

The major concern today is the growth in the volume

of video traffic, and the capacity problem that this growth

produces [7]. In addition, the development of dynamic rate-

adaptive streaming techniques (e.g. MPEG DASH standard)

accelerates the stress on the CDN. With such techniques,

up to a dozen of representations of the same video stream

are available at the server(s). Clients dynamically choose

representation according to the accepted resolutions of their

devices and their network capacity. This technique puts much

stress on the infrastructure, since for a single channel the

whole set of representations (with an aggregated bit-rate over

30 Mbps) should be delivered to the edge-servers.

The streaming capacity of networks has been addressed

in a series of recent works [8, 9], which aim to determine

the maximum bit-rate that can be delivered to all nodes in a

network. Some algorithms, mostly based on network coding,

obtain near-optimal performances in terms of bandwidth uti-

lization [10]. Unfortunately, these solutions are unrealizable

in a CDN due to two main reasons. First, they rely on heavy

computations which are intractable in the CDN hardware

(although the equipment have a very large bandwidth, their

computing capabilities are quite small [5]). Second, the model

used in these works is idealized since it assumes one infinitely

divisible data stream, whereas the data that has to be delivered

is a large set of distinct non-divisible streams (either represen-

tations, or bundles of representations). Each stream has to be

either delivered in its entirety, or not delivered at all.

Discretized streaming is a more suitable model for multiple

live video channels in modern CDNs. The main challenge is

to determine a delivery scheme that maximizes the number of

delivered streams in a 3-tier network that is constrained by the

capacity of its inner equipment. We give a formal formulation

of the general problem for this model and prove that it is

NP-complete. This is the first contribution in this paper.

Then, we provide a solution that meets the demands of CDN

providers. We consider a practical scenario, which corresponds

to today’s CDN implementation of live streams. We present an

algorithm, which is fast, easy to implement, and near optimal.

We provide formal theoretical approximation bounds, which

are shown to be negligible for the regarded configuration. The

algorithm represents the major contribution of this paper. To

our knowledge, today’s CDN providers apply ad-hoc delivery

techniques. Our algorithm is thus the first scientific reference

for optimal delivery in the discretized streaming model.

The remainder of the paper is as follows. In Section II,

we introduce the discretized streaming model and define the

problem. Then, in Section III we provide an ILP formulation of

the problem and prove that it is NP-complete. In section IV, we

overview the rationale behind the network configuration and

describe our near-optimal algorithm for the scenario. Section V

evaluates the performance of the proposed algorithm. Related

work is presented in Section VI. Finally, Section VII discusses

the theoretical results and concludes the paper.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A CDN is composed of a set of communication devices

and a set of directed communication links. There are three

types of communication devices, also referred to as nodes,

in a CDN: a relatively small number of sources (origins),

a medium size network of reflectors, and a large number

of edge servers. The sources receive and transcode the raw

video channels into a set of live representations; the reflectors

deliver the representations to the CDN edges, and the edge

servers offer the received representations to the clients inside

their respective ISPs. In what follows we present our model

of live streaming in a CDN, which is followed by a detailed

optimization problem formulation.

A. Live video streaming in a CDN

The topology of a CDN is modeled by a directed graph G =
(V,E), where V represents the communication devices, and E
represents the communication links. Let VS , VR, VE ⊂ V be

the set of sources, reflectors and edge servers, respectively.

There are three types of possible connections in E: ESR

connects sources to reflectors, ERR allows communication

between reflectors, and ERE delivers the representations to

the edge servers. They are formally defined as:

ESR={(u, v) : u ∈ VS , v ∈ VR}
ERR={(u, v) : u, v ∈ VR}
ERE={(u, v) : u ∈ VR, v ∈ VE}.

The live streams consist of l different channels. The raw

video of each channel is transcoded into k representations,

where the bit-rate of the i-th representation, 1 ≤ i ≤ k, is

λi. For simplicity of notation hereafter we denote by [m]
the integer interval {1, . . . ,m}. Also, let dij be the i-th
representation of the j-th channel, i ∈ [k], j ∈ [l].

The delivery of a representation dij , i ∈ [k], j ∈ [l], from

the source nodes to the edge servers is carried out through a

set, Tij , of node-disjoint subtrees of G. Each tree in Tij , also

referred to as the delivery tree, has one of the source nodes

as its root and edge servers as its leafs. We denote by T ij
s

the delivery tree of dij rooted at s ∈ VS . For convenience,

let V (T) and E(T) denote the node and edge sets of tree T ,

respectively.

Note that every forwarding node v, either source or reflector,

can participate in the delivery of multiple representations.

However, for any representation dij , i ∈ [k], j ∈ [l], v can

be a part of only a single delivery tree in Tij . In addition,

every forwarding node v ∈ VS∪VR is also limited by the total

outbound bit-rate (capacity) it can support, c(v). Let D(v) be

the set of representations forwarded by v, v ∈ VS ∪VR. Then,

∑

i∈[k]

λi · |{j : dij ∈ D(v)}| ≤ c(v).

Like all previous works [3, 4, 11], we consider that the out-

bound capacity of equipment is the only constraint.

B. Problem definition

Ultimately we would like every edge server to receive all the

representations it requires. This however might not be possible

due to the outbound capacity constraints at the forwarding

nodes, and thus the CDN may support the delivery of only a

subset of representations for each edge server. In such case, the

CDN provider leverages statistics to prioritize the delivery [2].

The preferences of edge servers in respect to the available

representations is captured in a utility score, such that αij
u is

the utility score that edge server u assigns to representation

dij . To evaluate the performance of a delivery scheme, the

idea is thus to evaluate a utility score function αu(Xu) for

each edge server u ∈ VE as follows:

αu(Xu) =
∑

i∈[k]

∑

j∈[l]

αij
u x

ij
u

where Xu is an indicator matrix of size k × l such that xij
u

has a value of 1 if u receives dij and 0 otherwise.

Our objective in this paper is to study the Maximum

Average Utility Score (MAUS) problem, which essentially is

the maximization of the average utility score function of the

edge servers, as summarized below.

Problem II.1 (MAUS). Given the topology and capacity

constraints of a CDN, find delivery tree sets, {Tij}i∈[k],j∈[l],

such that
∑

u∈VE
αu(Xu) is maximized.

III. FORMULATION AND PROBLEM COMPLEXITY

We now discuss the complexity of Problem II.1. We provide

an ILP formulation and then show that it is NP-complete.

A. ILP formulation

We use the notation introduced in Section II and extend it

by defining two new variables, y and h. Let T ij
s ∈ Tij , i ∈ [k],

j ∈ [l], be a delivery tree. Then, for every edge (u, v) ∈ E,

yijsu,v is an indicator variable such that:

yijsu,v =

{

1 if (u, v) ∈ E(T ij
s),

0 otherwise.

For nodes u, v ∈ V such that (u, v) /∈ E we define yijsu,v = 0.

For every node v ∈ V , hijs
v is an upper bound on the depth

of v in T ij
s , i.e.

hijs
u,v =

{

≥ depth of v in T ij
s , if (u, v) ∈ E(T ij

s),
=∞, otherwise.

To ease the notation, let us define Iijsv (U) to be the sum

of y variables that correspond to incoming edges into v ∈ V
from the nodes in U ⊆ V , i.e.

Iijsv (U) =
∑

u∈U

yijsu,v.

Similarly, let Oijs
v (U) be the sum of y variables that corre-

spond to outgoing edges from v to nodes in U , i.e.

Oijs
v (U) =

∑

u∈U

yijsv,u.

In the ILP formulation, we omit the use of set membership

indication ∈ for the main notations. Whenever we write ∀i,
∀j, ∀s, ∀r, ∀u, and ∀v, we imply ∀i ∈ [k], ∀j ∈ [j], ∀s ∈ VS ,

∀r ∈ VR, ∀u ∈ VE , and ∀v ∈ V , respectively.1

ILP formulation: MAUS

max.
∑

u∈VE

k
∑

i=1

l
∑

j=1

αij
u x

ij
u (1)

s.t. xij
u ≤

∑

s∈VS

Iijsu (VR) ∀i, j, u (2)

Iijsr (VS ∪ VR) ≤ 1 ∀i, j, s, r (3)

Iijsu (VR) ≤ 1 ∀i, j, s, u (4)

k
∑

i=1

l
∑

j=1

Oijs
s (VR)λi ≤ c(s) ∀s (5)

k
∑

i=1

l
∑

j=1

∑

s∈VS

Oijs
r (VR∪VE)λi ≤ c(r) ∀r (6)

hijs
s = 0 ∀i, j, s (7)

hijs
r + 1− hijs

v ≤ |V |(1− yijsr,v) ∀i, j, r, v (8)

Oijs
r (VR∪VE) ≤ |V |(I

ijs
r ({s}∪VR)) ∀i, j, s, r (9)

Iijsr ({s}∪VR) ≤ Oijs
r (VR∪VE) ∀i, j, s, r (10)

The constraints in (2) ensure that the indicator variables x
have non-zero values only if there are incoming edges in the

respective trees. Constraints in (3)-(4) guarantee that every

node has only one parent in every delivery tree. Cycles are

avoided in (7)-(8). The capacity restrictions are enforced in

(5)-(6). Finally, in (9)-(10) we require that reflector nodes have

outgoing edges in delivery trees iff there is an incoming edge.

B. NP-completeness

Let DMAUS be the decision version of the MAUS problem.

Problem III.1 (DMAUS). Given topology and capacity con-

straints of a CDN, and a real number B, do there exist delivery

tree sets, {Tij}i∈[k],j∈[l], such that
∑

u∈VE
αu(Xu) ≥ B?

Clearly DMAUS is in NP. We now show that DMAUS is

NP-hard by a reduction from 3-SAT. Recall that an instance of

the 3-SAT problem consists of n variables, z1, . . . , zn, and m
clauses, C1, . . . , Cm, where each clause Cj = (y1j ∨ y

2
j ∨ y

3
j),

j ∈ [m], has exactly three literals.

Given an instance of the 3-SAT problem we construct an

instance of the DMAUS problem. Let G3SAT = (V,E) be the

topology of a CDN. We define V to be (i) a single source node,

VS = {s}, (ii) 3n reflectors that are partitioned into two sets,

VR = Z∪A, such that |Z| = n and |A| = 2n, (iii) and m edge

servers VE = {u1, . . . , um}. The node set Z = {v1, . . . , vn}
represents the variables of the 3-SAT instance, the nodes in

A = {vt1, v
f
1 , . . . , v

t
n, v

f
n} represent the two possible values of

1We use i, j, s, r, u, and v to refer to representations, channels, sources,
reflectors, edge servers, and general nodes, respectively.

these variables, and the edge servers represent the m clauses.

Overall |V | = 1 + 3n+m.

The edge set E is composed of n links between s and

the nodes in Z, 2n links that connect Z to A, and 3m links

between A and the edge server nodes. More specifically,

E ={(s, v) : v ∈ Z}

∪ {(vi, v
t
i), (vi, v

f
i) : i ∈ [n]}

∪ {(vti , uj) : i ∈ [n], j ∈ [m], zi is a literal in Cj}

∪ {(vfi , uj) : i ∈ [n], j ∈ [m], z̄i is a literal in Cj}

For example, see Fig. 1. The capacities of the nodes are

defined as follows: c(s) = n and ∀i ∈ [n], c(vi) = 1 and

c(vti) = c(vfi) = m. We set the number of channels and

representations to 1, and the utility score of receiving the

single available representation at every edge server u ∈ VE

is α11s
u = 1. Finally, the value B is chosen to be m.

s

v1

vt
1 v

f
1

v2

vt
2 v

f
2

v3

vt
3 v

f
3

v4

vt
4 v

f
4

C1 C2 C3

Fig. 1: Graph associated with 3-SAT (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

We now show that there is a solution to the 3-SAT problem

iff there is a solution to the DMAUS problem. Due to space

constraints we provide only a brief outline of the proof.

Let φ be a satisfying assignment for the 3-SAT problem

instance. We incrementally construct the delivery tree T 11
s =

(V 11
s , E11

s). At first V 11
s = {s} and E11

s = ∅. Then, if there

exists an edge server uj /∈ V 11
s , we pick one of the literals in

Cj that have a true assignment in φ (since φ is a satisfying

assignment, there must be at least one such literal). W.l.o.g.

let zi be a literal in Cj and φ(zi) = true. We add to the tree

the nodes vi, v
t
i , uj and the edges (s, vi), (vi, v

t
i), and (vti , uj).

Note that some of the nodes or the edges might already exist

in the tree, so we just add the missing ones. These steps never

violate the capacity constraints, as for any vi ∈ Z, at most

one outgoing edge, either (vi, v
t
i) or (vi, v

f
i), can be added

to E11
s , which depends on the assignment φ (the first in case

φ(zi) = true, and the latter otherwise). It is easy to conclude

that T 11
s is a delivery tree rooted at s and has all the nodes

VE as its leafs, and thus the utility score function has a total

score of m. The feasibility of each step follows directly from

the definition of the CDN topology, G3SAT .

In the opposite direction, let T 11
s be a solution to the

DMAUS problem (as there is only one representation, one

channel and one source node, the solution is a single delivery

tree). We construct φ by iterating over the nodes in VE . For

every uj ∈ VE , if vti is the parent of uj in T 11
s we define

φ(zi) = true, and φ(zi) = false otherwise. Note that due to

capacity constraints, it is impossible that both vti and vfi are in

T 11
s , and thus the assignment is feasible, i.e. the same variable

will never be assigned both true and false. After the iteration

ends, if there are any undefined variables, we set their values

to true. What remains to be shown is that φ is a satisfying

assignment. For every clause Cj , j ∈ [m], there must exist a

literal which corresponds to the father of uj in T 11
s (due to

the construction of G3SAT) and has a true assignment in φ
(due to the iterative definition of φ), and thus Cj is true.

IV. HOMOGENEOUS BUNDLE DELIVERY

As the above NP-completeness claim implies, it is currently

impossible to implement an optimal solution for the general

case. Thus, we focus on a practical scenario, which, as far as

we understood from our discussions with CDN stakeholders,

corresponds to today’s CDN implementation. For this practical

scenario, we propose a near optimal greedy algorithm which

produces delivery trees for every channel.

A. Practical bundle delivery in CDN

In practical CDNs, one can assume that every reflector

is connected to any other reflector by a direct link, i.e. for

any u, v ∈ VR and u 6= v, it holds (u, v) ∈ ERR. This

can be justified by the fact that the links between reflectors

are essentially international connections in the public Inter-

net backbone, where any equipment is virtually connected

to any other equipment. In fact, the specifications of the

CDN Federation [12, 13] impose full connectivity between the

hosts of every member CDN. In what follows we describe a

fundamental and popular CDN scenario, named Homogeneous

Bundle Delivery.

For services which are based on DASH, today’s CDNs

do not deliver each representation individually. Instead, they

gather all representations of a given channel into one bundle,

and deliver the whole bundle from the source(s) to the edge

server(s). Due to the fact that the majority of transcoders

are the same, all bundles have roughly the same size, which

simplifies the delivery management.

An example of this scenario is as follows: the client of a

large-scale CDN is a prominent over-the-top (OTT) service

provider, which diffuses a TV package to a large audience.

Every channel is bundled, with a total rate of λ. The number

of channels l ranges typically from 20 to 150. All the edge

servers are expected to receive all the bundles in the same

way, i.e. αj
u = 1 for every u ∈ VE and j ∈ [l] (note the slight

change of notation due to the bundling of representations). For

a fixed rate data stream, the capacity constraint of every node

is essentially an upper bound on the number of simultaneous

bundles that the node can support. For simplicity let bv =
⌊c(v)/λ⌋ be the number of bundles that can be supported by

any v ∈ VS∪VR. As previously we use the indicator variables

xj
u, u ∈ VE , j ∈ [l], which have the value of 1 if the edge

server u receives the bundle of the j-th channel. Our objective

for this scenario can be summarized as follows:

max
∑

j∈[l]

∑

u∈VE

xj
u.

B. The algorithm

For simplicity of exposition, and following our assumption

of full connectivity between the source and reflector nodes

(ESR), we can assume there is a single super-source s∗ with

bs∗ =
∑

s∈VS
bs. Note that any solution for the case of

having a single super-source can be easily converted into a

solution with multiple sources by distributing the load among

the sources according to their upload capacities.

The algorithm BUNDLE-DELIVERY (see below) is com-

posed of two phases. First (step (2)), we iteratively construct

one delivery tree Tj for every channel j, j ∈ [l]. Second (step

(3a)), we provide a local improvement for potentially unused

capacity. The first phase is further divided into two parts: first

we decide which reflectors Vj ⊆ VR will be part of Tj (the

loop in step (2c)); then, we generate the tree Tj in step (2f).

The main idea of the algorithm is to have as few reflectors in

the delivery trees as possible. By doing so we aim to reduce the

capacity “wasted” on inter-reflector communication. We also

avoid using nodes with residual capacity of 1 in the first phase

since they can forward a bundle to only one node. Instead,

we use 2-hop connections in the second phase to utilize their

capacity.

There are two main sets of variables in the algorithm. For

every node v ∈ VR we use bjv , 0 ≤ j ≤ l, to denote the

residual forwarding capacity of node v after the construction

of trees T1, . . . , Tj , i.e. the capacity which remains at v to

forward bundles for channels j + 1, . . . , l after it has already

forwarded the bundles for channels 1, . . . , j. We also define

f j
v , for every v ∈ VR, j ∈ [l], to be the number of bundles

forwarded by v in Tj , i.e. the number of children v has in Tj .

After Vj is determined, these variables are updated according

to the forwarding capacity used by each node in Vj . The formal

definition of BUNDLE-DELIVERY follows.

We now explain steps (2f) and (3a) in detail.

Algorithm: BUNDLE-DELIVERY

1) Initialize ∀v ∈ VR : b0v ← bv and j ← 1.

2) While ∃v ∈ VR : bj−1
v ≥ 2, bs∗ ≥ j, and j ≤ l:

a) Initialize Vj ← ∅ and Uj = {u : bj−1
u ≥ 2}.

b) Initialize ∀v ∈ VR : f j
v ← 0.

c) While
∑

v∈VR
f j
v < |Vj |+ |VE | − 1 and Uj 6= ∅:

i) Extract from Uj a node u∗ with maximum forward-

ing capacity, i.e. bj−1
u∗ = maxu∈U bj−1

u .

ii) f j
u∗ ← min{bj−1

u∗ , |VE |+ |Vj | −
∑

v∈Vj
f j
v}.

iii) Add u∗ to Vj .

d) Update ∀v ∈ VR : bjv = bj−1
v − f j

v .

e) Update j ← j + 1.

f) Generate a tree Tj based on the nodes Vj .

3) If not all edge servers receive all channel bundles and

bs∗ > l then:

a) Use two-hop connections to deliver additional chan-

nel bundles.

Generating a tree. For every channel j, Tj is a tree which

is rooted at s∗, has Vj as its intermediate nodes, and some or

all of VE as its leafs. The out-degree of every node v ∈ Vj

in Tj is exactly f j
v . The topology of the tree can be arbitrary

with a single constraint, that the super-source has exactly one

child in Tj . Although the topology of Tj has no effect on

the number of leafs in Tj , which is (
∑

v∈Vj
f j
v − |Vj | + 1)

as we show later, we would ultimately like the tree to have

the minimum possible height to minimize the number of hops

from the super-source node to the leafs. For that purpose we

construct Tj in the following way. First connect s∗ to the

node v with maximum value of f j
v in Vj . Then, connect v to

f j
v nodes with the next highest values of f j in Vj , and repeat

this process for every node in Vj \{v} according to decreasing

value of f j until all the nodes in Vj have a parent in Tj . In the

end of this process, some nodes will have an out-degree less

than the corresponding value of f j . Connect these nodes to a

subset of edge servers, yet to be included in Tj , such that the

degree of those nodes will match their f j values (Lemma IV.1

below shows that it is always possible).

Fig. 2 shows an example of tree generation. The node-set Vj

is composed of two nodes: u and v with f j
u = 3, and f j

v = 2
(Fig. 2(1)). As u has a higher forwarding capacity than v, it is

connected to s∗ and v is set as the child of u (Fig. 2(2)). At

this point the out-degrees of u and v are 1 and 0, respectively,

which are less than their forwarding capacities in Tj . Thus,

both u and v are connected to 2 edge servers each (Fig. 2(3)).

(1)

s
∗

u v

(2)

s
∗

u

v

(3)

s
∗

u

v

Fig. 2: Tj generation: Vj = {u, v}, f
j
u = 3, f j

v = 2.

Using two-hop connections: After step (2), the source node

might have some unused forwarding capacity. As we show

later, if not all edge servers receive every channel bundle, then

every reflector v ∈ VR has a forwarding capacity of bj
∗

v ≤ 1,

where j∗ is the last channel for which a tree Tj is constructed

(the last execution of the step (2)). We use reflectors with non-

zero forwarding capacity to deliver additional channel bundles

to edge servers that are yet to receive them in a two-hop

fashion s∗ → v → u, where v ∈ VR with bj
∗

v = 1, and

u ∈ VE such that u is not a leaf in Ti.

Let j∗ be the last channel for which a delivery tree Tj∗ was

constructed. It is easy to observe that the trees generated in

every step (2f) are feasible delivery trees rooted at s∗, where

Tj delivers the j-th channel bundle, j ∈ [j∗]. The forwarding

capacity upper bound is enforced for the super-source in step

(2) for the reflectors in steps (2(c)ii,2d). Moreover, as we show

in Lemma IV.1 below, all the leafs in Tj are edge server nodes.

Lemma IV.1. In every constructed tree Tj there are exactly
∑

v∈Vj
f j
v−(|Vj |−1) leafs and

∑

v∈Vj
f j
v−(|Vj |−1) ≤ |VE |.

Proof: Note that for any Tj , j ∈ [l], the root s∗ has exactly

one child. Therefore, |Vj |−1 nodes have a parent node which

is a reflector. According to step (2f), every reflector v ∈ Vj

has an out-degree of f j
v in Tj . Thus, we can conclude that in

Tj a total of |Vj | − 1 forwarding capacity is used to deliver

the channel bundle between reflector nodes, which results in

Tj having
∑

v∈Vj
f j
v − (|Vj | − 1) leaf nodes. Steps (2c,2(c)ii)

enforce the inequality
∑

v∈Vj
f j
v − (|Vj | − 1) ≤ |VE |, and

therefore we can conclude that step (2f) is feasible, i.e. it is

always possible to connect a reflector v to some edge server,

yet to be in Tj , to fill the out-degree of v in Tj .

C. Performance analysis of BUNDLE-DELIVERY

Running time. The algorithm BUNDLE-DELIVERY has

three main steps. Step (1) is simple initialization and takes

O(|VR|) time to execute. In step (2) we need to maintain the

information about the residual forwarding capacity at every

reflector. This can be easily implemented by using an ordered

list. At first the reflectors are sorted in decreasing order

according to their initial forwarding capacity (b0v , v ∈ VR).

Then, during the execution of the inner loop in step (2(c)ii),

for every j ∈ [l] at most one node in Vj will not use all of

its forwarding capacity in Tj . Removing all the nodes except

for, possibly, the last one, and moving the last one in the

ordered list according to its updated residual capacity, takes

O(|VR|) time. Clearly the use of the ordered list allows an

easy implementation of the collection of nodes Uj , as we are

only interested in the information about the residual capacities

in decreasing order. Tree generation itself takes linear time in

|Vj |+ |VE |. Thus, the total running time of the second step is

O(|VR| log |VR|+ l · VR + |VE |). Finally, the third step takes

O(bs∗ + |VR|+ |VE |) time. To conclude, the running time of

BUNDLE-DELIVERY is O(|VR| log |VR|+ l ·VR+ |VE |+ bs∗).
Approximation ratio. In our analysis we ignore step (3a)

of the algorithm as it has no direct effect on the performance

bounds, but rather serves as a local improvement, which

may or may not occur. Let S and S∗ be the values of the

solution obtained by BUNDLE-DELIVERY and the optimal

one, respectively. The next lemma shows that either the unused

capacity of every reflector is at most 1 or S = S∗.

Lemma IV.2. At the end of the execution of BUNDLE-

DELIVERY it holds that if ∃u ∈ VR : bj
∗

u > 1 then S = S∗.

Proof: Suppose that after the construction of Tj∗ there

exists a node u ∈ VR such that bj
∗

u > 1. Clearly, u ∈ Uj

for every j ∈ [j∗] as the residual forwarding capacity b
(·)
u can

only decrease in subsequent executions of step (2). There are

two possible cases during the construction of Tj :

Case 1: Node u was chosen in step (2(c)i). Then since bj
∗

u > 1
we can conclude that f j

u = |VE |+ |Vj | −
∑

v∈Vj\{u}
and u is

the last node to be added to Vj .

Case 2: Node u was not chosen in step (2(c)i). Then, the loop

(2c) ended due to equality
∑

v∈Vj
f j
v = |VE |+ |Vj | − 1.

Thus, for every j ∈ [j∗] the equality
∑

v∈Vj
f j
v − (|Vj | −

1) = |VE | holds and due to Lemma IV.1 the number of leafs

in Tj is |VE |. Taking a closer look at the conditions in the

main loop (2) we can see that j∗ = min{l, s∗} (as for any

j ∈ {0, 1, . . . , j∗ + 1}, bj−1
u ≥ 2), and as a result S = |VE | ·

min{l, s∗}. On the other hand, we have S ≤ S∗ ≤ |VE | ·
min{l, s∗}. Therefore, S = S∗.

We are now ready to prove the main theorem of this section.

We make a reasonable assumption that it is possible to deliver

at least one channel to all the edge servers, i.e. S∗ ≥ |VE |.

Theorem IV.3. Under the assumption that S∗ ≥ |VE | it holds

that S/S∗ ≥ 1− (bs∗/|VE |).

Proof: We start by drawing an upper bound on the optimal

solution. The number of edge servers that can potentially be

reached by all the reflectors is at most
∑

v∈VR
bv . However,

some of the capacity needs to be used to maintain the delivery

trees (source-reflector, and reflector-reflector connections). In

the best case scenario (in terms of “wasted” capacity), every

node is used in only one tree, and bs∗ reflectors have s∗ as their

parent in one of the delivery trees. Thus, S∗ ≤
∑

v∈VR
bv −

|VR|+ bs∗ .

Next we analyze the solution produced by BUNDLE-

DELIVERY. If there exists a node v ∈ VR such that bj
∗

v > 1
(recall that Tj∗ is the last tree to be constructed), then accord-

ing to Lemma IV.2, S = S∗. Otherwise, for every v ∈ VR,

bj
∗

v ≤ 1. Let x = |{v : bv > 1, bj
∗

v = 1}| be the number

of nodes that had their residual bundle capacity reduced to 1
during the execution of the algorithm, and y = |{u : bu = 1}|
be the number of nodes with bundle delivery capacity of

1 prior to the execution of the algorithm. Hence the total

forwarding capacity used in all the delivery trees (before step

(3a),
∑

j∈[j∗]

∑

v∈Vj
f j
v =

∑

v∈VR
bv − (x+ y).

Note that when a node u∗ is selected to be added to Vj ,

j ∈ [j∗], in step (2(c)i) it cannot be used again unless it was

the last node to be added to Tj (due to the computation of the

forwarding capacity f j
u∗). Thus, the total number of reflectors

in all the delivery trees is the number of potentially partici-

pating nodes (v ∈ VR, with bv > 1) plus at most j∗− 1 times

a node might appear in two and more trees (due to the partial

assignment of f). Formally,
∑

j∈[j∗] |Vj | ≤ |VR|− y+ j∗− 1.

Based on Lemma IV.1 and the above we can now derive a

lower bound for our solution. As discussed in the beginning

of this section we ignore step (3a) in our evaluation (it can

only improve the lower bound of S∗).

S =
∑

j∈[j∗]





∑

v∈Vj

f j
v − (|Vj | − 1)





=
∑

j∈[j∗]

∑

v∈Vj

f j
v −

∑

j∈[j∗]

(|Vj | − 1)

≥
∑

v∈VR

bv − (x+ y)− (|VR| − y + j∗ − 1) + j∗

=
∑

v∈VR

bv − |VR| − x+ 1

As we derived in Lemma IV.2, when a partial forwarding

capacity f j
v < bj−1

v is assigned to some v ∈ Vj , j ∈ [j∗], the

delivery tree Tj has |VE | leafs. As we already stated in this

proof, at most one node can be assigned a partial forwarding

10 20 30 40 50
43

43.2

43.4

43.6

43.8

44

number of edge servers

av
er

ag
e

b
u
n
d
le

s S∗

S

(a) Small instances

10
2

10
3

10
4

10
5

0.98

0.99

1

number of edge servers

ap
p
ro

x
im

at
e

ra
ti

o

(b) Large instances

Fig. 3: Evaluation

capacity in each tree, and thus there is a partial assignment

in at least x delivery trees. As a result, S ≥ x|VE |. On the

other hand, S ≤ S∗ ≤ l|VE |. Summarizing all of the above

and under the assumption that S∗ ≥ |VE | we obtain,

S/S∗ ≥
S∗ − x− bs∗ + 1

S∗
= 1−

x+ bs∗ − 1

S∗

= 1−
1

|VE |
−

bs∗ − 1

S∗
≥ 1− (bs∗/|VE |).

V. EVALUATION

We now evaluate the approximation ratio, S/S∗ of the

BUNDLE-DELIVERY algorithm proposed in Section IV. For

small instances, S∗ is obtained by the implementation of

the ILP model in IBM ILOG CPLEX software. Due to

the complexity of the model, for large instances, we com-

puted S∗ according to the upper bound given in the proof

of Theorem IV.3. We simulated a CDN network with 1

source, x edge servers (x between 10 and 100,000), and

the number of reflectors can supply 90% of the required

bandwidth to deliver 50 channels. Each channel contains 8
representations. The bit-rate of the representations follows

recommendations from Apple HTTP Live Streaming [14]:

{150, 240, 440, 640, 1240, 1840, 2540, 4540} kbps. Source and

reflector capacity is set to 1 Gbps.

The results are shown in Figure 3. For small networks

(Figure 3(a)), edge servers receive 44 channels on average

in the optimal solution. The result obtained by the BUNDLE-

DELIVERY algorithm is slightly below. For large networks

(Figure 3(b)), the BUNDLE-DELIVERY algorithm achieves an

approximation ratio of 1−10−3. For networks with 1,000 edge

servers, the ratio S/S∗ is at least 0.999056, and starting from

x = 10,000 it is above 0.999906.

VI. RELATED WORK

In what follows we survey some of the relevant literature

in related areas.

Streaming in CDN networks. A surprisingly low amount

of work are related to live streaming in CDN networks. The

earliest work [15, 16] did not deal with multiple streams, which

is the main challenge in our work. The most recent work [4,

11] consider the lack of resources and multiple streams,

however their objective is to reduce the bandwidth cost subject

to the resource constraints. This objective is outdated since

CDNs and ISPs develop peering agreements, which reduce the

importance of the bandwidth cost. Finally, the relation between

edge servers and end users in the context of DASH is studied

in [17, 18]. These work complement our work, which focuses

on the CDN infrastructure.

Multi-tree Packing Delivery. Bounded tree packing problems

have been studied in the context of peer-assisted systems [19,

20]. The problem is to minimize the amount of additional

resources to serve all peers in a peer-to-peer system. This prob-

lem is different in CDNs, which are self-sustained networks;

missing resources cannot be compensated, but rather need to

be used in the best possible way. Numerous work have studied

multi-tree packing for peer-to-peer application-layer multicast

protocols (see [21] for a survey). The goal here is to span all

nodes under application-related optimization objective (e.g., to

minimize tree height, or to reduce controlling overhead).

Streaming capacity in node-capacitated networks. The

problem of maximizing the rate of the data stream, subject

to the upload capacities of the nodes has been addressed

under different models [8, 9]. These work are motivated by

the development of peer-to-peer networks. Again, the network

and the delivery objectives differ. More important, these work

do not address the problem of discretized streaming, and they

do not deal with the delivery of particular channels. The

maximization of channel utility scores is a major difference

between these work and ours, which prevents the use of

network coding techniques.

Bounded-degree Trees. The minimum Bounded Degree Span-

ning Tree (BDST) problem aims to determine a minimum-

cost spanning tree while no node should have more than m
children (see [22]), which is NP-complete for any m ≥ 2.

Related variations of this problem feature non-uniform degree

bounds [23]. Our problem formulation differs since, first,

consider an unweighted graph, and second, these work aim

at spanning all nodes in the network while optimizing an

objective function, while we aim at maximizing the number

of spanned nodes under a node degree constraint. The only

related work in this aspect is [24], which study the minimum

spanning tree with at least k nodes in a weighted graph, but

this work do not target the maximal k. Furthermore, these

work do not deal with packing several trees and the resource

allocation problem that such packing introduces.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we introduced the discretized streaming model,

which represents multiple rate-adaptive video channels de-

livery in today’s CDNs. We first formulated a general opti-

mization problem for prioritized live video delivery which we

showed to be NP-complete. Then, we focused on a realistic

scenario. The CDN provider is in charge of delivering the

representations of each channel as one bundle. We developed

a fast and simple algorithm which guarantees a solution which

is at least 1 − (bs∗/|VE |) times the optimal solution. To the

best of our knowledge, this is the first result for the discretized

streaming model

As future direction for this work it would be interesting to

propose solutions for the general problem. In addition, the

overall performance can benefit from non-centralized com-

putation of delivery trees. Finally, it is of great importance

to explore the computation of the utility score, which is

influenced by a large number of parameters, especially in the

context of DASH where the demand from clients may change

very quickly.

ACKNOWLEDGMENT

We thank Dr. Hanan Shpungin for his contribution and

French Ministry of Industry for the funding of Zewall project.

REFERENCES

[1] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and
S. Rao, “Dissecting Video Server Selection Strategies in the YouTube
CDN,” in IEEE ICDCS, 2011.

[2] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network: a
platform for high-performance internet applications,” Op. Sys. Rev.,
vol. 44, no. 3, pp. 2–19, 2010.

[3] F. Zhou, S. Ahmad, E. Buyukkaya, G. Simon, and R. Hamzaoui,
“Minimizing Server Throughput for Low-Delay Live Streaming in
Content Delivery Networks,” in ACM NOSSDAV, 2012.

[4] M. Adler, R. K. Sitaraman, and H. Venkataramani, “Algorithms for
optimizing the bandwidth cost of content delivery,” Computer Networks,
vol. 55, no. 18, pp. 4007–4020, 2011.

[5] “Netflix Open Connect Peering Guidelines,” 2012, http://goo.gl/GQ6NU.
[6] B. Krogfoss, “Analysis: Content peering and the internet economy,”

Alcatel Lucent, Tech. Rep., April 2011.
[7] M. Ingram, “You think the internet is big now? akamai needs to grow

100-fold,” Om Malik, Jun. 2012, http://goo.gl/vVUap.
[8] S. Sengupta, S. Liu, M. Chen, M. Chiang, J. Li, and P. A. Chou, “Peer-

to-peer streaming capacity,” IEEE Trans. on Information Theory, vol. 57,
no. 8, pp. 5072–5087, 2011.

[9] C. Zhao, X. Lin, and C. Wu, “The streaming capacity of sparsely-
connected P2P systems with distributed control,” in INFOCOM, 2011.

[10] D. Niu and B. Li, “Asymptotic optimality of randomized peer-to-peer
broadcast with network coding,” in IEEE INFOCOM, 2011.

[11] K. Andreev, B. Maggs, A. Meyerson, J. Saks, and R. Sitaraman, “Al-
gorithms for constructing overlay networks for live streaming,” CoRR,
vol. 1109.4114, 2011.

[12] G. Bertrand, E. Stephan, T. Burbridge, P. Eardley, K. Ma, and G. Watson,
“Use Cases for Content Delivery Network Interconnection,” draft at
IETF CDN Interconnection, 2012.

[13] F. Le Faucheur, “CDN Federations: Lessons from the CDN Federation
Pilot Phase 2,” in CDN Summit, 2012.

[14] Apple, “Using http live streaming,” http://goo.gl/fJIwC.
[15] K. Andreev, B. M. Maggs, A. Meyerson, and R. K. Sitaraman, “Design-

ing overlay multicast networks for streaming,” in ACM SPAA, 2003.
[16] J. M. Almeida, D. L. Eager, M. K. Vernon, and S. J. Wright, “Mini-

mizing delivery cost in scalable streaming content distribution systems,”
IEEE Trans. on Multimedia, vol. 6, no. 2, pp. 356–365, 2004.

[17] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj, “Rate adap-
tation for dynamic adaptive streaming over http in content distribution
network,” Sig. Proc.: Image Comm., vol. 27, no. 4, pp. 288–311, 2012.

[18] L. D. Cicco, S. Mascolo, and V. Palmisano, “Feedback control for
adaptive live video streaming,” in ACM MMSys, 2011.

[19] M. R. Rahimi, A. Bais, and N. Sarshar, “On fair and optimal multi-
source ip-multicast,” Computer Networks, 2012.

[20] R. Sweha, V. Ishakian, and A. Bestavros, “AngelCast: Cloud-based Peer-
Assisted Live Streaming Using Optimized Multi-Tree Construction,” in
ACM MMSys, 2012.

[21] M. Hosseini, , D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas,
“A survey of application-layer multicast protocols,” IEEE Com. Surveys

& Tut., vol. 9, no. 3, pp. 58–74, 2007.
[22] M. X. Goemans, “Minimum bounded degree spanning trees,” in IEEE

FOCS, 2006.
[23] J. Könemann and R. Ravi, “Primal-dual meets local search: approximat-

ing MSTs with nonuniform degree bounds,” SIAM J. Comput., vol. 34,
no. 3, pp. 763–773, 2005.

[24] C. Blum and M. J. Blesa, “New metaheuristic approaches for the edge-
weighted -cardinality tree problem,” Computers & OR, vol. 32, pp.
1355–1377, 2005.

